(19)
(11) EP 2 831 418 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
14.10.2020 Bulletin 2020/42

(21) Application number: 12872798.9

(22) Date of filing: 28.03.2012
(51) International Patent Classification (IPC): 
F04B 9/06(2006.01)
F04C 2/16(2006.01)
F04C 14/08(2006.01)
F04C 14/28(2006.01)
F04C 2/12(2006.01)
(86) International application number:
PCT/US2012/030893
(87) International publication number:
WO 2013/147761 (03.10.2013 Gazette 2013/40)

(54)

SYSTEM AND METHOD FOR MONITORING AND CONTROL OF CAVITATION IN POSITIVE DISPLACEMENT PUMPS

SYSTEM UND VERFAHREN ZUR ÜBERWACHUNG UND STEUERUNG VON HOHLRAUMBILDUNGEN IN VERDRÄNGERPUMPEN

SYSTÈME ET PROCÉDÉ POUR SURVEILLER ET COMMANDER LA CAVITATION DANS DES POMPES VOLUMÉTRIQUES


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(43) Date of publication of application:
04.02.2015 Bulletin 2015/06

(73) Proprietor: CIRCOR Pumps North America, LLC
Monroe NC 28110 (US)

(72) Inventor:
  • YIN, Dan
    Waxhaw, North Carolina 28173 (US)

(74) Representative: Murgitroyd & Company 
Murgitroyd House 165-169 Scotland Street
Glasgow G5 8PL
Glasgow G5 8PL (GB)


(56) References cited: : 
WO-A2-2009/024769
US-A1- 2002 123 856
US-B1- 6 663 349
US-A- 5 601 414
US-A1- 2002 123 856
US-B1- 6 663 349
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description

    Field of the Disclosure



    [0001] The disclosure is generally related to the field of monitoring systems for machinery, and more particularly to an improved system and method for monitoring pump cavitation and for controlling pump operation based on such monitoring.

    Background of the Disclosure



    [0002] The condition of rotating machinery is often determined using visual inspection techniques performed by experienced operators. Failure modes such as cracking, leaking, corrosion, etc. can often be detected by visual inspection before failure is likely. The use of such manual condition monitoring allows maintenance to be scheduled, or other actions to be taken, to avoid the consequences of failure before the failure occurs. Intervention in the early stages of deterioration is usually much more cost effective than undertaking repairs subsequent to failure. Patent publications US 5 601 414 A showing a control logic for sensing abnormal pressure conditions by a pressure sensing device and for modifying pump operation based thereon, US 6 663 349 B1 showing a pump control system making use of a cavitation system of a cavitation detection component, US 2002/123856 A1 showing a cavitation monitoring system with a user alert functionality and WO 2009/024769 A2 showing a system for improving efficiency of a pump by controlling operation of the pump provide information useful for understanding the invention.

    [0003] One downside to manual monitoring is that typically it is only performed periodically. Thus, if an adverse condition arises between inspections, machinery failure can occur. It would be desirable to automate the condition monitoring process to provide a simple and easy-to-use system that provides constant monitoring of one or more machinery conditions. Such a system has the potential to enhance operation, reduce downtime and increase energy efficiency.

    Summary of the Disclosure



    [0004] A system is disclosed for monitoring and controlling a positive displacement pump according to claim 1.

    [0005] A method is disclosed for monitoring and controlling a positive displacement pump according to claim 10.

    Brief Description of the Drawings



    [0006] By way of example, a specific embodiment of the disclosed device will now be described, with reference to the accompanying drawings:

    FIG. 1 is an isometric view of an exemplary pump including a plurality of condition monitoring sensors mounted thereon;

    FIG. 2 is a cross-section view of the pump of FIG. 1, taken along line 2-2 of FIG. 1, illustrating the position of the plurality of sensors mounted in relation to the pump's power rotor bore;

    FIG. 3 is a schematic of the disclosed system;

    FIG. 4 is a cross-section view of an exemplary positive displacement gear pump;

    FIG. 5 is a schematic of the system of FIG. 3 expanded to include remote monitoring and control; and

    FIG. 6 is an exemplary logic flow illustrating an exemplary method for using the disclosed system.


