(19)
(11) EP 3 433 911 B1

(12) EUROPÄISCHE PATENTSCHRIFT

(45) Hinweis auf die Patenterteilung:
07.10.2020  Patentblatt  2020/41

(21) Anmeldenummer: 17706971.3

(22) Anmeldetag:  16.02.2017
(51) Internationale Patentklassifikation (IPC): 
H01T 4/12(2006.01)
H01T 21/00(2006.01)
(86) Internationale Anmeldenummer:
PCT/EP2017/053502
(87) Internationale Veröffentlichungsnummer:
WO 2017/162376 (28.09.2017 Gazette  2017/39)

(54)

VERFAHREN ZUR HERSTELLUNG EINES ABLEITERS UND ABLEITER

METHOD FOR PRODUCING AN ARRESTER, AND ARRESTER

PROCÉDÉ DE FABRICATION D'UN PARAFOUDRE ET PARAFOUDRE


(84) Benannte Vertragsstaaten:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priorität: 24.03.2016 DE 102016105541

(43) Veröffentlichungstag der Anmeldung:
30.01.2019  Patentblatt  2019/05

(73) Patentinhaber: TDK Electronics AG
81671 München (DE)

(72) Erfinder:
  • DOELLGAST, Bernhard
    8530 Deutschlandsberg (AT)
  • KUEGERL, Georg
    8552 Eibiswald (AT)
  • PUFF, Markus
    8010 Graz (AT)
  • HOFFMANN, Robert
    12163 Berlin (DE)
  • WERNER, Frank
    13591 Berlin (DE)

(74) Vertreter: Epping - Hermann - Fischer 
Patentanwaltsgesellschaft mbH Schloßschmidstraße 5
80639 München
80639 München (DE)


(56) Entgegenhaltungen: : 
JP-A- 2000 243 534
US-A1- 2004 125 530
JP-A- 2004 127 614
US-A1- 2009 296 294
   
       
    Anmerkung: Innerhalb von neun Monaten nach der Bekanntmachung des Hinweises auf die Erteilung des europäischen Patents kann jedermann beim Europäischen Patentamt gegen das erteilte europäischen Patent Einspruch einlegen. Der Einspruch ist schriftlich einzureichen und zu begründen. Er gilt erst als eingelegt, wenn die Einspruchsgebühr entrichtet worden ist. (Art. 99(1) Europäisches Patentübereinkommen).


    Beschreibung


    [0001] Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Ableiters zum Schutz vor Überspannungen. Insbesondere handelt es sich um einen Ableiter in Vielschichtbauweise. Weiterhin wird ein Ableiter angegeben.

    [0002] Herkömmliche Gasableiter bestehen in der Regel aus einem gelochten keramischen Grundkörper (i.A. einem Ring aus Aluminiumoxid), an dessen Öffnungen zwei Metallkappen angebracht sind. Die Metallkappen sind normalerweise Kupferkappen, welche mittels Hartlotverbindungen an die Keramik angebunden sind. Keramikkörper, Hartlotverbindung und Metallkappen sind gasdicht, so dass die während des Hartlötvorgangs vorherrschende Atmosphäre hermetisch im Inneren des Gasableiters eingeschlossen wird.

    [0003] Bei Anlegen einer elektrischen Spannung an die beiden Metallkappen kommt es bei Überschreiten einer für die Bauteilkonfiguration und Gaszusammensetzung typischen Zündspannung zum elektrischen Überschlag innerhalb des Gasableiters. Auf diese Weise können elektrische Verbraucher gegen Überspannungen geschützt werden.

    [0004] Durch die Vielzahl der beteiligten Einzelkomponenten (Ring, Metallisierungsschicht, Hartlot, Metallkappen) ist der Aufbau komplex und somit einer automatisierten Herstellung sowie insbesondere einer Miniaturisierung nur begrenzt zugänglich. Zunächst sind die keramischen Grundkörper in Einzelbauweise herzustellen, beispielsweise mittels Pressen und Sintern. Auf diese ist eine für Hartlötung geeignete Metallisierungsschicht aufzubringen, zum Beispiel durch Siebdruck und Einbrand. Der metallisierte Grundkörper, Hartlot und Metallkappen müssen dann geometrisch exakt assembliert und in einem weiteren Temperaturschritt einer Verlötung unterzogen werden.

    [0005] Das Dokument JP 2000 243534 A beschreibt ein Verfahren zu Bereitstellung eines Chip-Stromstoßabsorbers, der in der Lage ist, Dichtungsversagen aufgrund von Rissen, die durch thermische Ausdehnungsunterschiede verursacht werden, zu verhindern.

    [0006] Das Dokument D2 US 2009/296294 A1 beschreibt ein Verfahren zur Herstellung einer Vorrichtung zum Schutz vor elektrostatischer Entladung, bei dem ein erster, ein zweiter und ein dritter LTCC Film einem Co-Firing Schritt unterzogen werden um eine Substanz zu verflüchtigen, welche vorher in ein Loch des zweiten LTCC Films eingebracht wurde.

    [0007] Das Dokument US 2004/125530 A1 beschreibt einen Überspannungsableiter mit einem laminierten Pressling und ein Verfahren zu dessen Herstelllung.

    [0008] Das Dokument JP 2004 127614 A beschreibt ein Verfahren zur Herstellung eines Überspannungsableiters, welcher leicht miniaturisiert werden kann.Eine zu lösende Aufgabe besteht darin, ein verbessertes Verfahren zur Herstellung eines Ableiters anzugeben. Ferner soll ein verbesserter Ableiter angegeben werden.

    [0009] Diese Aufgabe wird durch ein Verfahren und eine Vorrichtung gemäß der unabhängigen Ansprüche gelöst.

