(19)
(11) EP 3 440 266 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
24.06.2020 Bulletin 2020/26

(21) Application number: 16723398.0

(22) Date of filing: 08.04.2016
(51) International Patent Classification (IPC): 
E02D 5/36(2006.01)
(86) International application number:
PCT/FI2016/050224
(87) International publication number:
WO 2017/174860 (12.10.2017 Gazette 2017/41)

(54)

A METHOD AND AN APPARATUS FOR DETERMINING THE TORQUE OF AN AUGER, AND A PILE DRIVING RIG

VERFAHREN UND VORRICHTUNG ZUR BESTIMMUNG DES DREHMOMENTS EINER FÖRDERSCHNECKE UND RAMMRIGG

PROCÉDÉ ET APPAREIL DE DÉTERMINATION DU COUPLE D'UNE TARIÈRE, ET APPAREIL DE BATTAGE DE PIEUX


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43) Date of publication of application:
13.02.2019 Bulletin 2019/07

(73) Proprietor: Junttan OY
70701 Kuopio (FI)

(72) Inventors:
  • HYTÖNEN, Juhani
    70100 Kuopio (FI)
  • KORPIJAAKKO, Tapio
    70800 Kuopio (FI)

(74) Representative: Berggren Oy, Tampere 
Visiokatu 1
33720 Tampere
33720 Tampere (FI)


(56) References cited: : 
WO-A1-01/90488
US-A1- 2014 193 208
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the invention



    [0001] The invention relates to a method and an apparatus for determining the torque of an auger, and a pile driving rig.

    Background of the invention



    [0002] The use of pile driving as a method for foundation of buildings and constructions has become more common in recent years, because land for building sites is becoming sparse in the vicinity of many large cities. By means of piles driven into the ground, a strong foundation can be built also in areas in which construction is otherwise not possible, due to the low bearing capacity of the soil.

    [0003] One way of driving piles into the ground is auger drilled piling. The piles are installed by drilling a hole of a desired depth by the auger of a drilling rig. When pulling up the auger, concrete is pumped into the hole via the auger. Reinforcing structures of metal can also be included in the pile.

    [0004] When drilling the pile hole, the auger is driven into the ground at a suitable rate to minimize the disturbance to the soil. Thus, the rate of penetration of the auger should be selected according to the soil to be drilled, to cause as little disturbance as possible. During the drilling, information about the nature of the soil to be drilled, that is, its quality and stiffness, can be obtained by measuring the torque of the auger.

    [0005] Publication US 2014/0193208 A1 discloses a load cell for measuring torque applied to a screw piling by a rotary drive. Publication WO 01/90488 A1 discloses a monitoring device for a continuous flight auger.

    Brief summary of the invention



    [0006] It is an aim of the invention to provide a method for determining the torque of the auger of a pile driving rig, by which method the torque can be accurately determined. Moreover, it is an aim to present an auger rotator and software means for implementing the method according to the invention.

    [0007] The aim of the invention is achieved by a method according to claim 1, in which the torque of the auger is determined by measuring loads effective on the structures of the pile driving rig on the basis of the rotation of the auger. According to the invention, the force effected by the torque of the auger on structures of the pile driving rig is measured by a force sensor, and the torque is determined on the basis of the force. The force sensor may be, for example, a load pin, a load pin comprising a strain gauge transducer, or a strain gauge transducer. In an advantageous embodiment, the direction of the torque is determined.

    [0008] The aim of the invention is achieved by an auger rotator for a pile driving rig, for determining a torque of an auger of the pile driving rig according to claim 7, comprising means for measuring loads effective on the structures of the pile driving rig on the basis of the rotation of the auger, and means for determining the torque of the auger by using the measured loads. According to the invention, the apparatus comprises a force sensor for measuring the force effective on the auger, the torque being determined on the basis of the force. The force sensor is configured to measure the supporting force between the frame of the driving motor of the auger rotator and the frame of the auger rotator. The force sensor may be, for example, a load pin, a load pin comprising a strain gauge transducer or a strain gauge transducer. In an advantageous embodiment, the auger rotator comprises means for determining the direction of the torque. In an advantageous embodiment, the pile driving rig is a drilling rig. Furthermore, the aim of the invention is further achieved through an advantageous embodiment, where the auger rotator comprises software means for carrying out the method according to the invention.