    Detailed Description



    [0007] In positive displacement screw pumps, pressure is developed from the inlet or suction port of the pump to the outlet or discharge port in stage-to-stage increments. Each stage is defined as a moving-thread closure or isolated volume formed by the meshing of pump rotors between the inlet and outlet ends of the pump. Pressure is developed along the moving-thread closures as liquid progresses through the pump. The number of closures is usually proportional to the desired level of outlet pressure delivered, i.e., the greater the pressure, the greater the number of closures necessary. The closures enable the pump to develop an internal pressure gradient of progressively increasing pressure increments. Properly applied, a rotary axial-screw pump can be used to pump a broad range of fluids, from high-viscosity liquids to relatively light fuels or water/oil emulsions.

    [0008] When entrained or dissolved gas exist in solution within the pump, the normal progression of pressure gradient development can be disrupted, adversely affecting pump performance. If large quantities of gas become entrained in the pumped liquid, the internal pumping process may become unsteady and the internal pressure gradient can be lost. The pump may also vibrate excessively, leading to noise and excessive wear.

    [0009] This condition is synonymous with a phenomenon known as "cavitation." Cavitation usually occurs when the pressure of a fluid drops below its vapor pressure, allowing gas to escape from the fluid. When the pump exerts increasing pressure on a gaseous liquid, unstable stage pressures result, leading to collapse of the gas bubbles in the pump's delivery stage.

    [0010] Traditional cavitation detection has been through the ascertaining of audible noise, reduced flow rate, and/or increased pump vibration. As can be appreciated, by the time these circumstances can be detected, significant changes in pump operations may have occurred. As a result, it can be too late to protect the pump from internal damage. For example, where the pump is unable to develop a normal pressure gradient from suction to discharge, the total developed pressure may occur in or near the last closure. This can upset normal hydrodynamic support of the idler rotors, which can lead to metal-to-metal contact with consequential damage to the pump.

    [0011] Knowledgeable application and conservative ratings are traditional protection against these conditions. However, when pumping liquids with unpredictable characteristics or uncontrolled gas content, as is often the case, frequent monitoring of pump operations with attendant labor and other costs is required to maintain normal operation. Traditional means of detecting cavitation and other operating instabilities have been found particularly unsuitable where the pump is expected to provide long reliable service at a remote unattended installation, and under extreme environmental conditions.

    [0012] Referring now to the drawings, FIGS. 1 and 2 an intelligent cavitation monitoring system 1 mounted to an exemplary pump 2, which in this embodiment is a screw-pump. The system 1 includes a plurality of pressure sensors mounted at appropriate locations throughout the pump 2. These sensors include a suction pressure transducer 4, an interstage pressure transducer 6, and a discharge pressure transducer 8. The suction and discharge pressure sensors 4, 8 are separated by a distance "L" while the suction and interstage pressure sensors 4, 6 are separated by a distance "Li". As will be described in more detail later, the suction pressure sensor 4 can provide a signal representative of the suction pressure "Ps" to the system 1, the interstage pressure sensor can provide a signal representative of an interstage pressure "Pi" to the system 1, and the discharge pressure sensor can provide a signal representative of the discharge pressure "Pd" to the system 1. The system 1, in turn, can employ these signals to determine whether an undesirable cavitation condition exists in the pump 2.

    [0013] FIG. 3 shows the system 1 including a controller 28 coupled to the pressure sensors 4, 6, 8 via a communications link 30. Thus, the sensors 4, 6, 8 may send signals to controller 28 representative of pressure conditions at multiple locations within the pump 2, as previously noted. The controller 28 may have a processor 32 executing instructions for determining, from the received signals, whether the one or more operating conditions of the pump 2 are within normal or desired limits. A non-volatile memory 34 may be associated with the processor 32 for storing program instructions and/or for storing data received from the sensors. A display 36 may be coupled to the controller 28 for providing local and/or remote display of information relating to the condition of the pump 2. An input device 38, such as a keyboard, may be coupled to the controller 28 to allow a user to interact with the system 1.

