FIELD OF THE INVENTION
[0001] This invention relates to a novel implantable device for a bodily sensor and a method
of manufacturing said device.
BACKGROUND OF THE INVENTION
[0002] Implantable sensors provide real time readings for one or more physiological parameters
in a patient. Sensors may be used for monitoring a variety of bodily properties, such
as temperature, pressure, fluid flow, or biochemical properties. Implantable sensors,
suitable for use within the body, are capable of remote data transmission and, in
recent years, have become compact in size and long lasting.
[0003] Implantable sensors may be secured within a lumen or other bodily cavity using a
variety of devices, for example, an anchor. Where an expandable anchor is used, the
anchor is compressed for delivery through the blood vessels and expanded at a target
site to engage the vessel wall. The sensor must be secured to the anchor while the
compressed anchor is delivered, and remain secured once the anchor is expanded at
the target site. Further, the sensor must maintain its ability to measure and transmit
data following delivery and expansion. Thus, accurate placement of the anchor and
sensor is critical for the reliable measurement of a selected physiological parameter.
Inaccurate positioning of a sensor jeopardizes the integrity of the sensor's readings.
For example, if the sensor is not in sufficient contact with the blood due to cellular
ingrowth around the sensor, accurate blood pressure readings cannot be obtained.
[0004] One example of an implantable sensor is provided in
US 2003/009093 to Silver. The implantable sensor of Silver includes a cylindrical stent wall surrounded by
a sheath and includes a sensor housing and sensor element connected by one or more
conductors. Another example of an implantable sensor is provided in
US 2007/191904 to Libbus et al. The expandable electrode of Libbus includes expandable portions with an integrated
pressure sensor. An example of a stent is provided by
DE19746882 to Angiomed. The stent of Angiomed includes a cylindrical lattice structure with
interrupted intersections and uninterrupted intersections. An example of a prosthesis
is provided by
US 2005/075721 to Klein. The prosthesis includes a plurality of extensible rings having a plurality of beams
and a plurality of expansion joints. Another example of a stent is provided by
US 2006/004436 to Amarant et al. Amarant describes a stent having a circumferential element with first and second
ends a longitudinal axis and arcuate struts disposed intermediate the ends. The stent
may include a link member to connect adjacent struts.
[0005] In order to minimize endothelial cell growth around the sensor, it is desirable to
position the sensor a distance from the vessel wall when the anchor is implanted.
Positioning the sensor away from the vessel wall also reduces interference from the
vessel tissue and reduces any cellular or plaque buildup on the sensor. However, because
the anchor is generally pressed against the vessel wall to maintain its position in
the vessel and the sensor is attached to the anchor, current anchoring systems do
not generally permit a sensor to be displaced from the anchor. Therefore, there is
a need for an anchor sensor device with a sensor capable of being compressed to maintain
deliverability, yet maximize the accuracy of the sensor at the target site once the
anchor is implanted.
SUMMARY OF THE INVENTION
[0006] The present invention relates to an implantable device for a sensor and a manufacturing
process to produce said device. The implantable device comprises an expandable anchor
and a bridge and a small passive sensor which is secured onto the bridge. The device
facilitates positioning of the sensor in a lumen or a human blood vessel, so that
the sensor may accurately obtain internal measurements of the environment, such as,
e.g., fluid pressure, environmental temperature or chemical measurements. In addition,
the device may be a device that is able to treat a medical condition, for example,
by releasing a therapeutic agent.
[0007] The anchor comprises any structure or configuration that is compressible during delivery,
decreasing its diameter, and expandable at the target site, increasing its diameter.
A bridge is attached to the anchor. When said anchor is compressed during delivery,
the bridge is generally aligned with the wall of the anchor. At the target site, the
anchor is expanded, thereby increasing its diameter and the bridge adopts a bowed
position,
i.e., protruding into the lumen, distancing the center portion of the bowed bridge away
from the vessel wall. Positioning the sensor on the bowed portion of the bridge improves
the accuracy of the sensor's reading because it eliminates interference from the vessel
wall and brings the sensor into direct contact with the measurand. The anchor may
comprise any device, which changes in diameter from a compressed to an expanded configuration.
[0008] The bridge is an elongated member, aligned with the anchor's longitudinal axis and
configured to bow toward the interior portion of the lumen upon expansion of the anchor.
In one embodiment, the bridge is substantially straight along the longitudinal axis
of the anchor. In another embodiment, the bridge includes one or more loops or curved
portions. In all respects, the bridge is designed to bow into the central portion
of the lumen upon expansion.
[0009] The bridge is adapted to house the sensor. As such, the sensor may be secured on
the bridge by an adapting ring. Alternatively, the sensor may be embedded into the
bridge. The bridge may further optionally comprise an angiographic marker to indicate
the location and orientation of the sensor so that the sensor can be positioned precisely.
After delivery to the implantation site and proper implanted, the bridge bows within
the interior of the lumen, causing the secured sensor to be displaced from the walls
of the implantation site. Sensor measurements may be taken frequently over the duration
of the implant without further invasive procedures.
[0010] Another aspect of the invention relates to the manufacturing process for the implantable
device described above. One method relates to making an implantable device comprising
an expandable anchor, a bridge and a sensor, whereby the expandable anchor has a compressed
and expanded configuration, said anchor having a longitudinal axis and forming an
anchor wall, said bridge is aligned with the longitudinal axis of the anchor and aligned
with the anchor wall when said anchor is in the compressed configuration, and said
bridge protrudes into said lumen when said anchor is in the expanded configuration,
comprising the steps of: (a) manufacturing of the bridge and anchor as a single unit,
(b) heat treating the bridge and anchor to a thermomechanically preset shape, and
(c) assembling of the adapting ring and sensor onto the bridge. The single unit bridge-anchor
may for example be manufactured from a tube or laser cut into a flat metal sheet or
planar metal sheet then rolled and welded into a tube as known in the art. The heat
treating step may be carried out on a mandrel having a preselected divot formed into
the shape the bowed bridge will assume after expansion. The assembling step may further
trap the sensor between the adapting ring and the bridge. The method may further comprise
crimping and securing the device on a delivery catheter. Optionally, an angiographic
marker can be attached to the sensor.
[0011] Alternatively, the device may be manufactured from separate anchor and bridge components.
This method relates to making an implantable device comprising an expandable anchor,
a bridge and a sensor, whereby the expandable anchor has a compressed and expanded
configuration, said anchor having a longitudinal axis and forming an anchor wall,
said bridge is aligned with the longitudinal axis of the anchor and aligned with the
anchor wall when said anchor is in the compressed configuration, and said bridge protrudes
into said lumen when said anchor is in the expanded configuration, comprising the
steps of: (a) manufacturing the anchor; (b) manufacturing the bridge; (c) heat treating
the bridge to a thermomechanically preset shape (d) attaching the bridge to the anchor
component; and (e) assembling the sensor to the bridge. The bridge may be attached
to the anchor component by welding, adhesives or other known method for attaching
such components. The method may further comprise crimping and securing the device
on a delivery catheter. Optionally, an angiographic marker can be attached to the
sensor. Step (d) may be performed prior to step (c). Also, step (e) may be performed
prior to step (d).
[0012] Furthermore, a method of implanting a sensor is described further below. The method
of implanting a sensor comprising: (a) preparing a device comprising an expandable
anchor, a bridge and a sensor, whereby said expandable anchor has a compressed and
expanded configuration, said anchor having a longitudinal axis and forming an anchor
wall, said bridge is aligned with the longitudinal axis of the anchor and aligned
with the anchor wall when said anchor is in the compressed configuration, and said
bridge protrudes into said lumen when said anchor is in the expanded configuration;
(b) delivering the device to a lumen; and (c) expanding the anchor, causing the bridge
to protrude into said lumen; and (d) causing said sensor to protrude into said lumen.
Brief Description of the Drawings
[0013]
FIG. 1 illustrates one embodiment of the anchor device, including the anchor and the
bridge, in the compressed configuration.
FIG. 2 illustrates the device in FIG. 1 in the expanded configuration.
FIG. 3 illustrates a loop-containing-bridge embodiment of the device
FIG. 4 illustrates a sensor secured to the bridge by an adapting ring.
FIG. 5 illustrates one embodiment of a sensor used in this invention.
FIG. 6 illustrates an alternative embodiment of the bridge and anchor in the expanded
configuration.
FIGS. 7A-7D illustrates the heat treatment process in accordance with the invention.