    Description of the drawings



    [0009] In the following, the invention will be described in more detail with reference to the appended drawings, in which
    Fig. 1
    shows a pile driving rig according to an embodiment in a side view,
    Fig. 2
    shows an auger rotator according to an embodiment in a slanted side view, and
    Fig. 3
    shows an auger rotator according to an embodiment in a top view.

    Detailed description of some advantageous embodiments of the invention



    [0010] Figure 1 shows a pile driving rig 10 according to an embodiment. This pile driving rig 10 is a so-called combined pile driving rig for the installation of auger drilled piles, rammed piles or grooved/steel piles into the ground by vibration or pressing. When the pile driving rig 10 is used for the installation of auger drilled piles, an auger motor as shown in Fig. 1 is installed in the slide 22 for an implement 26 on the leader 17. When rammed piles are driven into the ground, the hammer of the pile driving apparatus is installed in the slide 22, and when grooved/steel piles are driven into the ground by vibration, a vibrator is installed in the slide 22.

    [0011] The pile driving rig 10 of Fig. 1 comprises a base machine 11 and a pile driving apparatus 12 mounted on it. The base machine 11 consists of an undercarriage 13 movable on the ground by a crawler track 16, by which the pile driving apparatus 12 is moved along the ground surface to a desired location where a pile is to be driven. The undercarriage 13 comprises the crawler track 16 and the required apparatus for moving the pile driving rig 10 by them. Above the undercarriage 13, an upper carriage 14 is mounted on the undercarriage 13 to be swivelled in the horizontal direction by means of a swivel 15. A driving engine 27 is placed in the rear section of the upper carriage 14, and a cabin 18 as well as the required mounting structures and devices for mounting and moving the different parts of the pile driving apparatus 12 are placed in the front section. The different functions of the base machine 11 and the pile driving apparatus 12 as well as e.g. the transmission for moving the crawler track 16 and changing the travel direction of the base machine 11 are configured to be hydraulically operated by a hydraulic system in the base machine 11. For effecting various functions, the driving engine 27 powers hydraulic pumps that belong to the hydraulic system and generate the flow and the pressure of pressurized medium in the hydraulic system, for driving actuators that belong to the hydraulic system and effect the various functions. The cabin 18 is equipped with control devices to be applied by the driver of the pile driving rig 10 for controlling the different functions of the pile driving rig. Furthermore, the cabin 18 is equipped with, inter alia, an electronic control unit for controlling the control valves (magnet and/or servo valves) of the hydraulic system for adjusting and controlling the supply of pressurized medium to the different actuators of the hydraulic system.

    [0012] The pile driving apparatus 12 comprises a leader 17 and an implement 26 to be installed on it, for example a piling auger or the hammer of an impact pile driving apparatus. In Fig. 1, the implement 26 connected to the leader 17 is a piling auger. For installing the implement 26 to the leader 17 in a disengageable manner, a slide 22 is movably connected to the leader in its longitudinal direction and equipped with the necessary fastening members for fastening the implement 26 to the slide 22, as well as with the necessary connecting means and hoses for connecting the implement 26 to the hydraulic system of the base machine 11. The slide is mounted on guide tracks 23 on the leader 17. The slide 22 is moved along the guide tracks 23 by means of pulling ropes driven by a pull-down winch and a hoisting winch in the base machine 11. Idlers 25 are provided at different locations by the side of the leader 17 and at the cathead 24 at the top of the leader 17, for guiding the pulling ropes from the pull-down and hoisting winches to the slide 22. According to the implement in question, the pulling ropes are guided via the different idlers so that in the case of different types of implements, the slide 22 is given the desired velocity and force according to the requirements of the piling work to be carried out by said implement.