    [0014] The communications link 30 is illustrated as being a hard wired connection. It will be appreciated, however, that the communications link 30 can be any of a variety of wireless or hard-wired connections. For example, the communication link 30 can be a Wi-Fi link, a Bluetooth link, PSTN (Public Switched Telephone Network), a cellular network such as, for example, a GSM (Global System for Mobile Communications) network for SMS and packet voice communication, General Packet Radio Service (GPRS) network for packet data and voice communication, or a wired data network such as, for example, Ethernet/Internet for TCP/IP, VOIP communication, etc.

    [0015] Communications to and from the controller can be via an integrated server that enables remote access to the controller 28 via the Internet. In addition, data and/or alarms can be transferred thru one or more of e-mail, Internet, Ethernet, RS-232/422/485, CANopen, DeviceNet, Profitbus, RF radio, Telephone land line, cellular network and satellite networks.

    [0016] As previously noted, the sensors coupled to the pump 2 can be used to measure a wide variety of operational characteristics of the pump. These sensors can output signals to the controller 28 representative of those characteristics, and the controller 28 can process the signals and present outputs to a user. In addition, or alternatively, the output information can be stored locally and/or remotely. This information can be used to track and analyze operational characteristics of the pump over time.

    [0017] For example, the suction, interstage, and discharge pressure sensors 4, 6, 8 may provide signals to the controller 28 that the controller can use to determine if an undesirable cavitation condition exists at one or more locations within the pump 2. Under normal operation, if a positive displacement pump does not experience cavitation, or does not have excess gas bubbles passing there through, the discharge pressure Pd, interstage pressure Pi and suction pressure Ps will indicate a certain desired pressure gradient at any given time. If, however, the pump experiences undesired cavitation, the desired pressure gradient will not be able to be maintained. In particular, the interstage pressure Pi may decrease. In addition, if excess gas bubbles pass through the pump, the interstage pressure Pi will not only decrease, it will also fluctuate.

    [0018] If the location of the interstage pressure sensor 6 is located at Li distance from the location of the suction pressure sensor 4 (see FIG. 2), and the distance between the suction pressure sensor 4 and the discharge pressure sensor 8 is L, then under normal operation conditions the following relationship exists:

    where, as previously noted, Pi is the interstage pressure; Ps is the suction pressure; Pd is the discharge pressure, and R is a ratio that indicates a severity level of cavitation in the pump 2.

    [0019] While FIG. 2 shows the relative locations of the sensors 4, 6, 8 in relation to an exemplary positive displacement screw pump 2, FIG. 4 shows where suction, interstage and discharge pressure sensors 4, 6, 8 may be positioned in an exemplary positive displacement gear pump 2A. In the gear pump 2A embodiment, the interstage pressure sensor 6 may again be located at Li distance from the location of the suction pressure sensor 4, while the distance between the suction pressure sensor 4 and the discharge pressure sensor 8 may be L. The previously described ratio R again applies as a ratio indicating a severity level of cavitation in the pump 2A. Similar arrangements in other positive displacement pumps can be used such as progressive cavity pumps, (i.e., rotary vane pumps, internal gear pumps, external gear pumps, vane, geared screw pumps).

    [0020] Once the locations of the pressure measuring components are determined, a target cavitation severity level RT is also determined, using the following relationship:



    [0021] It will be appreciated that if the interstage pressure sensor 6 is positioned half way between the suction pressure sensor 4 and the discharge pressure sensor 8, then RT will be 0.5 or 50%. In such a case, when the system is in operation, an actual cavitation severity level Ra can be determined by:



    [0022] If the suction pressure Ps is assumed to be 0, or if the suction pressure Ps is much smaller than the interstage pressure Pi and the discharge pressure Pd, (i.e. 5% or less of the discharge pressure), then the actual cavitation severity level Ra can be simplified to:



    [0023] This simplified relationship only utilizes two pressure measuring components, one for measuring discharge pressure (Pd), and the other is used for measuring interstage pressure (Pi).