    [0010] Gemäß einem Aspekt wird ein Verfahren zur Herstellung eines Ableiters beschrieben. Insbesondere wird durch das Verfahren ein Gasableiter in Vielschichtbauweise hergestellt. Durch das Verfahren wird eine Vielzahl von Ableiter hergestellt (Vielfach-Anordnung). Das Verfahren weist die folgenden Schritte auf:
    • Bereitstellen von wenigstens drei Grünschichten. Vorzugsweise werden genau drei Schichten zur Verfügung gestellt. Jede Schicht kann eine oder mehrere Grünfolien aufweisen. Beispielsweise weist eine Schicht 10, 20 oder mehr Grünfolien auf. Eine Grünfolie kann eine Dicke von beispielsweise 40 µm aufweisen. Aber auch andere Anzahlen und Dicken von Grünfolien sind - anhängig von der gewünschten Beschaffenheit des Ableiters - vorstellbar.
    • Einbringen wenigstens eines Lochs in eine erste Schicht. Das Loch wird beispielsweise mittels Lasern oder Stanzen eingebracht. Das Loch durchdringt die erste Schicht vollständig. Es kann auch mehr als ein Loch in die erste Schicht eingebracht werden. Vorzugsweise weist die erste Schicht eine Vielzahl von Löchern auf. Die Anzahl der Löcher entspricht vorzugsweise der Anzahl von Einzelbauteilen die am Ende des Herstellungsverfahrens durch einen Vereinzelungsschritt erzeugt werden.
    • Aufbringen eines elektrisch leitfähigen Materials zur Ausbildung von Innenelektroden auf eine zweite Schicht und eine dritte Schicht. Das elektrisch leitfähige Material kann beispielsweise Kupfer (Cu), Wolfram (W) oder Nickel (Ni) aufweisen. Vorzugsweise wird das elektrisch leitfähige Material in einem vorbestimmten Muster auf eine Außenfläche der zweiten Schicht und der dritten Schicht aufgebracht. Das Aufbringen des elektrisch leitfähigen Materials auf die zweite Schicht und die dritte Schicht erfolgt beispielsweise mittels Siebdruck.
    • Laminieren der Schichten zu einem Stapel. Dabei wird die erste Schicht zwischen der zweiten Schicht und der dritten Schicht angeordnet. Insbesondere werden die zweite Schicht und die dritte Schicht mit der bedruckten Außenfläche nach Innen auf die erste Schicht zu dem Stapel laminiert. Dafür werden die Schichten mäßiger Temperatur und Druck ausgesetzt. Das Laminieren erfolgt insbesondere im grünen (ungesinterten) Zustand durch die Anwendung von Druck und Temperatur abhängig von der Organik bei ca. 50° bis 100° C. Das Bedruckungsmuster für das elektrisch leitfähige Material ist dabei so gewählt, dass im laminierten Stapel das Loch in der ersten Schicht beidseits zumindest teilweise mit dem elektrisch leitfähigen Material bedeckt ist.
    • Trennen des Grünstapels in Einzelbauteile. Dies erfolgt beispielsweise mittels Cutten oder Sägen.
    • Verdichten der Einzelbauteile. Dafür werden die Einzelbauteile einer bestimmten Temperatur und Atmosphäre ausgesetzt.


    [0011] Das Laminieren der Schichten und das Verdichten der Einzelbauteile erfolgt in einem einzigen Temperaturprozess durch Co-Firing. Innenelektroden und Gasentladungsbereich werden folglich in einem gemeinsamen Herstellungsschritt erzeugt. Dadurch wird ein einfaches und kostengünstiges Verfahren zur Verfügung gestellt. Durch das Verfahren kann ferner gleichzeitig eine Vielzahl von Einzelbauteilen in geringer Größe hergestellt werden. Somit wird ein besonders kostengünstiges und effizientes Verfahren zur Verfügung gestellt.

    [0012] Gemäß einem Ausführungsbeispiel wird in einem weiteren Verfahrensschritt eine Metallpaste auf wenigstens einen Teilbereich der Außenfläche, beispielweise den beiden Stirnflächen, des jeweiligen Einzelbauteils aufgebracht. Vorzugsweise weist die Metallpaste Kupfer oder Nickel auf. Anschließend wird die Metallpaste eingebrannt zur Ausbildung wenigstens einer Außenelektrode. Die Außenelektrode ist beispielsweise in Form einer Metallkappe ausgebildet.

    [0013] Auf diese Weise können die Innenelektroden auf einfache Art zuverlässig kontaktiert werden. Art und Geometrie der der Außenmetallisierung sind dabei vorzugsweise so gewählt, dass ein Oberflächenmontierbares Bauteil entsteht. Auch dieser Verfahrensschritt erfolgt - zusammen mit dem Laminieren der Schichten und dem Verdichten der Einzelbauteile - in einem einzigen Temperaturprozess durch Co-Firing. Dadurch wird ein einfaches und effizientes Verfahren zur Verfügung gestellt.

    [0014] Gemäß einem Ausführungsbeispiel weisen die Schichten ein keramisches Material auf. Die Schichten weisen die gleiche Keramikzusammensetzung auf. Die Keramik zeichnet sich durch eine niedrige Dielektrizitätskonstante und gute Sintereigenschaften aus.

    [0015] Die Schichten können beispielsweise Al2O3 aufweisen. Ferner können die Schichten SiO2 als Sinterhilfsmittel aufweisen. Aber auch jede andere Keramik, die mit der Elektrode zusammen gesintert werden kann, ist vorstellbar.

    [0016] Gemäß einem Ausführungsbeispiel erfolgt das Verdichten der Einzelbauteile mittels Entbindern und Sintern der Einzelbauteile unter definierter Temperatur und Atmosphäre. In diesem Fall wird der keramisches Material aufweisende Schichtstapel einer vorbestimmten Temperatur von beispielsweise 900°C bis 1200° C ausgesetzt. Das Entbindern und Sintern erfolgt in einem Temperaturprozess, so dass weitere Temperaturprozesse überflüssig sind.

    [0017] Gemäß einem Ausführungsbeispiel weisen die Schichten Glas auf. Die Schichten können überwiegend aus Glas bestehen oder neben Glas auch einen Keramikanteil aufweisen. In diesem Fall erfolgt das Verdichten der Einzelbauteile über einen Glasübergang. Dabei wird der Stapel einer geringeren Temperatur als beim Sintern ausgesetzt. In diesem Fall sind auch Elektrodenmaterialen mit einer niedrigeren Schmelztemperatur einsetzbar.