    [0013] The auger rotator 200 comprises a driving motor 201 for rotating the auger. The auger comprises a hollow shaft, around which the rock bit is fixed. During auger drilled piling, the auger rotator 200 rotates the auger and moves downwards as the auger bores into the ground. After the auger has reached the desired depth, the auger rotator 200 is moved upwards to pull up the auger from the hole formed. After the auger has been pulled up, a pump is applied to pump concrete via a hollow shaft inside the auger into the hole formed by the auger, thereby building up a pile.

    [0014] The auger rotator 200 comprises at least one transmission member, to which a driving engine 201 is connected for rotating the auger. The transmission member may be, for example, a planetary gear, a cogwheel gear, or a worm gear. The auger rotator 200 comprises a force sensor 202, by which the torque of the auger can be determined. The force effective on the auger can be measured by the force sensor 202 and used for determining the torque. The force to be measured may be a force supporting the motor 201 and caused by the force opposing the rotation of the auger.

    [0015] An auger rotator according to an embodiment is shown in Figs. 2 and 3. The auger rotator 200 fixed to the slide 22 movably mounted on the leader 17 is equipped with two planetary gears 203 to which driving motors 201 are connected for rotating the auger fixed to the auger rotator 200 by means of a cogwheel. The driving motors 201 are hydraulic motors. A lever arm 204 is fixed to the frame of one of the driving motors 201 and fastened, in turn, to the frame of the auger rotator 200 by means of a load pin used as the force sensor 202. The load pin prevents the rotation of the motor upon rotation of the auger. The torsional force effective on the auger is transmitted to the load pin, whereby the torque of the auger can be determined by means of the load pin. When determining the torque M of the auger, the distance of the load pin from the rotation shaft (the vertical shaft of the motor 201) is known; that is, the radius r, and the force F effective on the load pin is measured. The torque effective on the load pin is obtained by multiplying the force F by the length of the radius r, that is, F × r. Because there are two driving motors 201, the load pin is subjected to half of the torque of the auger. The torque M (Nm) of the auger is thus obtained by multiplying the torque effective on the load pin by two; that is, (F × r) × 2.

    [0016] In an embodiment, the auger rotator 200 fixed to a slide 22 movably mounted on the leader 17 is equipped with one planetary gear 203 to which a driving motor 201 is connected for rotating the auger fixed to the auger rotator 200 via a cogwheel. The driving motor 201 is a hydraulic motor. A lever arm 204 is fixed to the frame of the driving motor and fastened, on the other hand, to the frame of the auger rotator 200 by means of the load pin used as the force sensor 202. The load pin 202 prevents the rotation of the frame of the driving motor 201 upon rotation of the auger. The torsional force effective on the auger is transmitted to the load pin 202, whereby the load pin 202 can be used to determine the torque of the auger. When determining the torque M of the auger, the distance of the load pin 202 from the rotation shaft (the vertical shaft of the driving motor 201) is known; that is, the radius r, and the force F effective on the load pin 202 is measured. The torque effective on the load pin 202 is obtained by multiplying the force F by the length of the radius r, that is, F × r.