    [0024] As previously noted, when a pump 2 cavitates, or gas bubbles pass thru the pump, the pressure gradient between suction and discharge can no longer be maintained, and interstage pressure Pi will always decrease. Therefore, a decreasing actual cavitation severity level Ra will be observed where the cavitation condition continues to deteriorate. The disclosed system 1 enables a user to input an application based cavitation severity level Ru, which is smaller than system's target level RT. The actual cavitation severity level Ra is then compared to the application based cavitation severity level Ru, and if Ra is determined to be lower than the defined Ru level, the system identifies the cavitation level as being at an unacceptable level for the application. The lower the Ru value, the more severe the cavitation a pump is allowed to experience. In some embodiments, Ru may be selected to be a value that corresponds to a cavitation level that involves no obvious noises and/or vibration.

    [0025] The system 1 acquires the pressure signals from the sensors 4, 6, 8 and converts them to digital values for further computation. The actual system's cavitation severity ratio Ra can then be calculated according to formula (3) or (4). In some embodiments, multiple samples may be obtained for a given sampling cycle to obtain an average reading to make sure the value is stable and substantially free of the effects of pressure fluctuation caused by gear teeth or screw ridges. The value Ra can then be compared with target level RT as well as the user input cavitation severity level Ru.

    [0026] In some embodiments, the speed of the pump 2 may be automatically adjusted based on this comparison. Thus, pump speed 2 may be automatically increased or decreased based on the calculated actual severity level Ra. For example, if Ra is equal to, or within a predetermined range of, the user's application based severity level Ru, then a current operation condition of the pump can be maintained. In some embodiments, this range may be about 5%. This is because even if the severity level indicates that the pump 2 is cavitating, the level of cavitation has been determined by the user to be acceptable for the particular application.

    [0027] If, however, Ra is determined to be larger than user's application based level Ru, the speed of the pump 2 may be increased until Ra is equal to, or within a predetermined range of, the user's application based level Ru. Alternatively, if Ra is smaller than user's application based level Ru, the speed of the pump may be decreased until Ra is equal to, or within a predetermined range of, the user's application based level Ru. In some embodiments, this range may be about 5%.

    [0028] The user may also choose to change pump speed or to stop the pump 2 based on Ru, RT and the calculated value for Ra. For example, the user may configure the system 1 so that the pump is stopped whenever Ra is less than application based level Ru. Other predetermined stop levels may also be used.

    [0029] In some embodiments, an absolute lower limit of the cavitation severity level RL can be defined in order to prevent the pump from cavitation damage. Thus, RL may be defined to correspond to a cavitation level at which noise and/or vibration may cause damage to the pump. Thus, the application based severity level Ru will typically be between RL and RT. As such, whenever calculated actual severity level Ra is below RL, the pump will be stopped to prevent further damage.

    [0030] The system 1 may store a plurality of historical actual level Ra values in memory 34. A standard deviation RSTD of these historical levels can be calculated to determine if changes in the historical levels exceed a certain amount RB. This value RB can be used as an indicator that gas bubbles are passing through the pump 2. The value of RB can be user adjustable based on the particular application. In use, if a calculated standard deviation RSTD exceeds the predetermined value for RB, the user can choose from a variety of action, increasing pump speed, deceasing pump speed, or stopping the pump.

    [0031] Ra and other system information can also be sent out for external use, controls, and/or making other decisions. In some embodiments, this information can be used to increase or decrease pump flow rate, or to prompt a user to modify Ra or another system parameter. This data can also be used for long term operational and maintenance trending purposes, which can be used to predict and/or optimize maintenance schedules. The data can also be used to identify fluid characteristic changes or process changes that may be causing the pump to cavitate.