FIG. 8 illustrates the jig used to attach the adapting ring and sensor to the anchor
and bridge following heat treatment.
Detailed Description of the Invention
[0014] The present invention relates to an implantable device for a sensor and the manufacturing
process to produce said device. The implantable device comprises an expandable anchor,
a fixed and longitudinally-aligned bridge attached to the anchor and a sensor secured
to the bridge.
[0015] Generally, the anchor may be a stent or any expandable prosthetic device, as is known
in the art, preferably one having a plurality of undulating rings that are able to
move relative to one another and foreshorten during the expansion of the anchor. The
design of the undulating rings may vary as is known in the art. The undulating rings
may comprise serpentine bands, loops or enclosed spaces as known in the art. In the
compressed configuration of the anchor, the undulating rings are spaced apart from
one another. When the anchor is deployed, at least a portion of a pair of neighboring
undulating rings are configured to approach one another, decreasing the distance between
said undulating rings. Other neighboring undulating rings do not necessarily move
toward each other upon the anchor's expansion.
[0016] The bridge is preferably attached to a pair of neighboring undulating rings of the
anchor. The bridge has a constant, fixed length that spans the distance between the
adjacent connected undulating rings in the compressed position. In the compressed
state of the anchor, the bridge maintains a position that is substantially aligned
with the materials of the compressed anchor. Upon expansion of the anchor, the distance
between the adjacent undulating rings decreases, and the bridge is configured to change
position from its aligned position to the bowed position. The bowed position of the
bridge effectively projects the bridge away from the wall of the anchor toward the
center of the lumen. A sensor may be positioned at the apex of the bow of the bridge,
or other areas away from the wall of the anchor, thereby protecting the sensor from
the cellular growth of the vasculature and facilitating accurate readings at the implantation
site. In either the compressed or expanded states of the anchor, the bridge maintains
a constant, fixed length. One, two or a plurality of bridges may be attached to a
single anchor.
[0017] In one embodiment, the bridge may possess comparable potential energy in the flat
position and the bowed position, allowing it to transition back and forth between
the two positions at the operator's discretion. This feature is advantageous when
the anchor is capable of recompression and re-expansion after the initial deployment
to achieve precise implantation. In another embodiment, the bridge may possess higher
potential energy in the flat position than in the bowed position, similar to a flat
spring. Upon deployment at the implantation site, the bridge bows to release the potential
energy and facilitate the expansion of the anchor and thereafter may assist in locking
the anchor in the expanded configuration.
[0018] The bridge may be manufactured as part of the anchor device as a single unit and
is, in this way, attached to the anchor or may be manufactured separately and affixed
to the anchor by welding or other methods known in the art. In another embodiment,
a portion of the bridge can be manufactured as part of the anchor as a single unit
while a separate portion of the bridge can be manufactured separately and affixed
to the anchor or to a bridge portion unitary with the anchor, respectively. Laser
or chemical etching from a material tube or sheet, or other manufacturing methods
known in the art, may be adopted to manufacture the anchor and the bridge, separately
or as a unitary structure. The bridge may be pretreated to the bowed position. Particularly
when higher potential energy in the flat position is desired.
[0019] Generally, the sensor may be any implantable sensor known in the art. Preferably,
the sensor is passive and miniature, allowing for real time readings of temperature,
pressure, fluid flow, or other biochemical properties at the implantation site. Non-limiting
examples of such a sensor are described in
US Pat. Nos. 5,619,997,
5,989,190,
6,083,165,
6,331,163,
6,770,032,
7,134,341,
7,415,883 and
8,162,839 (describing a protected or encapsulated sensor) and
US Pub. No. 2013/0060139. The sensor may comprise a vibrating member capable of sensing the pressure of ambient
fluid, and reading of the fluid pressure, which is transmittable wirelessly to a receiver
outside the patient's body. The sensor and anchor may be implanted in any body lumen
in which the recipient would benefit therefrom. Example lumens include arteries such
as, e.g., the coronary arteries, carotid arteries and femoral arteries, as well as
veins, such as, e.g., the portal or hepatic veins. For example, when implanted in
the portal vein, such sensor allows the physician to monitor the portal vein blood
pressure as often as is desired.
[0020] The sensor may be secured to the bridge by an adapting ring. The sensor is placed
on the plate, an area of the bridge adapted to receive the sensor. The adapting ring
surrounds the sensor and is affixed to the plate by means of adhesives or welding,
thereby securing the sensor onto the bridge. Depending on the size and shape of the
sensor, the adapting ring is shaped to secure the sensor on the surface of the bridge
and allow exposure of the vibrating member of the sensor. Further, where the sensor
has undesirable sharp corners, the adapting ring may cover the sharp corners of the
sensor with its rounded shape. As such, the adapting ring may comprise any shape,
preferably shapes devoid of sharp corners.
[0021] The anchor may be manufactured from biocompatible metal alloys (e.g., Nitinol) or
polyesters (
e.g., PET). The anchor is preferably self-expanding and made of a self-expanding material,
such as Nitinol. For example, the anchor may comprise a metal alloy, such as a stainless
steel, titanium, nickel-titanium (e.g., Nitinol), tantalum, cobalt-chromium, cobalt-chromium-vanadium,
cobalt-chromium-tungsten, gold, silver, platinum, platinum-iridium, or any combination
of the above metals and alloys. Alternatively, the anchor may comprise a biostable,
non-bioabsorbable polymers, such as, for example, a polyethylene terephthalate (PET),
polyurethane urea and silicone. In another alternative, the anchor may comprise an
amorphous metal alloy, such as, for example, an alloy of iron, chromium, boron and
phosphorus, as described in
U.S. Pub. No. 2010/0274350. Preferably, anchor is capable of re-collapsing into a compressed configuration after
it has been fully expanded. In this manner, the anchor may be retracted back within
the delivery device if the initial deployment is not satisfactory, and then redeployed
at another location. As a further alternative, the device may comprise a vehicle for
local, controlled or sustained delivery of therapeutic agents, such as the device
described in
U.S. Pat. No. 5,629,008.
[0022] The bridge may be made of the same material as the anchor and/or a different biocompatible
non-thrombogenic, non-biodegradable and/or non-biofouling material. The adapting ring
may be made of the same material as the anchor and/or the bridge, or a different biocompatible
material that is non-thrombogenic, non-biodegradable and/or non-biofouling.
[0023] The present invention and its variant embodiments are explained below with reference
to the accompanying drawings. The drawings are provided to facilitate an exemplary
understanding of the present invention and to schematically illustrate particular
embodiments of the invention. The skilled artisan will readily recognize other similar
examples equally within the scope of the invention. The drawings are not intended
to limit the scope of the present invention as defined in the appended claims.
[0024] FIG. 1 illustrates one embodiment of the invention,
i.e., an implantable device 10 in the compressed configuration having anchor 20 in the
radially compressed form and bridge 30 longitudinally aligned with said anchor. In
the embodiment of FIG. 1, anchor 20 comprises a tubular shape with a longitudinal
axis and a lumen 21 therethrough. Anchor 20 is composed of a plurality of serpentine
members 23 longitudinally spaced along the length of the anchor. Each serpentine member
23 is composed of a plurality of peaks and valleys, wherein each peak points toward
the distal end of the anchor and each valley points toward the proximal end of the
anchor. Each serpentine member 23 is connected to a longitudinally adjacent serpentine
member by connectors 24. Connectors, although shown in FIG. 1, are not required features
of the inventive anchor, but rather are particular to the embodiment of FIG. 1. In
FIG. 1, connector 24 extends from the peak of a first serpentine member to the valley
of a second serpentine member. The length of connector 24 may be varied as needed
in order to adjust the length of D1, and is not limited to the length shown in FIG.
1. Connectors 24 may further comprise one or more pinch points 28, shown in FIG. 2,
which assist the anchor in recollapsing to the compressed configuration after expansion,
if desired. The design of the peaks and valleys of the stent may vary as is known
in the art, provided that the distance between the points of connection of the bridge
to the stent decreases upon expansion of the stent.
[0025] An enclosed space, cell 25, is formed by the arrangement of serpentine members and
connectors. A plurality of cells 25 aligned circumferentially around the stent defines
wall 22, the external envelope of the anchor 20. In the compressed configuration as
in FIG. 1, anchor 20 has a smaller diameter than in the expanded configuration. The
length and diameter of anchor 20 in the compressed configuration may be sized as necessary
for expansions in the target vessel, as is known in the analogous stent art. Anchor
20 may be any anchor or stent commonly used in percutaneous cardiovascular procedures
or otherwise, including bare-metal stents and drug eluting stents.