    [0017] The method and the apparatus according to the invention for determining the torque of the auger can be implemented, in many respects, in ways different from the example embodiments presented above. The torque of the auger of the pile driving rig can be determined by measuring loads effective on the structures of the pile driving rig on the basis of the rotation of the auger. The magnitude and the direction of the loads can be measured. The torque of the auger can be determined by measuring the loads caused by a force opposing the rotation of the auger. A force sensor similar to the force sensor 202 can be used for the measurement. In examples not according to the invention, such a force sensor may also be placed elsewhere than in the auger rotator. The force sensor may be a load pin or any other means suitable for measuring the force. In examples not according to the invention, instead of the force sensor, also another sensor than a sensor measuring the force directly can be used for determining the torque. The torque can be determined by measuring, for example, strains caused by the torque of the auger (by a strain gauge or another strain measuring method/sensor) at a suitable location, for example in the structures of the auger rotator or elsewhere in the pile driving rig 10, in a location to which the torque caused by the auger, or the force caused by it, is transmitted (such as the leader, to which the torque caused by the auger is transmitted). The torque can also be determined, for example, from a measurement result obtained by a mechanical or optical measuring device for measuring deformations in the structures of the auger rotator or elsewhere in the pile driving rig. When such measurement points are used which utilize elongations/strains/deformations, the measurement can be calibrated by taking reference measurements e.g. in the above described way by a load pin placed between the motor of the auger rotator and the frame of the auger, whereby a relationship (e.g. an empirical model or exact mathematical model) can be calculated between a measurement taken from such a location and a measurement taken by the load pin so that the torque can be determined by the other above described measuring methods (without measurement by a load pin between the motor of the auger rotator and the frame of the auger) at an accuracy similar to applying the above described method based on the load pin.

    [0018] The auger rotator according to the invention for determining the torque of the auger of a pile driving rig comprises means for measuring loads effective on the structures of the pile driving rig caused by rotation of the auger, and preferably software means for determining the torque of the auger by means of the measured loads. The apparatus may comprise means for measuring the direction of the torque. The apparatus may comprise the strain gauge of a force sensor, a mechanical sensor, or an optical sensor for providing a measurement result to be used as a basis for determining the torque. The force sensor is configured to measure the supporting force between the frame of the driving motor of the auger rotator and the frame of the auger rotator.

    [0019] Determining the magnitude of the torque of the auger is essential for evaluating the bearing capacity of the pile and thereby the success of the final result of the piling. On the basis of the magnitude of the torque, the operation of the pile driving rig can be controlled, for example by controlling the transmission ratio of the gear or the angle of the slant plate of the motor. Conventionally, the torque of the auger is determined on the basis of the efficiency of the hydraulic motor powering the auger. The volume flow and the pressure of the hydraulic oil and the rotation speed of the hydraulic motor are known, making it possible to calculate the efficiency of the hydraulic motor. On the basis of the efficiency, in turn, it is possible to calculate the torque. However, this is a relatively uncertain and inaccurate method for determining the torque. Furthermore, if the transmission ratio of the gear between the hydraulic motor used as the driving motor and the auger, or the displacement of the hydraulic motor is changed (e.g. by changing the angle of the slant plate), the effect of these changes on the measurement of the pressure of hydraulic oil or other pressurized medium has to be taken into account. In particular, it may be difficult to take into account the effect of the control of the displacement, because the real displacement corresponding to a given control value may vary in different hydraulic motors, and/or the change may be non-linear with respect to the set control value. As a result, the torque of the auger can be determined more easily and more accurately by directly measuring the force effective on the auger rotator, elongations, deformations or strains, because the above mentioned factors affecting the ratio between the pressure of the hydraulic oil or other pressurized medium and the torque do not need to be taken into account.

    [0020] The method and the apparatus according to the invention are not limited to the above presented example embodiments but may vary within the scope of the appended claims.


    Claims

    1. A method for determining a torque of an auger of a pile driving rig (10),

    wherein the pile driving rig (10) comprises an auger rotator (200) including a frame of the auger rotator, a driving motor (201), a frame of the driving motor and a lever arm (204),

    wherein the method comprises determining the torque of the auger by measuring at least one of the following items in structures of the pile driving rig (10):

    a force effected by the torque on at least one point in the structures of the pile driving rig (10), or

    an elongation caused by the force effected by the torque on at least one point in the structures of the pile driving rig (10), or

    a strain caused by the force effected by the torque on at least one point in the structures of the pile driving rig (10), or

    a deformation caused by the force effected by the torque on at least one point in the structures of the pile driving rig (10);

    as well as by calculating the torque of the auger from a measurement result thus obtained,

    wherein the force to be measured for determining the torque is a supporting force between the frame of the driving motor (201) of the auger rotator (200) and the frame of the auger rotator, and said supporting force is measured by a force sensor (202) placed in the lever arm (204) placed between the frame of the driving motor (201) of the auger rotator (200) and the frame of the auger rotator (200).