    [0032] FIG. 5 shows an embodiment of the system 1 that facilitates remote access of measured and/or calculated parameters. As shown, the system 1 includes pump 2 with a plurality of sensors coupled to a controller 28 via a plurality of individual communications links 30. The controller 28 includes a local display 36 and keyboard 38. In the illustrated embodiment, the display and keyboard are combined into a touch screen format, which can include one or more "hard" keys, as well as one or more "soft" keys. The controller 28 of this embodiment is coupled to a modem 40 which enables a remote computer 42 to access the controller 28. The remote computer 42 may be used to display identical information to that displayed locally at the controller 28. The modem 40 may enable the controller 28 to promulgate e-mail, text messages, and pager signals to alert a user about the condition of the pump 2 being monitored. In some embodiments, one or more aspect of the operation of the pump 2 may also be controlled via the remote computer 42.

    [0033] FIG. 6 illustrates an exemplary logic flow describing a method for monitoring cavitation in a positive displacement pump 2 and for controlling pump operation based on such monitoring. The method begins at step 100. At step 110, a plurality of samples of discharge pressure are obtained, and an average discharge pressure Pd value is determined. The number of samples, or sampling rate, can be determined based on the number teeth (or number of screw ridges) (T) of the pump screw(s) or gears, and an actual operating speed (V) (rpm) of the pump. In some embodiments, the sampling rate is selected to be larger than the frequency of pulses caused by the passing teeth (or screw ridges), which in one embodiment is calculated according to the formula: T*V/60 (Hz). At step 120, a plurality of samples of interstage pressure are obtained, and an average interstage pressure value Pi is determined. At step 130, a plurality of samples of suction pressure are obtained, and an average suction pressure value Ps is determined. At step 140, an actual cavitation severity level Ra is determined. In one embodiment, Ra is determined according to formula (3) or (4). At step 150, a target cavitation severity level RT is determined. In one embodiment, RT is determined according to formula (2). At step 160, stored values of an application cavitation severity level Ru and a cavitation severity low limit RL are read from memory. In one embodiment, Ru and RL are input by a user depending upon a particular application of the pump. At step 170, a determination is made as to whether control is enabled. When control is enabled, whenever the actual cavitation severity level Ra drops below the application based cavitation severity level Ru, the system will change the pump speed, and will then determine whether the cavitation condition improves (i.e., whether Ra raises above Ru). Often, the pump speed will be reduced in order to improve the pump operation. When control is not enabled, the system will simply generate alarms when the actual cavitation severity level Ra drops below the application based cavitation severity level Ru. If control is not enabled, then at step 180, the sampled and calculated values from steps 110-150 are stored in memory and are sent through communication ports for alarm notification purposes. The method then returns to step 110. If control is determined to be enabled, then at step 190, a determination is made as to whether Ra is less than RL. If Ra is less than RL, then at step 200 the pump 2 is stopped. The method then proceeds to step 180, where the sampled and calculated values from steps 110-150 are stored in memory and are sent through communication ports. The method then returns to step 110. If, however, at step 190 it is determined that Ra is not less than RL, then at step 210 a determination is made as to whether Ra is less than Ru. If Ra is less than Ru, then at step 220, pump operating speed is decreased. The rate of the speed reduction can be predetermined and/or adjustable by the user, and at the next iteration of the control loop, the system will repeat the evaluation. At step 230, the value of Ra is stored in memory, and a number "N" of most recently stored values of Ra are read from memory. In one embodiment, the number "N" is determined according to the formula: T*V/60, where "T" is the number of pump screw teeth or ridges, and "V" is the operating speed of the pump in RPM. At step 240, a standard deviation of the read values of Ra is calculated to determine Rstd. At step 250, a stored value of bubble and gas standard level RB is read from memory. In one embodiment, the value of RB is input by a user depending upon a particular application of the pump. At step 260, a determination is made as to whether RSTD is greater than RB. If it is determined that RSTD is not greater than RB, then the method proceeds to step 180, where the sampled and calculated values from steps 110-150, and 230-250 are stored in memory and are also sent through communication ports. The method then returns to step 110. If, however, at step 260 it is determined that RSTD is not greater than RB, then at step 270 air or gas bubbles are determined to be passing through the pump, and an operational characteristic of the pump is automatically adjusted. The operational characteristic can include changing pump speed or stopping the pump. The method then proceeds to step 180, where the sampled and calculated values from steps 110-150, and 230-250 are stored in memory and are also sent through communication ports. The method then returns to step 110. If, at step 210, it is determined that Ra is not less than Ru, then at step 280, pump operating speed is increased. The method then proceeds to step 230 in the manner previously described.