    [0018] Ein Glas als Sinterhilfsmittel reduziert insbesondere die Sintertemperatur und bewirkt eine vollständigere Verdichtung. Wichtig bei der Wahl von Glas ist, dass die Form der Schichten beim Sintern erhalten bleibt.

    [0019] Gemäß einem Ausführungsbeispiel ragt das elektrisch leitfähige Material nach dem Vereinzeln an wenigstens einen Seitenrand des jeweiligen Einzelbauteils. Auf diese Weise kann das Einzelbauteil an eine Außenkontaktierung angeschlossen werden.

    [0020] Gemäß einem Ausführungsbeispiel kann ein Aktivierungsmaterials in der ersten Schicht bereitgestellt werden. Das Aktivierungsmaterial ist zumindest teilweise in dem Loch angeordnet ist. Das Aktivierungsmaterial kann vor dem Bereitstellen des Lochs in die erste Schicht eingebracht werden. Alternativ dazu kann das Aktivierungsmaterials auch nach Bereitstellung des Lochs an den das Loch begrenzenden Seitenwänden der ersten Schicht zur Verfügung gestellt werden. Das Aktvierungsmaterial weist vorzugsweise Graphit auf. Das Aktivierungsmaterial ist dazu vorgesehen die Zündung des Gases zu erleichtern und den Funken zu führen. Damit kann ein besonders effektiver Ableiter durch das Verfahren zur Verfügung gestellt werden.

    [0021] Gemäß einem weiteren Aspekt wird ein Ableiter zum Schutz vor Überspannungen angegeben. Der Ableiter ist insbesondere ein Gasableiter in Vielschichtbauweise. Vorzugsweise ist der Ableiter durch das oben beschriebene Verfahren hergestellt. Sämtliche Merkmale, die im Zusammenhang mit dem Verfahren beschrieben wurden, gelten auch für den Ableiter und umgekehrt.

    [0022] Der Ableiter weist mehrere übereinander angeordnete Schichten, insbesondere drei Schichten auf. Die Schichten können mehrere Einzelschichten aufweisen. Der Ableiter weist wenigstens einen Hohlraum auf. Der Hohlraum führt durch wenigstens eine Schicht, insbesondere durchdringt der Hohlraum die Schicht vollständig. Die Schichten weisen eine Deckschicht und eine Grundschicht auf. Zwischen der Deckschicht und der Grundschicht ist eine Hauptschicht ausgebildet, welche den Hohlraum aufweist. Deckschicht und Grundschicht begrenzen den Hohlraum nach unten und oben. Auf der Deckschicht und der Grundschicht ist jeweils wenigstens eine Innenelektrode angeordnet. Die Innenelektroden grenzen an den Hohlraum an. Der Hohlraum ist durch die Deckschicht und die Grundschicht vollständig umgeben bzw. verschlossen.

    [0023] Durch die kompakte Anordnung in Form eines Vielschichtbauelements kann ein kleines, miniaturisiertes Bauteil zur Verfügung gestellt werden. Durch die Ausbildung der Innenelektroden auf einzelnen Schichten, können die Elektroden frei angeordnet werden. Dies ermöglicht die Anpassung des Bauelements an unterschiedlichste Einbausituationen.

    [0024] Gemäß einem Ausführungsbeispiel weisen die Schichten ein keramisches Material auf. Alternativ oder zusätzlich können die Schichten Glas aufweisen. Diese Materialien zeichnen sich durch eine niedrige Dielektrizitätskonstante aus und lassen sich ferner gut hohen Temperaturen, beispielsweise während eines Sinterschritts, aussetzen.

    [0025] Gemäß einem Ausführungsbeispiel sind die Innenelektroden flächig ausgebildet. Beispielsweise sind die Innenelektroden in Form eines Streifens auf der jeweiligen Schicht ausgebildet. Vorzugsweise decken die Innenelektroden den Hohlraum nach unten und oben vollständig ab.

    [0026] Durch die flächigen Elektroden wird die Strombelastung in der Elektrode reduziert und Wärmeverluste werden besser abgeleitet. Die Fläche sollte daher möglichst groß sein. Auf der anderen Seite führt eine schmale Elektrode zu einer Feldüberhöhung und damit zu einem leichteren Zünden des Überschlags.

    [0027] Die nachfolgend beschriebenen Zeichnungen sind nicht als maßstabsgetreu aufzufassen. Vielmehr können zur besseren Darstellung einzelne Dimensionen vergrößert, verkleinert oder auch verzerrt dargestellt sein.

    [0028] Elemente, die einander gleichen oder die die gleiche Funktion übernehmen, sind mit gleichen Bezugszeichen bezeichnet.

    [0029] Es zeigen:
    Figur 1
    eine Schnittdarstellung eines Ableiters gemäß einem ersten Ausführungsbeispiel,
    Figur 2
    eine Draufsicht auf den Ableiter gemäß Figur 1,
    Figur 3
    eine Schnittdarstellung eines Ableiters gemäß einem zweiten Ausführungsbeispiel,
    Figur 4
    eine Draufsicht auf den Ableiter gemäß Figur 3,
    Figur 5
    Verfahrensschritte bei der Herstellung eines Ableiters,
    Figur 6
    einen Verfahrensschritt bei der Herstellung eines Ableiters.


    [0030] Die Figuren 1 und 2 zeigen einen Ableiter 1 zum Schutz vor Überspannungen gemäß einem ersten Ausführungsbeispiel. Der Ableiter 1 ist insbesondere ein Gasableiter in Vielschichtbauweise.

    [0031] Der Ableiter 1 weist einen Grundkörper 30 auf. Der Grundkörper 30 ist mehrschichtig aufgebaut. Der Grundkörper 30 weist eine erste Schicht 10 oder Hauptschicht 10 auf. Der Grundkörper 30 weist eine zweite Schicht 11 oder Grundschicht 11 auf. Der Grundkörper 30 weist eine dritte Schicht 12 oder Deckschicht 12 auf.