     
    2. A method according to claim 1, wherein the measured force, elongation, strain, or deformation is used for determining a direction of the torque.
     
    3. A method according to claim 1 or 2, wherein the force sensor is a load pin.
     
    4. A method according to any of the claims 1 to 3, wherein a strain gauge is used for measuring the elongation caused in the frame of the auger rotator (200), and thereby for determining the torque of the auger.
     
    5. A method according to claim 4, wherein the strain gauge is used for measuring the elongation of the lever arm between the frame of the driving motor (201) of the auger rotator (200) and the frame of the auger rotator (200), and thereby for determining the torque of the auger.
     
    6. A method according to any of the claims 1 to 5, wherein an optical or mechanical sensor for measuring a deformation is used for measuring the deformation of the lever arm (204) between the frame of the driving motor (201) of the auger rotator (200) and the frame of the auger rotator (200), and thereby for determining the torque of the auger.
     
    7. An auger rotator (200) for a pile driving rig (10), for determining a torque of the auger of the pile driving rig (10), wherein the auger rotator (200) comprises

    a frame of the auger rotator, a driving motor (201), a frame of the driving motor and a lever arm (204),

    means for measuring at least one of the following:

    a force effective on structures of the pile driving rig (10) by rotation of the auger, or

    an elongation caused by the force effective on structures of the pile driving rig (10) by rotation of the auger, or

    a strain caused by the force effective on structures of the pile driving rig (10) by rotation of the auger, or

    a deformation caused by the force effective on structures of the pile driving rig (10) by rotation of the auger, and

    means for determining the torque of the auger by using the measurement results thus obtained,

    a force sensor (202) for measuring the force effective on the auger, and thereby for determining the torque, and the force sensor (202) being configured to measure a supporting force between the frame of the driving motor (201) of the auger rotator (200) and the frame of the auger rotator (200) as the force to be measured for determining the torque, and the force sensor (202) being placed in the lever arm (204) placed between the frame of the driving motor (201) of the auger rotator (200) and the frame of the auger rotator (200).


     
    8. An auger rotator (200) according to claim 7, comprising means for determining a direction of the torque.
     
    9. An auger rotator (200) according to claim 7 or 8, wherein the force sensor (202) is a load pin.
     
    10. An auger rotator (200) according to any of the claims 7 to 9, wherein the auger rotator (200) comprises at least one strain gauge.
     
    11. An auger rotator (200) according to claim 10, wherein the strain gauge is configured to measure elongations caused by the torque on the lever arm (204) between the frame of the driving motor (201) of the auger rotator (200) and the frame of the auger rotator (200).
     
    12. An auger rotator (200) according to any of the claims 7 to 11, comprising software means for carrying out a method according to any of the claims 1 to 6.
     
    13. A pile driving rig (10), the pile driving rig (10) comprising an auger rotator (200) according to any of the claims 7 to 12.
     