[0026] As shown in FIG. 1, bridge 30 is attached to anchor 20. The bridge 30 comprises ends
31a and 31b, as well as plate 35 located between ends 31a and 31b. The length of the
bridge spans distance, D1, in the compressed configuration. In FIG. 1, bridge 30 connects
a first serpentine ring 23 at end 31b to a second serpentine ring 23 at end 31a. End
31b is connected to a first serpentine ring while end 31a is connected to a second
serpentine ring.
[0027] In FIG. 1, cell 25 has points 26a and 26b located at the opposite vertices along
the longitudinal axis. The two ends 31a and 31b are attached to points 26a and 26b,
respectively. Cells of anchor 20 may be heterogeneous in size and shape. Bridge 30
may be attached to any cell of anchor 20. Further, bridge 30 may be made of the same
material as anchor 20, or it may be made of a different biocompatible material.
[0028] In FIG. 1, points 26a and 26b may each further include ring 27a and 27b, respectively.
Rings 27a and 27b are structural aspects of the anchor 20 that aid in the attachment
of bridge 30 to the anchor 20, providing a point of attachment for the bridge to be
affixed onto the anchor where the bridge is manufactured separately from the anchor.
Further, rings 27a and 27b may function to relieve the strain on the anchor as the
anchor expands in diameter and the bridge 30 becomes bowed. While rings 27a and 27b
are illustrated as having a circular shape in FIG. 1, they are not limited to this
shape. Non-circular shapes for rings 27a and b may be used to attach bridge 30 to
anchor 20. Further, rings 27a and 27b need not be the same shape or size. For example,
ring 27a may be larger than ring 27b, or vice versa. The attachment of the bridge
30 to anchor 20 may be achieved by any method known in the art, such as welding, soldering,
or brazing, as will be further discussed herein.
[0029] FIG. 1 illustrates the anchor 20 in the compressed configuration. In this state,
D1 is the distance between points 26a and 26b, and bridge 30 spans D1. Further, bridge
30 does not protrude into the lumen of anchor 20 and as such is aligned with the members
of the anchor when compressed. The length of the bridge may be any length as desired
so long as the bridge bows within the lumen as the anchor expands. In the embodiment
shown in FIG. 1, the bridge 30 has the same length as D1. In another embodiment, e.g.,
FIG. 3, the bridge 30 contains loops and may be longer than D1. The width and thickness
of the bridge may be any size as desired. For example, the width and thickness may
be greater than that of the anchor, as shown in FIGS. 1 and 2. Alternatively, the
width and thickness of the bridge may be substantially equal to those of the members
of the anchor, as shown in FIG. 6.
[0030] In FIG. 1, plate 35 is located at or near the middle point of bridge 30, and may
have a larger width than the adjacent portions of the bridge. Plate 35 may be located
at any location along bridge 30, and not necessarily at the center location depicted
in FIG. 1. Plate 35 is configured to allow attachment of the sensor and the optional
adapting ring thereto. The plate 35 is sized such that plate 35 covers the entire
area of the sensor. Further, the size of the plate may be varied independently from
the width and thickness of the remaining portions of the bridge. For example, in FIGS.
1 and 2, the plate 35 has a rounder shape as compared to the irregular shape of the
plate 45 in FIG. 3, because the width of the bridge is greater in FIGS. 1 and 2 as
compared to bridge 40 of FIG 3. The plate 35 may have any shape in order to house
the sensor. In an alternative embodiment, not shown, the plate may contain an orifice
such that the sensor can be placed within the orifice of the sensor, and further secured
by an adapting ring.
[0031] FIG. 2 illustrates the implanted device 10 of FIG. 1 in the expanded configuration.
Anchor 20 is radially expanded and the diameter of lumen 21 is enlarged compared to
that of the compressed anchor 20 of FIG. 1. In this configuration, cell 25 shortens
in the longitudinal direction and widens in the circumferential direction compared
to cell 25 in the compressed configuration. The overall length of the anchor 20 need
not foreshorten so long as the distance between the adjacent undulating rings shortens,
i.e., the foreshortening may be localized to the cell in which the bridge is located.
[0032] D2 in FIG. 2 is the distance between points 26a and 26b in the expanded configuration.
The expansion of anchor 20 causes points 26a and 26b to move towards each other along
the longitudinal axis, and D2 of FIG. 2 is smaller than D1 of FIG. 1. During delivery,
the implantable device is radially constrained within a delivery catheter and the
bridge 30 is aligned with wall 22. Expansion of the anchor results in a decrease in
distance between points 26a and 26b, pushing ends 31a and 31b towards each other.
When anchor 20 is expanded, bridge 30 is configured to maintain a constant length,
which is the same distance between ends 31a and 31b in the compressed configuration
of the anchor. As a result, the bridge adopts the bowed position shown in FIG. 2,
protruding into the lumen of anchor 20. As the bridge bows, plate 35 also protrudes
into lumen 21. The bowed position of bridge 30 keeps plate 35 and any sensor located
thereupon distanced from the vessel wall (sensor not depicted in FIG. 2). The bridge
can be configured to protrude into the lumen 21 so that plate 35 is any distance away
from wall 22. In one embodiment, the bridge is configured so that plate 35 is in the
center of the target vessel. In another embodiment, the bridge may be configured so
that the apex of the bow is at least 2.5 mm away from wall 22. In FIG. 2, bridge 30
further comprises weld point 80, the area where the bridge can be welded to the anchor.
Weld points are not limited to the location shown in FIG. 2, and may be located at
any location on the bridge.
[0033] The bridge may be pretreated so that it assumes the desired bow shape in the expanded
anchor. For example, when the bridge is made of metal, it may be pretreated to assume
a bowed shape before assembled into the device. Non-limiting examples of methods of
pretreatment may include stamping and heat treatment.
[0034] Although the devices illustrated in the figures comprise one bridge, the implantable
device may include a plurality of bridges on one or more cells with the same or different
sensors secured on each bridge to measure multiple physiological parameters (not illustrated).
When the device contains more than one bridge, the bridges may be positioned on the
anchor such that they may bow independently of one another.
[0035] FIG. 3 illustrates another embodiment of the bridge 40. Bridge 40 comprises a plate
45, used as an attachment site for the sensor, and an arrangement of loops 42, 43.
Ends 41a and 41b are located at opposite ends of the bridge 40. Bridge 40 comprises
a pair of loops 42 and 43 on each side of plate 45. In an alternate embodiment (not
shown), more or fewer loops may be incorporated on either side of plate 45 of the
bridge, and the plate 45 may be located at any position on the bridge. The loops may
have any amplitude desired, and the loops need not have identical amplitude within
a single bridge. In FIG. 3, bridge 40 is flattened and all portions are in the same
plane, and loops 42 and 43 are positioned substantially perpendicular from bridge
ends 41a and 41b, respectively. The loops on each side of plate 45 are symmetrical
with respect to the middle point of bridge 40. In this embodiment, the loops facilitate
the formation of a bowed position as the anchor expands. Further, the number and type
of loops may be used to adjust the distance of the bridge away from the luminal wall.
The flexibility of the bridge may be incurred with more loops, and decreased with
fewer loops.
[0036] When the anchor is expanded, points 41a and 41b are pushed toward each other, shortening
the longitudinal extension of cell 25, and bridge 40 bows, flexing at loops (42 and
43). Similar to the straight-bridge embodiment of FIGS 1-2, plate 45 protrudes into
lumen 21 when bridge 40 is in the bowed position, maintaining plate 45 a pre-selected
distance from wall 22. When bridge 40 is bowed, the loops are configured to substantially
straighten so that the plate 45 protrudes into the lumen.
[0037] FIG. 5 illustrates sensor 60 aside from the bridge and adapting ring. Sensor 60 comprises
housing 501 and vibrating member 510. The vibrating member 510 may be configured to
collect data related to temperature, pressure, fluid flow, or other biochemical properties,
as known in the art. The sensor 60 is configured to be interrogable and communicable
with devices outside the body, e.g., a transducer. Sensor housing 501 may contain
other components of the sensor, as is also well-known and described in the art cited
above. As shown in FIG. 5, vibrating member 510 is located on a raised housing section
502 of housing 501.