    [0032] Die Schichten 10, 11, 12 können jeweils aus einer oder mehreren übereinander angeordneten Folien, insbesondere Grünfolien hergestellt sein. Beispielsweise sind ein oder mehrere der Schichten 10, 11, 12 jeweils aus einer Vielzahl von Folien, beispielsweise jeweils aus 20 Folien, gebildet. Die Schichten 10, 11, 12 sind in diesem Fall jeweils als Folienpakete ausgebildet. Die Schichten 10, 11, 12 können jedoch auch jeweils aus nur einer Folie gebildet sein. Die Anzahl der verwendeten Folien hängt von der Dicke der Folien und von den geforderten Eigenschaften des Ableiters 1 ab. Die Schichten 10, 11, 12 sind übereinander angeordnet, wobei die Hauptschicht 10 zwischen der Grundschicht 11 und der Deckschicht 12 angeordnet ist.

    [0033] Die Schichten 10, 11, 12 weisen vorzugsweise die gleiche Materialzusammensetzung auf. Neben einem anorganischen Binder weisen die Schichten 10, 11, 12 ein Material auf, das bei hohen Temperaturen gut verdichtet. Beispielsweise weisen die Schichten 10, 11, 12 eine Keramik auf. Die Keramik zeichnet sich durch eine niedrige Dielektrizitätskonstante und gute Sintereigenschaften aus. Alternativ oder zusätzlich können die Schichten 10, 11, 12 auch Glas aufweisen.

    [0034] Die Hauptschicht 10 weist eine Loch bzw. einen Hohlraum 4 auf. Der Hohlraum 4 durchdringt die Hauptschicht 10 vollständig. Der Hohlraum 4 ist vorzugsweise vollständig nach außen hin abgeschlossen. Insbesondere wird der Hohlraum 4 durch die Grundschicht 11 und die Deckschicht 12 nach oben und unten hin begrenzt.

    [0035] Die Form des Hohlraums 4 ist vorzugsweise translationsinvariant bezüglich der Stapelrichtung der Schichten 10, 11, 12. Insbesondere weist der Hohlraum 4 die Form eines geraden Zylinders auf. Dabei verlaufen die den Hohlraum 4 begrenzenden Seitenwände senkrecht zu einer Grundfläche, insbesondere senkrecht zu einer den Hohlraum 4 begrenzenden Bodenfläche bzw. Deckfläche. Der Hohlraum 4 weist insbesondere eine Grundfläche parallel zu den Schichtebenen und eine Höhe entlang der Stapelrichtung der Schichten 10, 11, 12 auf. Die Höhe des Hohlraums 4 entspricht insbesondere der Dicke der Hauptschicht 10.

    [0036] Der Hohlraum 4 ist mit einem Gas gefüllt. Die Art des Gases hängt von einer Atmosphäre bei der Herstellung des Ableiters 1, insbesondere von einer Sinteratmosphäre beim Sintern der Schichten 10, 11, 12 ab. Beispielsweise wird unter Ausschluss von Sauerstoff gesintert. Beispielsweise können der Atmosphäre auch Halogenide zugesetzt sein. Beispielsweise enthält das Gas Stickstoff.

    [0037] In dem Hohlraum 4, insbesondere an den Seitenwänden der Hauptschicht 10, welche den Hohlraum 4 begrenzen, kann ferner ein Aktivierungsmaterial 5, beispielsweise Graphit, angeordnet sein. Durch das Aktivierungsmaterial 5 kann die Ausbildung eines Lichtbogens unterstützt werden. Das Aktivierungsmaterial 5 dient somit als Zündhilfe. Das Aktivierungsmaterial 5 kann als schmaler Streifen lediglich Teilbereiche der Seitenwände bedecken oder auch die kompletten Seitenwände des Hohlraums 4.

    [0038] Der Ableiter 1 weist ferner Innenelektroden 3 auf. Die Innenelektroden 3 sind jeweils auf der Deckschicht 12 und der Grundschicht 11 angeordnet. Somit stellen die Deckschicht 12 und die Grundschicht 11 Elektrodentragende Schichten dar. Beispielsweise weisen die Innenelektroden 3 Kupfer, Wolfram und/oder Nickel auf.

    [0039] Die Innenelektroden 3 verlaufen parallel zu den Schichten 10, 11, 12. In diesem Ausführungsbeispiel reichen die Innenelektroden 3 wechselseitig bis zu einem Seitenrand 7 des Grundkörpers 30. Das bedeutet, dass eine Innenelektrode 3 zu einem ersten Seitenrand 7 (rechter Seitenrand in Figur 1) geführt ist, während die betreffende Innenelektrode 3 nicht zu dem gegenüberliegenden zweiten Seitenrand 7 des Grundkörpers 30 reicht. Eine weitere Innenelektrode 3 reicht zu dem zweiten Seitenrand 7 (linker Seitenrand in Figur 1), nicht jedoch bis zu dem gegenüberliegenden ersten Seitenrand 7. Jedoch sind auch Innenelektroden 3 vorstellbar, die gar nicht bis an den Seitenrand 7 geführt sind, sondern als Leitelektroden für den Überschlag dienen (nicht explizit dargestellt).

    [0040] Die Innenelektroden 3 begrenzen den Hohlraum 4 nach oben oder unten. Dabei können die Innenelektroden 3 flächig ausgebildet sein, so dass sie den Hohlraum 4 von oben und/oder unten vollständig abdecken. Mit anderen Worten, die jeweilige Innenelektrode 3 kann die Schicht 11, 12 auf der sie angeordnet ist zumindest im Bereich des Hohlraums 4 vollständig bedecken. Alternativ dazu kann auch wenigstens eine der Innenelektroden 3 nur als schmale Linie ausgebildet sein und an einer Oberseite und/oder an einer Unterseite des Hohlraums 4 in den Hohlraum 4 ragen.