    14. A pile driving rig (10) according to claim 13, the pile driving rig (10) being a combined pile driving rig.
     


    Ansprüche

    1. Verfahren zum Bestimmen eines Drehmoments einer Schnecke eines Rammgeräts (10),
    wobei das Rammgerät (10) einen Schnecken-Rotator (200) umfasst, der einen Rahmen des Schnecken-Rotators, einen Antriebsmotor (201), einen Rahmen des Antriebsmotors und einen Hebelarm (204) beinhaltet,
    wobei das Verfahren ein Bestimmen des Drehmoments der Schnecke durch Messen mindestens eines der folgenden Elemente in Strukturen des Rammgeräts (10) umfasst:

    einer Kraft, die durch das Drehmoment ausgeübt wird, auf mindestens einen Punkt in den Strukturen des Rammgeräts (10), oder

    einer Dehnung, die durch die Kraft, die durch das Drehmoment ausgeübt wird, auf mindestens einen Punkt in den Strukturen des Rammgeräts (10) hervorgerufen wird, oder

    einer Spannung, die durch die Kraft, die durch das Drehmoment ausgeübt wird, auf mindestens einen Punkt in den Strukturen des Rammgeräts (10) hervorgerufen wird, oder

    einer Verformung, die durch die Kraft, die durch das Drehmoment ausgeübt wird, auf mindestens einen Punkt in den Strukturen des Rammgeräts (10) hervorgerufen wird;

    sowie durch Berechnen des Drehmoments der Schnecke aus einem so erhaltenen Messergebnis,

    wobei die zum Bestimmen des Drehmoments zu messende Kraft eine Stützkraft zwischen dem Rahmen des Antriebsmotors (201) des Schnecken-Rotators (200) und dem Rahmen des Schnecken-Rotators ist, und die Stützkraft durch einen Kraftsensor (202) gemessen wird, der in dem Hebelarm (204) angeordnet ist, der zwischen dem Rahmen des Antriebsmotors (201) des Schnecken-Rotators (200) und dem Rahmen des Schnecken-Rotators (200) angeordnet ist.


     
    2. Verfahren nach Anspruch 1, wobei die gemessene Kraft, die Dehnung, die Spannung oder die Verformung zum Bestimmen einer Richtung des Drehmoments verwendet wird.
     
    3. Verfahren nach Anspruch 1 oder 2, wobei der Kraftsensor ein Lastmessbolzen ist.
     
    4. Verfahren nach einem der Ansprüche 1 bis 3, wobei ein Dehnungsmessstreifen zum Messen der in dem Rahmen des Schnecken-Rotators (200) hervorgerufenen Dehnung und dadurch zum Bestimmen des Drehmoments der Schnecke verwendet wird.
     
    5. Verfahren nach Anspruch 4, wobei der Dehnungsmessstreifen zum Messen der Dehnung des Hebelarms zwischen dem Rahmen des Antriebsmotors (201) des Schnecken-Rotators (200) und dem Rahmen des Schnecken-Rotators (200) und dadurch zum Bestimmen des Drehmoments der Schnecke verwendet wird.
     
    6. Verfahren nach einem der Ansprüche 1 bis 5, wobei ein optischer oder mechanischer Sensor zum Messen einer Verformung zum Messen der Verformung des Hebelarms (204) zwischen dem Rahmen des Antriebsmotors (201) des Schnecken-Rotator (200) und dem Rahmen des Schnecken-Rotators (200) und dadurch zum Bestimmen des Drehmoments der Schnecke verwendet wird.
     
    7. Schnecken-Rotator (200) für eine Rammgerät (10) zum Bestimmen eines Drehmoments der Schnecke des Rammgeräts (10), wobei der Schnecken-Rotator (200) Folgendes umfasst:

    einen Rahmen des Schnecken-Rotators, einen Antriebsmotor (201), einen Rahmen des Antriebsmotors und einen Hebelarm (204),

    Mittel zum Messen mindestens eines von Folgendem:

    einer Kraft, die durch Drehung der Schnecke auf Strukturen des Rammgeräts (10) ausgeübt wird, oder

    einer Dehnung, die durch die Kraft, die durch Drehung der Schnecke auf Strukturen des Rammgeräts (10) ausgeübt wird, hervorgerufen wird, oder

    einer Spannung, die durch die Kraft, die durch Drehung der Schnecke auf Strukturen des Rammgeräts (10) ausgeübt wird, hervorgerufen wird, oder

    einer Verformung, die durch die Kraft, die durch Drehung der Schnecke auf Strukturen des Rammgeräts (10) ausgeübt wird, hervorgerufen wird; und