    [0034] Some embodiments of the disclosed device may be implemented, for example, using a storage medium, a computer-readable medium or an article of manufacture which may store an instruction or a set of instructions that, if executed by a machine, may cause the machine to perform a method and/or operations in accordance with embodiments of the disclosure. Such a machine may include, for example, any suitable processing platform, computing platform, computing device, processing device, computing system, processing system, computer, processor, or the like, and may be implemented using any suitable combination of hardware and/or software. The computer-readable medium or article may include, for example, any suitable type of memory unit, memory device, memory article, memory medium, storage device, storage article, storage medium and/or storage unit, for example, memory (including non-transitory memory), removable or non-removable media, erasable or non-erasable media, writeable or re-writeable media, digital or analog media, hard disk, floppy disk, Compact Disk Read Only Memory (CD-ROM), Compact Disk Recordable (CD-R), Compact Disk Rewriteable (CD-RW), optical disk, magnetic media, magneto-optical media, removable memory cards or disks, various types of Digital Versatile Disk (DVD), a tape, a cassette, or the like. The instructions may include any suitable type of code, such as source code, compiled code, interpreted code, executable code, static code, dynamic code, encrypted code, and the like, implemented using any suitable high-level, low-level, object-oriented, visual, compiled and/or interpreted programming language.

    [0035] Based on the foregoing information, it will be readily understood by those persons skilled in the art that the present invention is susceptible of broad utility and application. Accordingly, while the present invention has been described herein in detail in relation to its preferred embodiment, it is to be understood that this disclosure is only illustrative and exemplary of the present invention and is made merely for the purpose of providing a full and enabling disclosure of the invention. The foregoing disclosure is not intended to be construed to limit the present invention or otherwise exclude any other embodiments, adaptations, variations, modifications or equivalent arrangements; the present invention being limited only by the claims appended hereto. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for the purpose of limitation.


    Claims

    1. A system (1) for monitoring and controlling a positive displacement pump (2), comprising:

    a plurality of pressure sensors mounted to the positive displacement pump, the plurality of pressure sensors (4, 6, 8) comprising at least first (4), second (6) and third pressure sensors (8), wherein the first pressure sensor (4) is separated from the second pressure sensor (6) by a first distance (Li) and the first pressure sensor (4) is separated from the third pressure sensor (6) by a second distance (L); and

    a controller (28) for receiving input signals (Ps, Pi, Pd) from the plurality of pressure sensors (4, 6, 8), and for processing said input signals (Ps, Pi, Pd) to obtain a cavitation severity ratio, the cavitation severity ratio comprising a ratio of the difference between a measured interstage pressure of the pump (2) and a measured suction pressure of the pump (2) and the difference between a measured discharge pressure of the pump (2) and a measured suction pressure of the pump (2);

    the controller (28) being characterised in that it is further configured to adjust an operating speed of the pump (2) based on a comparison of the cavitation severity ratio to a predefined application based severity level and a target cavitation severity level, the application based severity level being set by a user and the target cavitation severity level being based on a ratio between the first distance (Li) and the second distance (L).