    [0041] Zum Anschließen der Innenelektroden 3 sind an den Stirnseiten des Grundkörpers 30 Außenelektroden 6, beispielsweise in Form von Metallkappen, angeordnet. Vorzugsweise weisen die Außenelektroden 6 Kupfer auf. Die Außenelektroden 6 sind in diesem Ausführungsbeispiel an den gegenüberliegenden Stirnseiten des Grundkörpers 30 angeordnet. Vorzugsweise sind die Außenelektroden 6 mittels Hartlötung auf den Grundkörper 30 angebracht. Die Innenelektroden 3 sind wechselseitig mit den Außenelektroden 6 verbunden zur Kontaktierung des Ableiters 1.

    [0042] Vorzugsweise ist der Ableiter 1 als SMD-Bauelement, d.h. als oberflächenmontierbares Bauelement, ausgebildet. Der Ableiter 1 ist beispielsweise zur Montage auf einer Leiterplatte ausgebildet.

    [0043] Die Figuren 3 und 4 zeigen einen Ableiter 1 zum Schutz vor Überspannungen gemäß einem zweiten Ausführungsbeispiel. Im Folgenden werden lediglich die Unterschiede zwischen den beiden Ausführungsbeispielen aufgezeigt.

    [0044] Im Gegensatz zu dem in den Figuren 1 und 2 dargestellten Ableiter 1 sind die Innenelektroden 3 beidseitig bis an den Seitenrand 7 des Grundkörpers 30 geführt. Mit anderen Worten, jede Innenelektrode 3 reicht an die beiden Seitenränder 7 des Grundkörpers 30. Damit kann alternativen Einbausituationen für den Ableiter 1 Rechnung getragen werden.

    [0045] In diesem Ausführungsbeispiel sind die Außenelektroden 6 nicht an den Stirnseiten des Grundkörpers 30 angeordnet zur Kontaktierung der Innenelektroden 3. Da die Innenelektroden 3 beidseitig bis an den Rand des Grundkörpers 30 ragen, sind die Außenelektroden 5 an den gegenüberliegenden Längsseiten bzw. Hauptflächen des Grundkörpers 30 ausgebildet. Insbesondere sind die Außenelektroden 6 in Form von Metallkappen von oben und unten auf den Grundkörper 30 aufgebracht. Dabei ragen die Außenelektroden 6 teilweise auf die Stirnseiten des Grundkörpers 30 zum Anschluss der Innenelektroden 3.

    [0046] Im Übrigen gelten die in Zusammenhang mit den Figuren 1 und 2 beschriebenen Merkmale auch für den Ableiter 1 gemäß der Figuren 3 und 4.

    [0047] Die Figuren 5 und 6 zeigen Verfahrensschritte bei der Herstellung eines Ableiters. Vorzugsweise wird das Verfahren ein Ableiter 1 gemäß der Figuren 1 bis 4 hergestellt.

    [0048] Zunächst werden drei Grünschichten 10, 11, 12 bereitgestellt. Die Schichten 10, 11, 12 weisen das gleiche Material auf. Für jede der Grünschichten 10, 11, 12 wird dabei wenigstens eine Folie bereitgestellt. Es handelt sich vorzugsweise um Grünfolien, beispielsweise keramische Grünfolien.

    [0049] Vorzugsweise weisen die Folien ein keramisches Pulver auf. Als keramisches Grundmaterial kommen dabei sämtliche Keramiken in Frage, deren Sintertemperatur unterhalb der Schmelztemperatur der verwendeten Elektrodenmaterialien (insbesondere Kupfer, Wolfram und/oder Nickel) liegt und welche nach der Sinterung eine ausreichende mechanische und elektrische Stabilität aufweisen. Alternativ dazu kommen auch glasgefüllte Folien in Betracht.

    [0050] Es können auch mehrere Folien für jede Schicht 10, 11, 12 bereitgestellt werden. Aus mehreren ersten Folien wird vorzugsweise die erste Schicht 10 oder Hauptschicht 10 des Ableiters 1 gebildet. Aus mehreren zweiten Folien wird vorzugsweise die zweite Schicht 11 oder Grundschicht 11 des Ableiters 1 gebildet. Aus mehreren dritten Folien wird vorzugsweise die dritte Schicht 12 oder Deckschicht 12 des Ableiters 1 gebildet. Die Anzahl der verwendeten Folien hängt von der Dicke der Folien und von den geforderten Eigenschaften des Ableiters 1 ab. Beispielsweise kann die Hauptschicht 10 bis zu 20 Folien oder mehr mit einer Dicke von beispielsweise jeweils 40 µm aufweisen.

    [0051] Danach wird wenigstens ein Loch 4 in die erste Schicht 10 eingebracht, beispielsweise durch Lasern oder Stanzen. Das Loch 4 ist dazu vorgesehen den späteren Gasinnenraum zu bilden. Das Loch 4 durchdringt die erste Schicht 10 und insbesondere die Vielzahl der Folien der ersten Schicht 10 vollständig.

    [0052] In einem optionalen Schritt kann ein Aktivierungsmaterial 5 in das Loch 4 eingebracht werden. Dabei wird beispielsweise eine Graphitpaste an die Seitenwände der ersten Schicht 10, welche das Loch 4 begrenzen, eingebracht.

    [0053] Alternativ dazu kann das Aktivierungsmaterial 5 auch bereits beim Aufbau der ersten Schicht 10 vor dem Erzeugen des Lochs 4 eingebracht werden. Insbesondere kann das Aktivierungsmaterial 5 in diesem Fall zwischen einzelne Folien der ersten Schicht 10 eingebracht werden. Beim Ausbilden des Lochs 4 ersteht in diesem Fall ein Ring aus Aktivierungsmaterial 5 an den Wänden des Lochs 4.

    [0054] Auf die zweite Schicht 11 und die dritte Schicht 12 wird nun ein elektrisch leitfähiges Material 13, insbesondere eine Metallpaste, zur Ausbildung von Innenelektroden 3 aufgebracht. Das Material 13 wird auf einer Außenfläche 11a, 12a der jeweiligen Schicht 11, 12 aufgebracht. Das Material 13 wird vorzugsweise auf die zweite und dritte Schicht 11, 12 aufgedruckt, z.B. mittels Siebdruck. Das elektrisch leitfähige Material 13 kann beispielsweise Kupfer, Wolfram oder Nickel aufweisen.