[0038] Lower housing section 504 and 506 are located on each side of raised housing section
502. The dimensions of sensor 60 are not limited to the scale shown in FIG. 5. The
height (H) of the sensor 60, as well as that of raised housing section 502 may be
modified as needed by methods known in the art. Further, the width and length of the
housing 501, as well as that of lower housing sections 504 and 506 may be modified
as needed by methods known in the art. The sensor, as described above, is suitable
for placement on the bridge as the vibrating member 510 is exposed to the external
environment, and the dimensions of the sensor are adaptable for securement by the
adapting ring, as further described below. The entire sensor as shown in FIG. 5 is
small, e.g., between 0.005 to 0.3 mm
3 in volume.
[0039] While the sensor 60 of FIG. 5 comprises a rectangular shape, sensors used in this
invention may comprise any suitable shape, as described, for example, in
US Pat. No. 8,162,839. Sensor 60 may be configured to take a variety of data measurements, such as physical
or chemical measurements, including, for example, blood pressure, temperature, fluid
flow, or sugar, mineral, gas content or pressure or other chemical content. Further
the sensor may be coated with a biocompatible polymer or gel, for example, PEG, as
described, for example, in
US Pat. No. 5,786,439. In addition, the entire implantable device,
i.e., anchor, bridge, adapting ring, may also be similarly coated.
[0040] FIG. 4 illustrates one embodiment of sensor 60 secured by the adapting ring 50 to
plate 35. The adapting ring, shown in Fig. 4, comprises outer wall 51, top edge 58,
side openings 54a and 54b, and bottom edge 56. In certain embodiments, the sensor
is composed of materials unsuitable for direct attachment to the plate 35. In such
cases, the adapting ring may be used to secure sensor 60 to the plate 35 without directly
welding the sensor to the plate. Sensor 60 and adapting ring 50 may be attached to
the luminal surface of the plate, the side that faces the interior lumen of the anchor.
In other embodiments, the sensor 60 and adapting ring 50 may be attached to the abluminal
surface of the plate 35,
i.e., the side of the anchor facing the vessel wall,. Although the cross section of adapting
ring 50 is circular in FIG. 4, other shapes such as, for example, ovals or elliposoids
are also encompassed by this invention.
[0041] As shown in FIG. 4, sensor 60 fits within the adapting ring 50 and the adapting ring
secures the sensor onto the plate 35. In the embodiment of FIG. 4, side openings 54a
and 54b allow lower housing sections 504 and 506 of the sensor to protrude, thereby
securing the sensor to the bridge. The vibrating member 510 is exposed within the
interior of the adapting ring. In other embodiments, not illustrated, the sensor may
be fully enclosed by the adapting ring, and no portions of the sensor protrude therefrom.
The adapting ring may be attached onto the plate by well-known means, including, for
example, mechanical means such as tabs or clips at the bottom edge 56 that secure
the adapting ring to the plate, or other means such as, for example, adhesives, welding
or brazing / soldering methods as is well known in the art. Adapting ring 50 may be
made of the same biocompatible material as the bridge or materials, such as, polyurethanes,
polymers, or polycarbonates. Non-limiting examples of these materials are PEEK-Optima®
or ChronoFlex®.
[0042] As shown in FIG. 4, adapting ring top edge 58 is fully or partially open, exposing
the vibrating member 510 to the external environment after implantation. The shape
of the adapting ring may be modified to account for sensors having other shapes, or
where other surfaces of the enclosed sensor 60 must be exposed for proper function.
In the configuration of FIG. 4, top edge 58 of adapting ring 50 may be configured
to be higher than the height of sensor 60 so that it protects the vibrating member
510 from the direct on-flow of external materials both before and after implantation.
The top surface of the vibrating member 510 is recessed within the adapting ring top
edge 58 so that the adapting ring protects the sensor from improper contact. Additionally,
an angiographic marker may be attached to the plate to indicate the location and orientation
of sensor 60 for precise implantation. In one embodiment, the angiographic marker
is inserted between the bottom of the sensor housing 501 and plate 35. Angiographic
markers are well known in the art, and may be composed of gold, boron, tantalum, platinum
iridium or similar materials. The thickness of the angiographic marker may be between
10-50 µm. In one embodiment it is 25 µm. In FIG. 4, a portion of the bridge 30 is
shown with welding points 80.
[0043] FIG. 6 illustrates anchor 610 and bridge 630, where anchor 610 is in the expanded
configuration and bridge 630 adopts a bowed position. Bridge 630 comprises ends 631a
and 631b, attached to the anchor at rings 627a and 627b, respectively. As shown, rings
627a and 627b have different sizes. Rings may vary in size depending on the amount
of material desired and the amount of strain on the expandable anchor. Plate 635 is
located at the center of bridge 630. The width of bridge 630 of FIG. 6 is substantially
smaller than the width of the bridge 30 of FIG. 1. The width of the bridge may be
varied depending on the amount of material desired on the device. The width of plate
635 is larger than the width of bridge 630. Sensor 60 is in direct contact with plate
635, and is secured by adapting ring 50. Adapting ring 50 may be welded or otherwise
adhered to plate 635 at areas 660. FIG. 6 illustrates the abluminal side of plate
635, and the sensor is attached to the luminal side of plate 635. The anchor 610 may
comprise angiographic marker site 650 for insertion of an angiographic marker, which
may be optionally located at any location on anchor 610. In this embodiment, marker
site 650 is further attached to ring 627a.
[0044] Another aspect of the invention relates to methods of manufacturing the implantable
device. Generally, the implantable device may be manufactured by separately forming
the bridge and the anchor from a flat sheet or planar sheet of biocompatible material
or from a tube, then joining the two pieces together. Alternatively, the bridge and
anchor may be formed as a single unit.
[0045] On the method of manufacturing the device as a single unit, the method comprises
(a) manufacturing of the bridge and anchor as a single unit, (b) heat treating the
bridge and anchor to a thermomechanically preset shape, and (c) assembly of the adapting
ring and sensor to the bridge. The method may further comprise crimping and securing
the device on a delivery catheter. Optionally, an angiographic marker can be attached
to the sensor.
[0046] The manufacture of the bridge and anchor as a single unit may be achieved by laser
or chemical etching from a tube or a flat sheet or planar sheet, wherein the flat
or planar pattern is rolled and welded into a tube.
[0047] The heat treatment step comprises securing the anchor onto a mandrel, wherein the
bridge is positioned over a preshaped divot and applying heat and force necessary
to impart a thermomechanically preset shape to the expanded anchor configuration and
bow into the bridge. Depending on the desired expanded size of the anchor,
e.g., diameters of 10, 8 or 6 mm, appropriately sized mandrels are used. Preferably,
the anchor is tightly secured onto the mandrel so that heat can be evenly applied
to the anchor. Where the anchor and bridge is formed as a single unit, the mandrel
further comprises a divot that aligns with the bridge, so that the bridge is bowed
within the divot during the heat treatment.
[0048] FIGS. 7A-D demonstrate one embodiment of the securement of the anchor and bridge
for the heat treatment process. In FIG. 7A, anchor 20 and bridge 30, formed as a single
unit, is placed on mandrel 810. Mandrel 810 comprises a divot 830, which is an indentation
on the surface of the mandrel, upon which bridge 30 is aligned. During the manufacturing
process of the anchor 20, the anchor may comprise one or more orienting panels 90,
which, when placed on the mandrel, aligns the anchor with one or more orienting holes
890 on the mandrel. Each panel 90 is secured to the mandrel with an orienting screw
840, which fits into orienting hole 890 on the mandrel. The alignment of the orienting
panel 90, orienting hole 890 and orienting screw 840 ensures alignment of bridge 30
with divot 830. Orienting panel 90 may be any shape or size, and is not limited to
the embodiment depicted in FIGS 7A-7D.
[0049] Once the anchor 20 is secured onto the mandrel 810, the mandrel is placed into socket
852 of lower block 850, shown in FIGS. 7B and 7C. Socket 852 is configured to secure
mandrel 810. Lower block 850 further comprises two block holes 855 and 856 and stud
857. In FIG. 7C, stud 857 fits into a corresponding hole or depression 820 on mandrel
810, thereby preventing any lateral shifting of the mandrel with respect to the lower
block 850. The orientation of stud 857 and depression 820 also ensures that divot
830 is between the two block holes 855.