    Mittel zum Bestimmen des Drehmoments der Schnecke unter Verwendung der so erhaltenen Messergebnisse,

    einen Kraftsensor (202) zum Messen der auf die Schnecke ausgeübten Kraft und dadurch zum Bestimmen des Drehmoments und wobei der Kraftsensor (202) dazu ausgestaltet ist, eine Stützkraft zwischen dem Rahmen des Antriebsmotors (201) des Schnecken-Rotators (200) und dem Rahmen des Schnecken-Rotators (200) als die Kraft zu messen, die zum Bestimmen des Drehmoments gemessen werden soll und der Kraftsensor (202) in dem Hebelarm (204) angeordnet ist, der zwischen dem Rahmen des Antriebsmotors (201) des Schnecken-Rotators (200) und dem Rahmen des Schnecken-Rotators (200) angeordnet ist.


     
    8. Schnecken-Rotator (200) nach Anspruch 7, umfassend Mittel zum Bestimmen einer Richtung des Drehmoments.
     
    9. Schnecken-Rotator (200) nach Anspruch 7 oder 8, wobei der Kraftsensor (202) ein Lastmessbolzen ist.
     
    10. Schnecken-Rotator (200) nach einem der Ansprüche 7 bis 9, wobei der Schnecken-Rotator (200) mindestens einen Dehnungsmessstreifen umfasst.
     
    11. Schnecken-Rotator (200) nach Anspruch 10, wobei der Dehnungsmessstreifen dazu ausgestaltet ist, Dehnungen zu messen, die durch das Drehmoment an dem Hebelarm (204) zwischen dem Rahmen des Antriebsmotors (201) des Schnecken-Rotators (200) und dem Rahmen des Schnecken-Rotators (200) hervorgerufen werden.
     
    12. Schnecken-Rotator (200) nach einem der Ansprüche 7 bis 11, umfassend Softwaremittel zum Ausführen eines Verfahrens nach einem der Ansprüche 1 bis 6.
     
    13. Rammgerät (10), wobei das Rammgerät (10) einen Schnecken-Rotator (200) nach einem der Ansprüche 7 bis 12 umfasst.
     
    14. Rammgerät (10) nach Anspruch 13, wobei das Rammgerät (10) ein kombiniertes Rammgerät ist.
     


    Revendications

    1. Procédé permettant de déterminer un couple d'une tarière d'un mât de battage de pieux (10),
    dans lequel le mât de battage de pieux (10) comprend un rotateur de tarière (200) comprenant un châssis du rotateur de tarière, un moteur d'entraînement (201), un châssis du moteur d'entraînement et un bras de levier (204),
    dans lequel le procédé comprend la détermination du couple de la tarière en mesurant au moins l'un des éléments suivants dans les structures du mât de battage de pieux (10) :

    une force exercée par le couple sur au moins un point dans les structures du mât de battage de pieux (10), ou

    un allongement causé par la force exercée par le couple sur au moins un point dans les structures du mât de battage de pieux (10), ou

    une contrainte causée par la force exercée par le couple sur au moins un point dans les structures du mât de battage de pieux (10), ou

    une déformation causée par la force exercée par le couple sur au moins un point dans les structures du mât de battage de pieux (10) ;

    mais également en calculant le couple de la tarière à partir d'un résultat de mesure ainsi obtenu,

    dans lequel la force devant être mesurée pour déterminer le couple est une force d'appui entre le châssis du moteur d'entraînement (201) du rotateur de tarière (200) et le châssis du rotateur de tarière, et ladite force d'appui est mesurée par un capteur de force (202) placé dans le bras de levier (204) placé entre le châssis du moteur d'entraînement (201) du rotateur de tarière (200) et le châssis du rotateur de tarière (200).