    [0055] Das Bedrucken erfolgt in Form bestimmter Muster. Das elektrisch leitfähige Material 13 kann beispielsweise als ein durchgehender Streifen aufgebracht werden. Die Bedruckungsmuster sind so gewählt, dass die Metallbereiche nach einem späteren Vereinzeln des Stapels zumindest teilweise an den Seitenrand 7 ragen und so einer elektrischen Kontaktierung von außen zugänglich sind. Ferner sind die Bedruckungsmuster so gewählt, dass das wenigstens ein Loch 4 in der ersten Schicht 10 beidseits, also von oben und unten, mit dem elektrisch leitfähigen Material 13 bedeckt ist.

    [0056] Anschließend werden die zweite Schicht 11 und die dritte Schicht 12 mit der bedruckten Außenfläche 11a, 12a nach innen auf die erste Schicht 10 zu einem Stapel 20 laminiert (siehe Figur 6). Das Laminieren erfolgt dabei im grünen Zustand der Schichten bei Druck und mäßiger Temperatur. Beispielsweise erfolgt das Laminieren bei einer Temperatur von 80°C bis 100°C.

    [0057] In einem weiteren Schritt werden die keramischen Grünstapel 20 in Einzelbauteile 30 (Grundkörper 30) getrennt. Dies erfolgt beispielsweise mittels Cutten oder Sägen. Die Einzelbauteile 30 werden anschließend unter definierter Temperatur und Atmosphäre in einem einzigen Schritt verdichtet. Weisen die Schichten 10, 11, 12 eine Keramik auf, so werden die Einzelbauteile 30 in diesem Schritt unter definierter Temperatur und Atmosphäre entbindert und gesintert.

    [0058] Vorzugsweise wird unter Ausschluss von Sauerstoff gesintert. Die Sintertemperatur ist dabei abhängig von dem verwendeten Material und kann zwischen 900°C und 1200°C liegen. Werden glasgefüllte Folien verwendet, wird der Verdichtungsschritt nicht über Sintern, sondern über einen Glasübergang realisiert. Dabei wird das Einzelbauteil 30 einer niedrigeren Temperatur ausgesetzt, als beim Sintern.

    [0059] In einem letzten Schritt erfolgt das Aufbringen einer Metallpaste auf wenigstens einen Teilbereich der Außenfläche des jeweiligen Einzelbauteils 30. Abhängig von der Ausgestaltung der Innenelektroden 3 kann die Metallpaste auf die Stirnflächen oder die Hauptflächen des jeweiligen Einzelbauteils 30 aufgebracht werden (siehe Figuren 1 bis 4). Die Metallpaste wird anschließend eingebrannt zur Ausbildung der Außenelektroden 6. Art und Geometrie der Außenelektroden 6 sind so gewählt, dass ein oberflächenmontierbares Bauteil ähnlich einem Vielschichtkondensator (MLLC) entsteht.

    [0060] Das Laminieren der Schichten 10, 11, 12, das Verdichten der Einzelbauteile 30 und das Einbrennen erfolgen dabei in einem einzigen Temperaturprozess durch Co-Firing. Weitere Temperaturprozesse, die das Verfahren verkomplizieren, sind überflüssig.

    [0061] Der Vorteil gegenüber herkömmlichen Gasableitern besteht darin, dass keine Einzelelemente sondern Vielfach-Anordnungen zu bearbeiten sind. Dies ermöglicht einen hohen Automatisierungsgrad sowie die Herstellung von sehr kleinen, miniaturisierten Bauformen. Der Aufbau mittels einzelner Folien erlaubt es ferner die Innenelektroden 3 frei anzuordnen. So ist eine Kombination von flächiger Innenelektrode 3 und Elektroden, die nur als schmale Linie in das Loch 4 ragen, möglich.

    [0062] Auch Elektroden, die nicht nach außen an die Seitenränder 7 geführt sind, und als Leitelektroden für den Überschlag dienen, sind möglich.

    [0063] Die Beschreibung der hier angegebenen Gegenstände ist nicht auf die einzelnen speziellen Ausführungsformen beschränkt. Vielmehr können die Merkmale der einzelnen Ausführungsformen - soweit technisch sinnvoll - dem Umfang der Ansprüche entsprechend miteinander kombiniert werden.

    Bezugszeichenliste



    [0064] 
    1
    Ableiter
    3
    Innenelektrode
    4
    Hohlraum / Loch
    5
    Aktivierungsmaterial
    6
    Außenelektrode
    7
    Seitenrand
    10
    Erste Schicht / Hauptschicht
    11
    Zweite Schicht / Grundschicht
    11a
    Außenfläche
    12
    Dritte Schicht / Deckschicht
    12a
    Außenfläche
    13
    Elektrisch leitfähiges Material
    20
    Stapel
    30
    Einzelbauteil / Grundkörper



    Ansprüche

    1. Verfahren zur Herstellung eines Ableiters (1), aufweisend die Schritte:

    - Bereitstellen von wenigstens drei Grünschichten (10, 11, 12), wobei die jeweilige Schicht (10, 11, 12) wenigstens eine Grünfolie aufweist,

    - Einbringen wenigstens eines Lochs (4) in eine erste der drei Schichten (10),

    - Aufbringen eines elektrisch leitfähigen Materials (13) zur Ausbildung von Innenelektroden (3) auf eine zweite ; der drei Schichten (11) und eine dritte der drei Schichten (12),

    - Laminieren der Schichten (10, 11, 12) zu einem Stapel (20), wobei die erste Schicht (10) zwischen der zweiten Schicht (11) und der dritten Schicht (12) angeordnet wird,

    - Trennen des Grünstapels (20) in Einzelbauteile (30),

    - Verdichten der Einzelbauteile (30),
    wobei das Laminieren der Schichten (10, 11, 12) und das Verdichten der Einzelbauteile (30) in einem einzigen Temperaturprozess durch Co-Firing erfolgen.