[0050] FIG. 7D illustrates the fully assembled heat treatment block containing the anchor
and bridge. In FIG. 7D, upper block 860 is positioned on top of lower block 850, and
secured to lower block 850 by block screws 870. Upper block 860 contains a protrusion
(not shown) matching the shape of divot 830 on the mandrel. Upper block 860 is secured
onto lower block 850 pushing the protrusion into divot 830, forcing the bridge 30
downward into the mandrel divot, producing the bowed shape to bridge 30. This step
is accompanied by heat treating to a thermomechanically preset shape. Optionally,
orienting screws 840 may be removed after the upper block 860 is secured to lower
block 850. Removal of the orienting screws 840 prior to the heat treatment may advantageously
provide more efficient heat treatment. Orienting panel(s) 90 may be removed from the
anchor at any time following the removal of the orienting screws 840.
[0051] During the heat treatment, the device may be heated as is known in the art for forming
shape-memory configurations. In one embodiment, the anchor may be heated to 600±3
°C for approximately 25-40 minutes. Alternatively, the anchor may be heated to 320±3
°C for approximately 70 to 85 minutes. Suitable heat treatment systems for this method
are known in the art. Heat treatment to a thermomechanically preset shape forms the
relaxed state of the anchor and bridge,
i.e., the expanded anchor and bowed bridge.
[0052] After heat treatment is completed, the sensor and adapting ring are assembled onto
the bridge. The heat-treated anchor is placed over a jig having an indentation within
which the adapting ring, sensor and/or angiographic marker is placed. When the bridge
is properly aligned with the indentation on the jig, the adapting ring is secured
to the plate by methods known in the art,
e.g., welding. Thereafter, the anchor, with the adapting ring, sensor, and/or marker
may be removed from the jig for assembly onto a delivery device.
[0053] FIG. 8 illustrates one embodiment of the process for attaching the adapting ring
and sensor onto the bridge. The heat treated anchor 20 with bridge 30 is placed onto
cylindrical jig 901 having indentation area 910. The adapting ring is placed into
indented area 910, with the top edge 58 facing toward the center of the jig. The sensor
60 is then placed, with the vibrating member 510 face down, into the adapting ring
50. An optional angiographic marker 95 may also be placed within the jig. The placement
of the adapting ring, sensor and optional angiographic marker into indented area 910
may be performed prior to or after anchor 20 is placed on the jig. Anchor 20 is positioned
so that plate 35 aligns with the adapting ring 50 in indented area 910. Thereafter,
the adapting ring 50 may be secured onto the plate 35, by known means, e.g., welding
the adapting ring to the plate, completing the assembly of the device.
[0054] The assembled device may be crimped by any conventional means known in the art, and
secured onto a delivery device. One such delivery device may be a delivery catheter.
Existing crimping devices and methods for securing the crimped anchor are well known
in the art, for example, as described in
U.S. Patent Nos. 6,387,118,
6,108,886,
6,092,273,
6,082,990,
6,074,381,
6,06,310,
5,99,200 and
7,225,518.
[0055] In another embodiment of the invention, the device can be manufactured from separate
anchor and bridge components. This method relates to making an implantable device
comprising an expandable anchor, a bridge and a sensor, whereby the expandable anchor
has a compressed and expanded configuration, said bridge is aligned with the members
of the anchor when said anchor is in the compressed configuration, and said bridge
protrudes into said lumen when said anchor is in the expanded configuration, comprising
the steps of: (a) manufacturing the anchor; (b) manufacturing the bridge; (c) attaching
the bridge to the anchor; (d) heat treating the anchor and the bridge to a thermomechanically
preset shape; and (e) assembling the sensor to the bridge. The method may further
comprise crimping and securing the device on a delivery catheter. Optionally, an angiographic
marker can be attached to the sensor. Step (d) may be performed prior to step (c).
Also, step (e) may be performed prior to step (d).
[0056] The manufacture of the anchor may be achieved by laser or chemical etching from a
tube or a flat sheet or planar sheet, then rolled into a tube, which are known stent
manufacturing procedures in the art. The bridge may be similarly manufactured by laser
or chemical etching from biocompatible material.
[0057] Forming the anchor and the bridge separately allows the bridge to be exposed to a
different heat treatment than the anchor, and thus may have different thermomechcanical
properties than that of the anchor. The heat treatment step may be performed by placing
and securing the anchor on a mandrel, then applying heat necessary to impart a shape
memory to the anchor. The anchor may be secured onto the mandrel by known methods
in the art. The size of the mandrel may be chosen depending on the desired size of
the anchors, e.g., 10, 8 or 6 mm. Preferably, the anchor is tightly secured onto the
mandrel so that heat can be evenly applied to the anchor.
[0058] During heat treatment, the anchor may be heated as is known in the art for forming
shape-memory configurations. In one embodiment, the anchor may be heated to 600±3
°C for approximately 25-40 minutes. Alternatively, the anchor may be heated to 320±3
°C for approximately 70 to 85 minutes. Suitable heat treatment systems for this method
are well known in the art. Heat treatment to a thermomechanically preset shape forms
the relaxed state of the anchor and bridge,
i.e., the expanded anchor and bowed bridge.
[0059] After heat treatment is completed, the anchor, bridge, sensor and adapting ring are
assembled. The jig 901 of FIG. 8 may also be used in the assembly of the anchor, bridge,
sensor and adapting ring. First, the adapting ring is placed into indented area 910,
with the top edge 58 facing down into the jig. The sensor is then placed, with the
vibrating member 510 faced down into the adapting ring 50. An optional angiographic
marker 95 may be placed within the jig.. Lastly, the bridge is placed into indented
area 910, aligning the plate with the adapting ring.
[0060] Alternatively, the bridge, adapting ring, sensor and/or angiographic mark may be
pre-assembled by any known means prior to placement within jig 901. In the pre-assembly,
the sensor may be secured to the bridge by the adapting ring, with an optional angiographic
marker placed between the sensor and the bridge. The pre-assembled bridge and sensor
can be placed into indented area 910 as a single component. Thereafter, anchor 20
is aligned with the bridge 30 and the bridge 30 can be secured to the anchor, for
example, by welding.
[0061] As various changes can be made in the above-described subject matter without departing
from the scopeof the present invention, it is intended that all subject matter contained
in the above description be interpreted as descriptive and illustrative of the present
invention. Many modifications and variations of the present invention are possible
in light of the above teachings. The invention is defined by the appended claims.
1. An implantable device (10) comprising:
an anchor (20) having a plurality of serpentine rings (23) defining a lumen along
a longitudinal axis, and having a compressed and expanded configuration, said anchor
forming an anchor wall (22),
a bridge (30) attached to said anchor (20), wherein said bridge (30) has a first end
(31a) and a second end (31b), said bridge (30) is aligned with the anchor wall (22)
and the longitudinal axis of the anchor (20) when said anchor (20) is in the compressed
configuration, and said bridge (30) protrudes into said lumen when said anchor (20)
is in the expanded configuration, and
a passive sensor which is secured onto the bridge.
2. The implantable device (10) of claim 1, wherein adjacent serpentine rings (23) of
said anchor define a plurality of cells (25).
3. The implantable device (10) of claims 1 or 2, wherein said plurality of serpentine
rings (23) are longitudinally spaced along the length of the anchor and each serpentine
ring (23) comprises a plurality of peaks and valleys.
4. The implantable device (10) of claim 2, wherein the adjacent serpentine rings (23)
are connected between a peak of a first serpentine ring (23) and a valley of a second
serpentine ring (23).
5. The implantable device (10) of claim 3, wherein said first end (31a) of the bridge
(30) is attached to a peak of a first serpentine ring (23), and said second end (31b)
of the bridge (30) is attached to a valley of a second serpentine ring (23).
6. The implantable device (10) of claims 4 or 5, wherein the distance between said peak
of said first serpentine ring (23) and said valley of said second serpentine ring
(23) is greater in the compressed configuration than in the expanded configuration.
7. The implantable device (10) of claim 2, wherein a cell (25) on the anchor (20) has
two vertices on opposite ends of said cell (25), and said ends of the bridge (30)
are attached to said vertices.
8. The implantable device (10) of claim 7, wherein the distance between said vertices
is greater in the compressed configuration than in the expanded configuration.
9. The implantable device (10) of any one of claims 1 to 8, wherein the bridge (30) is
attached to the anchor by welding, soldering, brazing, or through adhesives.
10. The implantable device (10) of any one of claims 1 to 8, wherein the bridge (30) and
the anchor are formed as a single unit.
11. The implantable device (10) of any one of claims 1 to 10, wherein the bridge (30)
comprises a plate (35).
12. The implantable device (10) of claim 11, wherein the sensor (60) is attached to said
plate (35).
13. The implantable device (10) of claim 12, further comprising an adapting ring (50)
configured for attaching said sensor (60) to said plate (35).