     
    2. The system (1) of claim 1, wherein when the cavitation severity ratio is within a predetermined range of the application based severity level, a current operating speed of the pump (2) is maintained.
     
    3. The system (1) of claim 1, wherein when the cavitation severity ratio is greater than the application based severity level, a speed of the pump (2) is increased until the cavitation severity ratio is within a predetermined range of the application based severity level.
     
    4. The system (1) of claim 1, wherein when the cavitation severity ratio is less than the application based severity level, a speed of the pump (2) is decreased until the cavitation severity ratio is within a predetermined range of the application based severity level.
     
    5. The system (1) of claim 1, wherein when the cavitation severity ratio is less than an application based severity level limit, the pump is stopped.
     
    6. The system (1) of claim 1, wherein the cavitation severity ratio Ra is obtained according to the formula:

    where Pi is the measured interstage pressure of the pump, Ps is the measured suction pressure of the pump, and Pd is the measured discharge pressure of the pump.
     
    7. The system (1) of claim 1, the controller (28) further configured to store a plurality of discrete values of cavitation severity ratio over time, and to obtain a standard deviation of the plurality of discrete values to determine if a change in the plurality of discrete values exceeds a predetermined limit.
     
    8. The system (1) of claim 7, wherein when the change in the plurality of discrete values exceeds the predetermined limit, the controller (28) is configured to provide an indication to a user that gas bubbles are present in the pump cavity.
     
    9. The system (1) of claim 8, wherein in response to the indication, the controller (28) is configured to receive a user input to change an operating condition of the pump (2).
     
    10. A method for monitoring and controlling a positive displacement pump (2), comprising:

    obtaining a plurality of signals (Ps, Pi, Pd) representative of pressures at a plurality of locations in the positive displacement pump (2);

    processing the plurality of signals (Ps, Pi, Pd) to obtain a cavitation severity ratio, the cavitation severity ratio comprising a ratio of the difference between a measured interstage pressure of the pump (2) and a measured suction pressure of the pump (2) and the difference between a measured discharge pressure of the pump (2) and a measured suction pressure of the pump (2); and being characterised in that

    adjusting an operating speed of the positive displacement pump (2) is based on a comparison of the cavitation severity ratio to a predefined application based severity level and a target cavitation severity level, the application based severity level being set by a user and the target cavitation severity level being based on a ratio of distances between the plurality of locations.


     
    11. The method of claim 10, further comprising maintaining a current operating speed of the pump (2) when the cavitation severity ratio is within a predetermined range of the application based severity level.
     
    12. The method of claim 10, wherein when the cavitation severity ratio is greater than the application based severity level, the method comprises increasing a speed of the pump (2) until the cavitation severity ratio is within a predetermined range of the application based severity level.
     
    13. The method of claim 10, wherein when the cavitation severity ratio is less than the application based severity level, the method comprises decreasing a speed of the pump (2) until the cavitation severity ratio is within a predetermined range of the application based severity level.
     
    14. The method of claim 10, wherein when the cavitation severity ratio is less than an application based severity limit, the method comprises stopping the pump (2).
     


    Ansprüche

    1. System (1) zum Überwachen und Steuern einer Verdrängungspumpe (2), umfassend:

    eine Vielzahl von Drucksensoren, die an der Verdrängungspumpe montiert sind, wobei die Vielzahl von Drucksensoren (4, 6, 8) mindestens erste (4), zweite (6) und dritte Drucksensoren (8) umfasst, wobei der erste Drucksensor (4) von dem zweiten Drucksensor (6) durch einen ersten Abstand (Li) getrennt ist und der erste Drucksensor (4) von dem dritten Drucksensor (6) durch einen zweiten Abstand (L) getrennt ist; und