     
    2. Verfahren nach Anspruch 1,
    aufweisend den weiteren Schritt

    - Aufbringen einer Metallpaste auf wenigstens einen Teilbereich der Außenfläche des jeweiligen Einzelbauteils (30) und Einbrennen der Metallpaste zur Ausbildung wenigstens einer Außenelektrode (6).


     
    3. Verfahren nach Anspruch 1 oder 2,
    wobei die Schichten (10, 11, 12) die gleiche Materialzusammensetzung aufweisen.
     
    4. Verfahren nach einem der vorangehenden Ansprüche,
    wobei die Schichten (10, 11, 12) ein keramisches Material aufweisen.
     
    5. Verfahren nach Anspruch 4,
    wobei das Verdichten der Einzelbauteile (30) mittels Entbindern und Sintern der Einzelbauteile (30) unter definierter Temperatur und Atmosphäre erfolgt.
     
    6. Verfahren nach einem der vorangehenden Ansprüche,
    wobei die Schichten (10, 11, 12) Glas aufweisen.
     
    7. Verfahren nach Anspruch 6,
    wobei das Verdichten der Einzelbauteile (30) über einen Glasübergang erfolgt.
     
    8. Verfahren nach einem der vorangehenden Ansprüche,
    wobei das elektrisch leitfähige Material (13) in einem vorbestimmten Muster auf eine Außenfläche (11a, 12a) der zweiten Schicht (11) und der dritten Schicht (12) aufgebracht wird, und wobei die zweite Schicht (11) und die dritte Schicht (12) mit der bedruckten Außenfläche (11a, 12a) nach Innen auf die erste Schicht (10) zu dem Stapel (20) laminiert werden.
     
    9. Verfahren nach Anspruch 8,
    wobei das Muster so gewählt ist, das das wenigstens eine Loch (4) in der ersten Schicht (10) beidseits zumindest teilweise mit dem elektrisch leitfähigen Material (13) bedeckt ist.
     
    10. Verfahren nach einem der vorangehenden Ansprüche,
    wobei das Aufbringen des elektrisch leitfähigen Materials (13) auf die zweite Schicht (11) und die dritte Schicht (12) mittels Siebdruck erfolgt.
     
    11. Verfahren nach einem der vorangehenden Ansprüche,
    wobei das elektrisch leitfähige Material (13) nach dem Vereinzeln an wenigstens einen Seitenrand (7) des jeweiligen Einzelbauteils (30) ragt.
     
    12. Verfahren nach einem der vorangehenden Ansprüche, aufweisend den weiteren Schritt

    - Bereitstellen eines Aktivierungsmaterials (5) in der ersten Schicht (10), wobei das Aktivierungsmaterial (5) zumindest teilweise in dem Loch (4) angeordnet ist.


     
    13. Ableiter (1) zum Schutz vor Überspannungen, aufweisend mehrere übereinander angeordnete Schichten (10, 11, 12) und wenigstens einen Hohlraum (4), der durch wenigstens eine Schicht (10) führt, wobei der Ableiter (1) Innenelektroden (3) aufweist, die an den Hohlraum (4) angrenzen und wobei der Ableiter (1) durch ein Verfahren nach einem der Ansprüche 1 bis 12 hergestellt ist.
     
    14. Ableiter (1) nach Anspruch 13,
    wobei die Schichten (10, 11, 12) eine Deckschicht (12) und eine Grundschicht (11) aufweisen, die den Hohlraum (4) nach unten und oben begrenzen, und wobei die Innenelektroden (3) auf der Deckschicht (12) und der Grundschicht (11) angeordnet sind.
     
    15. Ableiter (1) nach Anspruch 13 oder 14,
    wobei die Schichten (10, 11, 12) ein keramisches Material und/oder Glas aufweisen.
     
    16. Ableiter (1) nach einem der Ansprüche 13 bis 15,
    wobei die Elektroden (3) flächig ausgebildet sind und den Hohlraum (4) nach unten und oben vollständig abdecken.
     


    Claims

    1. Method for producing an arrester (1), comprising the steps of:

    - providing at least three green layers (10, 11, 12), wherein the respective layer (10, 11, 12) comprises at least one green sheet,

    - introducing at least one hole (4) into a first of the three layers (10),

    - applying an electrically conductive material (13) for forming inner electrodes (3) to a second of the three layers (11) and a third of the three layers (12),

    - laminating the layers (10, 11, 12) to form a stack (20), wherein the first layer (10) is arranged between the second layer (11) and the third layer (12),

    - separating the green stack (20) into individual components (30),

    - compacting the individual components (30),
    wherein the lamination of the layers (10, 11, 12) and the compaction of the individual components (30) are effected in a single temperature process by co-firing.


     
    2. Method according to Claim 1,
    comprising the further step of

    - applying a metal paste to at least a partial region of the outer face of the respective individual component (30) and firing the metal paste for forming at least one outer electrode (6) .


     
    3. Method according to Claim 1 or 2,
    wherein the layers (10, 11, 12) have the same material composition.
     
    4. Method according to one of the preceding claims,
    wherein the layers (10, 11, 12) comprise a ceramic material.
     
    5. Method according to Claim 4,
    wherein the individual components (30) are compacted by means of debindering and sintering of the individual components (30) under a defined temperature and atmosphere.
     
    6. Method according to one of the preceding claims, wherein the layers (10, 11, 12) comprise glass.
     
    7. Method according to Claim 6,
    wherein the individual components (30) are compacted by way of a glass transition.
     
    8. Method according to one of the preceding claims,
    wherein the electrically conductive material (13) is applied in a predetermined pattern to an outer face (11a, 12a) of the second layer (11) and of the third layer (12), and wherein the second layer (11) and the third layer (12) are laminated with the printed outer face (11a, 12a) inward onto the first layer (10) to form the stack (20).
     
    9. Method according to Claim 8,
    wherein the pattern is chosen in such a way that the at least one hole (4) in the first layer (10) is covered at least partially on both sides with the electrically conductive material (13).
     
    10. Method according to one of the preceding claims,
    wherein the electrically conductive material (13) is applied to the second layer (11) and the third layer (12) by means of screen printing.
     