14. The implantable device (10) of claim 13, wherein the bottom end of the adapting ring
(50) is secured to the plate by a locking tab, welding, soldering, brazing, or adhesives.
15. The implantable device (10) of claims 13 or 14, wherein the top surface of the sensor
(60) is recessed within the adapting ring (50).
16. The implantable device (10) of any one of claims 13 to 15, wherein the adapting ring
comprises an opening configured for a protrusion of the sensor (60).
17. The implantable device (10) of any one of claims 12 to 16, wherein the sensor (60)
is configured to measure fluid pressure.
18. The implantable device (10) of any one of claims 12 to 17, wherein the sensor (60)
is coated with polyethylene glycol.
19. The implantable device (10) of any one of claims 12 to 18, wherein the sensor (60)
is an encapsulated sensor.
20. The implantable device (10) of any one of claims 1 to 19, wherein the bridge (30)
is substantially straight.
21. The implantable device (10) of any one of claims 1 to 19, wherein the bridge (30)
contains a plurality of loops.
22. The implantable device (10) of any one of claims 1 to 21, further comprising an angiographic
marker attached to the bridge (30).
23. The implantable device (10) of any one of claims 1 to 22, wherein said anchor (20)
can return to the compressed configuration after partial expansion.
24. The implantable device (10) of any one of claims 1 to 23, wherein a sensor is embedded
within said plate.
25. The implantable device (10) of any one of claims 1 to 24, wherein the anchor (20)
is self-expandable.
26. A method of making the implantable device (10) of claim 1, comprising the steps of:
(a) manufacturing the anchor and the bridge as a single unit;
(b) assembling the anchor and bridge on a mandrel having a diameter of the desired
expanded anchor and a divot
(c) positioning the bridge over the divot
(d) heat treating the anchor and the bridge a thermomechanically preset shape, and
(e) assembling of the sensor onto the bridge.
27. The method of claim 26, further comprising the step (f) of crimping the implantable
device onto a delivery catheter.
28. The method of claims 26 or 27, whereby the sensor is attached to the bridge by an
adapting ring in step (e).
29. The method of any one of claims 26 to 28, whereby an angiographic marker is inserted
between the sensor and the bridge.
30. The method of any one of claims 26 to 29, where the anchor and bridge are formed from
a flat metal sheet.
31. The method of any one of claims 26 to 29, where the anchor and bridge are formed from
a planar metal sheet.
32. The method of any one of claims 26 to 29, where the anchor and bridge are formed from
a tube.
33. The method of any one of claim 26 to 32, wherein in step (c) the bridge is pushed
into said divot on said mandrel.
34. The method of any one of claims 26 to 33, whereby the heat treatment of step (d) comprise
applying heat at 600±3 °C for approximately 25-40 minutes.
35. The method of any one of claims 26 to 33, whereby the heat treatment of step (d) comprises
applying heat at 320±3 °C for approximately 70 to 85 minutes.
36. A method of making the implantable device of claim 1, comprising the steps of:
(a) manufacturing the anchor;
(b) manufacturing the bridge;
(c) heat treating the anchor and the bridge;
(d) attaching the bridge to the anchor; and
(e) assembling the sensor to the bridge.
37. The method of claim 36, further comprising the step (f) crimping the implantable device
onto a delivery catheter.
38. The method of claims 36 or 37, where step (d) is performed prior to step (c).
39. The method of any one of claims 36 to 38, where step (e) is performed prior to step
(d).
40. The method of any one of claims 36 to 39, whereby the sensor is assembled to the bridge
by an adapting ring in step (e).
41. The method of any one of claims 36 to 40, whereby an angiographic marker is inserted
between the sensor and the bridge.
42. The method of any one of claims 36 to 41, where the anchor and bridge are formed from
a flat sheet of metal.
43. The method of any one of claims 36 to 41, where the anchor and bridge are formed from
a tube.
44. The method of any one of claims 36 to 42, whereby step (c) comprises securing said
anchor onto a mandrel.
45. The method of any one of claims 36 to 44, whereby the heat treatment of step (c) comprise
applying heat at 600±3 °C for approximately 25-40 minutes.
46. The method of any one of claims 36 to 44, whereby the heat treatment of step (c) comprises
applying heat at 320±3 °C for approximately 70 to 85 minutes.
47. The method of any one of claims 36 to 46, whereby in step (c) the heat treatment of
the anchor is performed separately from the heat treatment of the bridge.
48. The method of any one of claims 36 to 47, whereby said anchor is placed onto a jig
having an indented area after heat treatment and prior to step (d).
49. The method of claim 48, where the bridge and sensor is placed within said indented
area of said jig.
50. A system for implanting a sensor comprising:
(a) a delivery catheter; and
(b) the implantable device (10) of claim 1 mounted on said delivery catheter.
1. Implantierbare Vorrichtung (10), aufweisend:
einen Anker (20) mit einer Mehrzahl an Serpentinenringen (23), die ein Lumen entlang
einer Längsachse definieren, und mit einer komprimierten und expandierten Konfiguration,
wobei der Anker eine Wand (22) bildet,
eine Brücke (30), die am Anker (20) befestigt ist, wobei die Brücke (30) aufweist:
ein erstes Ende (31a) und ein zweites Ende (31b), wobei die Brücke (30) mit der Ankerwand
(22) und der Längsachse des Ankers (20) fluchtet, wenn der Anker (20) in der komprimierten
Konfiguration ist, und wobei die Brücke (30) in das Lumen hervorsteht, wenn der Anker
(20) in der expandierten Konfiguration ist, und einen Passivsensor, der auf der Brücke
angebracht ist.
2. Implantierbare Vorrichtung (10) nach Anspruch 1, wobei benachbarte Serpentinenringe
(23) des Ankers eine Mehrzahl an Zellen (25) definieren.
3. Implantierbare Vorrichtung (10) nach Anspruch 1 oder 2, wobei die Mehrzahl an Serpentinenringen
(23) entlang der Länge des Ankers längsseits beabstandet sind und jeder Serpentinenring
(23) eine Mehrzahl an Höhen und Tiefen aufweist.
4. Implantierbare Vorrichtung (10) nach Anspruch 2, wobei die benachbarten Serpentinenringe
(23) zwischen einer Höhe eines ersten Serpentinenrings (23) und einer Tiefe eines
zweiten Serpentinenrings (23) verbunden sind.
5. Implantierbare Vorrichtung (10) nach Anspruch 3, wobei das erste Ende (31a) der Brücke
(30) an einer Höhe eines ersten Serpentinenrings (23) befestigt ist, und das zweite
Ende (31b) der Brücke (30) an einer Tiefe eines zweiten Serpentinenrings (23) befestigt
ist.
6. Implantierbare Vorrichtung (10) nach Anspruch 4 oder 5, wobei der Abstand zwischen
der Höhe des ersten Serpentinenrings (23) und der Tiefe des zweiten Serpentinenrings
(23) in der komprimierten Konfiguration größer ist als in der expandierten Konfiguration.
7. Implantierbare Vorrichtung (10) nach Anspruch 2, wobei eine Zelle (25) auf dem Anker
(20) zwei Scheitelpunkte auf gegenüberliegenden Enden der Zelle (25) aufweist und
die Enden der Brücke (30) an den Scheitelpunkten befestigt sind.
8. Implantierbare Vorrichtung (10) nach Anspruch 7, wobei der Abstand zwischen den Scheitelpunkten
in der komprimierten Konfiguration größer ist als in der expandierten Konfiguration.
9. Implantierbare Vorrichtung (10) nach einem der Ansprüche 1 bis 8, wobei die Brücke
(30) durch Schweißen, Löten, Hartlöten oder Klebstoffe am Anker befestigt ist.
10. Implantierbare Vorrichtung (10) nach einem der Ansprüche 1 bis 8, wobei die Brücke
(30) und der Anker als eine einzelne Einheit gebildet werden.
11. Implantierbare Vorrichtung (10) nach einem der Ansprüche 1 bis 10, wobei die Brücke
(30) eine Platte (35) aufweist.
12. Implantierbare Vorrichtung (10) nach Anspruch 11, wobei der Sensor (60) an der Platte
(35) befestigt ist.
13. Implantierbare Vorrichtung (10) nach Anspruch 12, ferner aufweisend einen Anpassungsring
(50), der konfiguriert ist, um den Sensor (60) an der Platte (35) zu befestigen.