     
    2. Procédé selon la revendication 1, dans lequel la force, l'allongement, la contrainte ou la déformation mesurée sont utilisés pour déterminer une direction du couple.
     
    3. Procédé selon la revendication 1 ou 2, dans lequel le capteur de force est une goupille de charge.
     
    4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel une jauge de contrainte est utilisée pour mesurer l'allongement engendré dans le châssis du rotateur de tarière (200), et par là même de déterminer le couple de la tarière.
     
    5. Procédé selon la revendication 4, dans lequel la jauge de contrainte est utilisée pour mesurer l'allongement du bras de levier entre le châssis du moteur d'entraînement (201) du rotateur de tarière (200) et le châssis du rotateur de tarière (200), et par là même de déterminer le couple de la tarière.
     
    6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel un capteur optique ou mécanique permettant de mesurer une déformation est utilisé pour mesurer la déformation du bras de levier (204) entre le châssis du moteur d'entraînement (201) du rotateur de tarière (200) et le châssis du rotateur de tarière (200), et par là même de déterminer le couple de la tarière.
     
    7. Rotateur de tarière (200) pour un mât de battage de pieux (10), destiné à déterminer un couple de la tarière du mât de battage de pieux (10), dans lequel le rotateur de tarière (200) comprend
    un châssis du rotateur de tarière, un moteur d'entraînement (201), un châssis du moteur d'entraînement et un bras de levier (204), des moyens pour mesurer au moins l'un des éléments suivants :

    une force efficace sur les structures du mât de battage de pieux (10) par rotation de la tarière, ou

    un allongement entraîné par la force efficace sur les structures du mât de battage de pieux (10) par rotation de la tarière, ou

    une contrainte causée par la force efficace sur les structures du mât de battage de pieux (10) par rotation de la tarière, ou

    une déformation causée par la force efficace sur les structures du mât de battage de pieux (10) par rotation de la tarière, et

    des moyens permettant de déterminer le couple de la tarière à l'aide des résultats de mesure ainsi obtenus,

    un capteur de force (202) permettant de mesurer la force efficace sur la tarière, et par là même de déterminer le couple, et le capteur de force (202) étant conçu pour mesurer une force d'appui entre le châssis du moteur d'entraînement (201) du rotateur de tarière (200) et le châssis du rotateur tarière (200) comme la force devant être mesurée pour déterminer le couple, et le capteur de force (202) étant placé dans le bras de levier (204) placé entre le châssis du moteur d'entraînement (201) du rotateur de tarière (200) et le châssis du rotateur de tarière (200).


     
    8. Rotateur de tarière (200) selon la revendication 7, comprenant des moyens pour déterminer une direction du couple.
     
    9. Rotateur de tarière (200) selon la revendication 7 ou 8, dans lequel le capteur de force (202) est une goupille de charge.
     
    10. Rotateur de tarière (200) selon l'une quelconque des revendications 7 à 9, dans lequel le rotateur de tarière (200) comprend au moins une jauge de contrainte.
     
    11. Rotateur de tarière (200) selon la revendication 10, dans lequel la jauge de contrainte est conçue pour mesurer les allongements causés par le couple sur le bras de levier (204) entre le châssis du moteur d'entraînement (201) du rotateur de tarière (200) et le châssis du rotateur de tarière (200).
     
    12. Rotateur de tarière (200) selon l'une quelconque des revendications 7 à 11, comprenant des moyens logiciels pour exécuter un procédé selon l'une quelconque des revendications 1 à 6.
     
    13. Mât de battage de pieux (10), le mât de battage de pieux (10) comprenant un rotateur de tarière (200) selon l'une quelconque des revendications 7 à 12.
     
    14. Mât de battage de pieux selon la revendication 13, le mât de battage de pieux (10) étant un mât de battage de pieux combiné.
     




    Drawing














    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description