    11. Method according to one of the preceding claims,
    wherein, after the singulation, the electrically conductive material (13) protrudes at at least one side edge (7) of the respective individual component (30) .
     
    12. Method according to one of the preceding claims, comprising the further step of

    - providing an activation material (5) in the first layer (10), wherein the activation material (5) is arranged at least partially in the hole (4).


     
    13. Arrester (1) for protecting against overvoltages, comprising a plurality of layers (10, 11, 12) arranged one above another, and at least one cavity (4) which leads through at least one layer (10), wherein the arrester (1) comprises inner electrodes (3), which adjoin the cavity (4), and wherein the arrester (1) is produced by a method according to one of Claims 1 to 12.
     
    14. Arrester (1) according to Claim 13,
    wherein the layers (10, 11, 12) comprise a cover layer (12) and a base layer (11), which delimit the cavity (4) toward the bottom and top, and wherein the inner electrodes (3) are arranged on the cover layer (12) and the base layer (11).
     
    15. Arrester (1) according to Claim 13 or 14,
    wherein the layers (10, 11, 12) comprise a ceramic material and/or glass.
     
    16. Arrester (1) according to one of Claims 13 to 15,
    wherein the electrodes (3) have an areal form and completely cover the cavity (4) toward the bottom and top.
     


    Revendications

    1. Procédé de fabrication d'un parafoudre (1), comprenant les étapes suivantes :

    - fourniture d'au moins trois couches d'ébauche (10, 11, 12), la couche (10, 11, 12) respective possédant au moins un film d'ébauche,

    - introduction d'au moins un trou (4) dans une première des trois couches (10),

    - application d'un matériau électriquement conducteur (13) en vue de former des électrodes internes (3) sur une deuxième des trois couches (11) et une troisième des trois couches (12),

    - stratification des couches (10, 11, 12) en une pile (20), la première couche (10) étant disposée entre la deuxième couche (11) et la troisième couche (12),

    - séparation de la pile d'ébauche (20) en composants individuels (30),

    - compactage des composants individuels (30),
    la stratification des couches (10, 11, 12) et le compactage des composants individuels (30) s'effectuant dans un processus thermique unique par cofrittage.


     
    2. Procédé selon la revendication 1, comprenant l'étape supplémentaire

    - application d'une pâte métallique sur au moins une zone partielle de la surface extérieure du composant individuel (30) respectif et cuisson de la pâte métallique en vue de former au moins une électrode externe (6).


     
    3. Procédé selon la revendication 1 ou 2, les couches (10, 11, 12) possédant la même composition de matériaux.
     
    4. Procédé selon l'une des revendications précédentes, les couches (10, 11, 12) possédant un matériau céramique.
     
    5. Procédé selon la revendication 4, le compactage des composants individuels (30) s'effectuant par élimination du liant et frittage des composants individuels (30) sous une température et une atmosphère définies.
     
    6. Procédé selon l'une des revendications précédentes, les couches (10, 11, 12) possédant du verre.
     
    7. Procédé selon la revendication 6, le compactage des composants individuels (30) s'effectuant par le biais d'une transition vitreuse.
     
    8. Procédé selon l'une des revendications précédentes, le matériau électriquement conducteur (13) étant appliqué en un modèle prédéterminé sur une surface externe (11a, 12a) de la deuxième couche (11) et de la troisième couche (12), et la deuxième couche (11) et la troisième couche (12) pourvues de la surface externe (11a, 12a) imprimée étant stratifiées vers l'intérieur sur la première couche (10) pour former la pile (20).
     
    9. Procédé selon la revendication 8, le modèle étant choisi de telle sorte que l'au moins un trou (4) dans la première couche (10) est recouvert des deux côtés au moins partiellement par le matériau électriquement conducteur (13).
     
    10. Procédé selon l'une des revendications précédentes, l'application du matériau électriquement conducteur (13) sur la deuxième couche (11) et la troisième couche (12) s'effectuant par sérigraphie.
     
    11. Procédé selon l'une des revendications précédentes, le matériau électriquement conducteur (13), après la séparation, faisant saillie au niveau d'un bord latéral (7) du composant individuel (30) respectif.
     
    12. Procédé selon l'une des revendications précédentes, comprenant l'étape supplémentaire de

    - fourniture d'un matériau d'activation (5) dans la première couche (10), le matériau d'activation (5) étant au moins partiellement disposé dans le trou (4).


     
    13. Parafoudre (1) destiné à la protection contre les surtensions, comprenant plusieurs couches (10, 11, 12) disposées les unes au-dessus des autres et au moins un espace creux (4) qui passe à travers au moins une couche (10), le parafoudre (1) possédant des électrodes internes (3) qui sont adjacentes à l'espace creux (4) et le parafoudre (1) étant fabriqué par un procédé selon l'une des revendications 1 à 12.
     
    14. Parafoudre (1) selon la revendication 13, les couches (10, 11, 12) possédant une couche de recouvrement (12) et une couche de base (11), qui délimitent l'espace creux (4) vers le bas et le haut, et les électrodes internes (3) étant disposées sur la couche de recouvrement (12) et la couche de base (11).
     
    15. Parafoudre (1) selon la revendication 13 ou 14, les couches (10, 11, 12) possédant un matériau céramique et/ou du verre.
     
    16. Parafoudre (1) selon l'une des revendications 13 à 15, les électrodes (3) étant de configuration plate et recouvrant entièrement l'espace creux (4) vers le bas et le haut.
     




    Zeichnung














    Angeführte Verweise

    IN DER BESCHREIBUNG AUFGEFÜHRTE DOKUMENTE



    Diese Liste der vom Anmelder aufgeführten Dokumente wurde ausschließlich zur Information des Lesers aufgenommen und ist nicht Bestandteil des europäischen Patentdokumentes. Sie wurde mit größter Sorgfalt zusammengestellt; das EPA übernimmt jedoch keinerlei Haftung für etwaige Fehler oder Auslassungen.

    In der Beschreibung aufgeführte Patentdokumente