14. Implantierbare Vorrichtung (10) nach Anspruch 13, wobei das untere Ende des Anpassungsrings
(50) durch eine Verriegelungslasche, Schweißen, Löten, Hartlöten oder Klebstoffe an
der Platte befestigt ist.
15. Implantierbare Vorrichtung (10) nach Anspruch 13 oder 14, wobei die obere Oberfläche
des Sensors (60) innerhalb des Anpassungsrings (50) vertieft ist.
16. Implantierbare Vorrichtung (10) nach einem der Ansprüche 13 bis 15, wobei der Anpassungsring
eine Öffnung aufweist, die für einen Vorsprung des Sensors (60) konfiguriert ist.
17. Implantierbare Vorrichtung (10) nach einem der Ansprüche 12 bis 16, wobei der Sensor
(60) konfiguriert ist, um einen Fluiddruck zu messen.
18. Implantierbare Vorrichtung (10) nach einem der Ansprüche 12 bis 17, wobei der Sensor
(60) mit Polyethylenglykol beschichtet ist.
19. Implantierbare Vorrichtung (10) nach einem der Ansprüche 12 bis 18, wobei der Sensor
(60) ein verkapselter Sensor ist.
20. Implantierbare Vorrichtung (10) nach einem der Ansprüche 1 bis 19, wobei die Brücke
(30) im Wesentlichen gerade ist.
21. Implantierbare Vorrichtung (10) nach einem der Ansprüche 1 bis 19, wobei die Brücke
(30) eine Mehrzahl an Schleifen enthält.
22. Implantierbare Vorrichtung (10) nach einem der Ansprüche 1 bis 21, ferner aufweisend
einen angiographischen Marker, der an der Brücke (30) befestigt ist.
23. Implantierbare Vorrichtung (10) nach einem der Ansprüche 1 bis 22, wobei der Anker
(20) nach einer Teilexpansion zu der komprimierten Konfiguration zurückkehren kann.
24. Implantierbare Vorrichtung (10) nach einem der Ansprüche 1 bis 23, wobei ein Sensor
innerhalb der Platte eingebettet ist.
25. Implantierbare Vorrichtung (10) nach einem der Ansprüche 1 bis 24, wobei der Anker
(20) selbst-expandierbar ist.
26. Verfahren zur Herstellung der implantierbaren Vorrichtung (10) nach Anspruch 1, folgende
Schritte aufweisend:
(a) Herstellen des Ankers und der Brücke als eine einzelne Einheit;
(b) Anordnen des Ankers und der Brücke auf einem Dorn mit einem Durchmesser des gewünschten
expandierten Ankers und mit einer Vertiefung
(c) Positionieren der Brücke über der Vertiefung
(d) Wärmebehandeln des Ankers und der Brücke zu einer thermomechanischen vordefinierten
Form, und
(e) Anordnen des Sensors auf der Brücke.
27. Verfahren nach Anspruch 26, ferner aufweisend Schritt (f) zum Quetschen der implantierbaren
Vorrichtung auf einen Zuführungskatheter.
28. Verfahren nach Anspruch 26 oder 27, wobei der Sensor durch einen Anpassungsring in
Schritt (e) an der Brücke befestigt wird.
29. Verfahren nach einem der Ansprüche 26 bis 28, wobei der angiographische Marker zwischen
dem Sensor und der Brücke eingesetzt wird.
30. Verfahren nach einem der Ansprüche 26 bis 29, wobei der Anker und die Brücke aus einem
flachen Metallblech gebildet werden.
31. Verfahren nach einem der Ansprüche 26 bis 29, wobei der Anker und die Brücke aus einem
planaren Metallblech gebildet werden.
32. Verfahren nach einem der Ansprüche 26 bis 29, wobei der Anker und die Brücke aus einem
Rohr gebildet werden.
33. Verfahren nach einem der Ansprüche 26 bis 32, wobei in Schritt (c) die Brücke in die
Vertiefung auf dem Dorn geschoben wird.
34. Verfahren nach einem der Ansprüche 26 bis 33, wobei die Wärmebehandlung von Schritt
(d) das Anwenden einer Hitze bei 600±3 °C für etwa 25-40 Minuten aufweist.
35. Verfahren nach einem der Ansprüche 26 bis 33, wobei die Wärmebehandlung von Schritt
(d) das Anwenden einer Hitze bei 320±3 °C für etwa 70 bis 85 Minuten aufweist.
36. Verfahren zur Herstellung der implantierbaren Vorrichtung nach Anspruch 1, folgende
Schritte aufweisend:
(a) Herstellen des Ankers;
(b) Herstellen der Brücke;
(c) Wärmebehandeln des Ankers und der Brücke;
(d) Befestigen der Brücke am Anker; und
(e) Anordnen des Sensors an der Brücke.
37. Verfahren nach Anspruch 36, ferner aufweisend Schritt (f) zum Quetschen der implantierbaren
Vorrichtung auf einen Zuführungskatheter.
38. Verfahren nach Anspruch 36 oder 37, wobei Schritt (d) vor Schritt (c) durchgeführt
wird.
39. Verfahren nach einem der Ansprüche 36 bis 38, wobei Schritt (e) vor Schritt (d) durchgeführt
wird.
40. Verfahren nach einem der Ansprüche 36 bis 39, wobei der Sensor durch einen Anpassungsring
in Schritt (e) an der Brücke befestigt wird.
41. Verfahren nach einem der Ansprüche 36 bis 40, wobei ein angiographischer Marker zwischen
dem Sensor und der Brücke eingesetzt wird.
42. Verfahren nach einem der Ansprüche 36 bis 41, wobei der Anker und die Brücke aus einem
flachen Blech aus Metall gebildet werden.
43. Verfahren nach einem der Ansprüche 36 bis 41, wobei der Anker und die Brücke aus einem
Rohr gebildet werden.
44. Verfahren nach einem der Ansprüche 36 bis 42, wobei Schritt (c) das Anbringen des
Ankers auf einen Dorn aufweist.
45. Verfahren nach einem der Ansprüche 36 bis 44, wobei die Wärmebehandlung von Schritt
(c) das Anwenden einer Hitze bei 600±3 °C für etwa 25-40 Minuten aufweist.
46. Verfahren nach einem der Ansprüche 36 bis 44, wobei die Wärmebehandlung von Schritt
(c) das Anwenden einer Hitze bei 320±3 °C für etwa 70 bis 85 Minuten aufweist.
47. Verfahren nach einem der Ansprüche 36 bis 46, wobei in Schritt (c) die Wärmebehandlung
des Ankers separat von der Wärmebehandlung der Brücke durchgeführt wird.
48. Verfahren nach einem der Ansprüche 36 bis 47, wobei der Anker nach der Wärmebehandlung
und vor Schritt (d) auf einer Spannvorrichtung mit einem vertieften Bereich platziert
wird.
49. Verfahren nach Anspruch 48, wobei die Brücke und der Sensor innerhalb des vertieften
Bereichs der Spannvorrichtung platziert werden.
50. System zum Implantieren eines Sensors, aufweisend:
(a) einen Zuführungskatheter; und
(b) die implantierbare Vorrichtung (10) nach Anspruch 1, die auf dem Zuführungskatheter
montiert ist.
1. Dispositif implantable (10) comprenant :
un ancrage (20) ayant une pluralité de bagues en serpentin (23) définissant une lumière
le long d'un axe longitudinal, et ayant des configurations comprimées et déployées,
ledit ancrage formant une paroi d'ancrage (22),
un pont (30) attaché audit ancrage (20), dans lequel ledit pont (30) a une première
extrémité (31a) et une seconde extrémité (31b), ledit pont (30) est aligné avec la
paroi d'ancrage (22) et l'axe longitudinal de l'ancrage (20) lorsque ledit ancrage
(20) est dans la configuration comprimée, et ledit pont (30) fait saillie dans ladite
lumière lorsque ledit ancrage (20) est dans la configuration déployée, et
un capteur passif qui est fixé sur le pont.
2. Dispositif implantable (10) selon la revendication 1, dans lequel des bagues en serpentin
(23) adjacentes dudit ancrage définissent une pluralité de cellules (25).
3. Dispositif implantable (10) selon les revendications 1 ou 2, dans lequel ladite pluralité
de bagues en serpentin (23) sont espacées longitudinalement le long de la longueur
de l'ancrage et chaque bague en serpentin (23) comprend une pluralité de pics et de
creux.
4. Dispositif implantable (10) selon la revendication 2, dans lequel les bagues en serpentin
(23) adjacentes sont reliées entre un pic d'une première bague en serpentin (23) et
un creux d'une seconde bague en serpentin (23).
5. Dispositif implantable (10) selon la revendication 3, dans lequel ladite première
extrémité (31a) du pont (30) est attachée à un pic d'une première bague en serpentin
(23), et ladite seconde extrémité (31b) du pont (30) est attachée à un creux d'une
seconde bague en serpentin (23).
6. Dispositif implantable (10) selon les revendications 4 ou 5, dans lequel la distance
entre ledit pic de ladite première bague en serpentin (23) et ledit creux de ladite
seconde bague en serpentin (23) est plus grande dans la configuration comprimée que
dans la configuration déployée.
7. Dispositif implantable (10) selon la revendication 2, dans lequel une cellule (25)
sur l'ancrage (20) a deux sommets sur des extrémités opposées de ladite cellule (25),
et lesdites extrémités du pont (30) sont attachées auxdits sommets.
8. Dispositif implantable (10) selon la revendication 7, dans lequel la distance entre
lesdits sommets est plus grande dans la configuration comprimée que dans la configuration
déployée.
9. Dispositif implantable (10) selon l'une quelconque des revendications 1 à 8, dans
lequel le pont (30) est attaché à l'ancrage par soudage, brasage tendre, brasage dur,
ou par le biais d'adhésifs.
10. Dispositif implantable (10) selon l'une quelconque des revendications 1 à 8, dans
lequel le pont (30) et l'ancrage sont formés en une seule unité.
11. Dispositif implantable (10) selon l'une quelconque des revendications 1 à 10, dans
lequel le pont (30) comprend une plaque (35).
12. Dispositif implantable (10) selon la revendication 11, dans lequel le capteur (60)
est attaché à ladite plaque (35).
13. Dispositif implantable (10) selon la revendication 12, comprenant en outre une bague
d'adaptation (50) configurée pour attacher ledit capteur (60) à ladite plaque (35).
14. Dispositif implantable (10) selon la revendication 13, dans lequel l'extrémité inférieure
de la bague d'adaptation (50) est fixée à la plaque par une languette de verrouillage,
par soudage, brasage tendre, brasage dur, ou par des adhésifs.
15. Dispositif implantable (10) selon les revendications 13 ou 14, dans lequel la surface
supérieure du capteur (60) est en retrait au sein de la bague d'adaptation (50).
16. Dispositif implantable (10) selon l'une quelconque des revendications 13 à 15, dans
lequel la bague d'adaptation comprend une ouverture configurée pour une saillie du
capteur (60).
17. Dispositif implantable (10) selon l'une quelconque des revendications 12 à 16, dans
lequel le capteur (60) est configuré pour mesurer une pression de fluide.
18. Dispositif implantable (10) selon l'une quelconque des revendications 12 à 17, dans
lequel le capteur (60) est revêtu avec du polyéthylène glycol.
19. Dispositif implantable (10) selon l'une quelconque des revendications 12 à 18, dans
lequel le capteur (60) est un capteur encapsulé.
20. Dispositif implantable (10) selon l'une quelconque des revendications 1 à 19, dans
lequel le pont (30) est sensiblement droit.
21. Dispositif implantable (10) selon l'une quelconque des revendications 1 à 19, dans
lequel le pont (30) contient une pluralité de boucles.
22. Dispositif implantable (10) selon l'une quelconque des revendications 1 à 21, comprenant
en outre un marqueur angiographique attaché au pont (30).
23. Dispositif implantable (10) selon l'une quelconque des revendications 1 à 22, dans
lequel ledit ancrage (20) peut revenir à la configuration comprimée après déploiement
partiel.
24. Dispositif implantable (10) selon l'une quelconque des revendications 1 à 23, dans
lequel un capteur est incorporé au sein de ladite plaque.
25. Dispositif implantable (10) selon l'une quelconque des revendications 1 à 24, dans
lequel l'ancrage (20) est à déploiement automatique.
26. Procédé de fabrication du dispositif implantable (10) selon la revendication 1, comprenant
les étapes consistant à :
(a) fabriquer l'ancrage et le pont en une seule unité ;
(b) assembler l'ancrage et le pont sur un mandrin ayant un diamètre de l'ancrage déployé
souhaité et une protubérance
(c) positionner le pont au-dessus de la protubérance
(d) traiter thermiquement l'ancrage et le pont à une forme thermomécaniquement prédéfinie,
et
(e) assembler le capteur sur le pont.
27. Procédé selon la revendication 26, comprenant en outre l'étape (f) consistant à sertir
le dispositif implantable sur un cathéter de largage.
28. Procédé selon les revendications 26 ou 27, dans lequel le capteur est attaché au pont
par une bague d'adaptation à l'étape (e).
29. Procédé selon l'une quelconque des revendications 26 à 28, dans lequel un marqueur
angiographique est inséré entre le capteur et le pont.
30. Procédé selon l'une quelconque des revendications 26 à 29, dans lequel l'ancrage et
le pont sont formés à partir d'une feuille métallique plate.
31. Procédé selon l'une quelconque des revendications 26 à 29, dans lequel l'ancrage et
le pont sont formés à partir d'une feuille métallique plane.
32. Procédé selon l'une quelconque des revendications 26 à 29, dans lequel l'ancrage et
le pont sont formés à partir d'un tube.
33. Procédé selon l'une quelconque des revendications 26 à 32, dans lequel à l'étape (c)
le pont est poussé dans ladite protubérance sur ledit mandrin.
34. Procédé selon l'une quelconque des revendications 26 à 33, dans lequel le traitement
thermique de l'étape (d) comprend l'application de chaleur à 600 ± 3 °C pendant approximativement
25 à 40 minutes.
35. Procédé selon l'une quelconque des revendications 26 à 33, dans lequel le traitement
thermique de l'étape (d) comprend l'application de chaleur à 320 ± 3 °C pendant approximativement
70 à 85 minutes.
36. Procédé de fabrication du dispositif implantable de la revendication 1, comprenant
les étapes consistant à :
(a) fabriquer l'ancrage ;
(b) fabriquer le pont ;
(c) traiter thermiquement l'ancrage et le pont ;
(d) attacher le pont à l'ancrage ; et
(e) assembler le capteur sur le pont.
37. Procédé selon la revendication 36, comprenant en outre l'étape (f) consistant à sertir
le dispositif implantable sur un cathéter de largage.
38. Procédé selon les revendications 36 ou 37, dans lequel l'étape (d) est réalisée avant
l'étape (c).
39. Procédé selon l'une quelconque des revendications 36 à 38, dans lequel l'étape (e)
est réalisée avant l'étape (d).
40. Procédé selon l'une quelconque des revendications 36 à 39, dans lequel le capteur
est assemblé sur le pont par une bague d'adaptation à l'étape (e).
41. Procédé selon l'une quelconque des revendications 36 à 40, dans lequel un marqueur
angiographique est inséré entre le capteur et le pont.
42. Procédé selon l'une quelconque des revendications 36 à 41, dans lequel l'ancrage et
le pont sont formés à partir d'une feuille métallique plate.
43. Procédé selon l'une quelconque des revendications 36 à 41, dans lequel l'ancrage et
le pont sont formés à partir d'un tube.
44. Procédé selon l'une quelconque des revendications 36 à 42, dans lequel l'étape (c)
comprend la fixation dudit ancrage sur un mandrin.
45. Procédé selon l'une quelconque des revendications 36 à 44, dans lequel le traitement
thermique de l'étape (c) comprend l'application de chaleur à 600 ± 3 °C pendant approximativement
25 à 40 minutes.
46. Procédé selon l'une quelconque des revendications 36 à 44, dans lequel le traitement
thermique de l'étape (c) comprend l'application de chaleur à 320 ± 3 °C pendant approximativement
70 à 85 minutes.
47. Procédé selon l'une quelconque des revendications 36 à 46, dans lequel à l'étape (c)
le traitement thermique de l'ancrage est réalisé séparément du traitement thermique
du pont.
48. Procédé selon l'une quelconque des revendications 36 à 47, dans lequel ledit ancrage
est placé sur un gabarit ayant une zone indentée après traitement thermique et avant
l'étape (d).
49. Procédé selon la revendication 48, dans lequel le pont et le capteur sont placés au
sein de ladite zone indentée dudit gabarit.
50. Système pour implanter un capteur comprenant :
(a) un cathéter de largage ; et
(b) le dispositif implantable (10) de la revendication 1 monté sur ledit cathéter
de largage.