    eine Steuerung (28) zum Empfangen von Eingangssignalen (Ps, Pi, Pd) von der Vielzahl von Drucksensoren (4, 6, 8) und zum Verarbeiten der Eingangssignale (Ps, Pi, Pd), um ein Kavitationsausmaßverhältnis zu erhalten, wobei das Kavitationsausmaßverhältnis ein Verhältnis der Differenz zwischen einem gemessenen Zwischendruck der Pumpe (2) und einem gemessenen Ansaugdruck der Pumpe (2) und der Differenz zwischen einem gemessenen Entladedruck der Pumpe (2) und einem gemessenen Ansaugdruck der Pumpe (2) umfasst;

    wobei die Steuerung (28) dadurch gekennzeichnet ist, dass sie

    weiter konfiguriert ist, eine Betriebsgeschwindigkeit der Pumpe (2) basierend auf einem Vergleich des Kavitationsausmaßverhältnisses mit einem vordefinierten anwendungsbasierten Ausmaßgrad und einem Zielkavitationsausmaßgrad anzupassen, wobei der anwendungsbasierte Ausmaßgrad von einem Anwender eingestellt wird und der Zielkavitationsausmaßgrad auf einem Verhältnis zwischen dem ersten Abstand (Li) und dem zweiten Abstand (L) basiert.


     
    2. System (1) nach Anspruch 1, wobei, wenn das Kavitationsausmaßverhältnis innerhalb einer vorgegebenen Spanne des anwendungsbasierten Ausmaßgrads ist, eine aktuelle Betriebsgeschwindigkeit der Pumpe (2) beibehalten wird.
     
    3. System (1) nach Anspruch 1, wobei, wenn das Kavitationsausmaßverhältnis größer als der anwendungsbasierte Ausmaßgrad ist, eine Geschwindigkeit der Pumpe (2) erhöht wird, bis das Kavitationsausmaßverhältnis innerhalb einer vorgegebenen Spanne des anwendungsbasierten Ausmaßgrads ist.
     
    4. System (1) nach Anspruch 1, wobei, wenn das Kavitationsausmaßverhältnis kleiner als der anwendungsbasierte Ausmaßgrad ist, eine Geschwindigkeit der Pumpe (2) verringert wird, bis das Kavitationsausmaßverhältnis innerhalb einer vorgegebenen Spanne des anwendungsbasierten Ausmaßgrads ist.
     
    5. System (1) nach Anspruch 1, wobei, wenn das Kavitationsausmaßverhältnis kleiner als eine anwendungsbasierte Ausmaßgradgrenze ist, die Pumpe gestoppt wird.
     
    6. System (1) nach Anspruch 1, wobei das Kavitationsausmaßverhältnis Ra gemäß der Formel erhalten wird:

    wo Pi der gemessene Zwischendruck der Pumpe ist, Ps der gemessene Ansaugdruck der Pumpe ist und Pd der gemessene Entladedruck der Pumpe ist.
     
    7. System (1) nach Anspruch 1, wobei die Steuerung (28) weiter konfiguriert ist, eine Vielzahl von diskreten Werten von Kavitätsausmaßverhältnis über die Zeit zu speichern und eine Standardabweichung der Vielzahl von diskreten Werten zu erhalten, um zu ermitteln, ob eine Änderung in der Vielzahl von diskreten Werten eine vorgegebene Grenze überschreitet.
     
    8. System (1) nach Anspruch 7, wobei, wenn die Änderung in der Vielzahl von diskreten Werten die vorgegebene Grenze überschreitet, die Steuerung (28) konfiguriert ist, eine Anzeige an einen Anwender bereitzustellen, dass Gasblasen in der Pumpenkavität vorhanden sind.
     
    9. System (1) nach Anspruch 8, wobei in Antwort auf die Anzeige die Steuerung (28) konfiguriert wird, einen Anwendereingang zu empfangen, um einen Betriebszustand der Pumpe (2) zu ändern.
     
    10. Verfahren zum Überwachen und Steuern einer Verdrängungspumpe (2), umfassend:

    Erhalten einer Vielzahl von Signalen (Ps, Pi, Pd), die Drücke bei einer Vielzahl von Stellen in der Verdrängungspumpe (2) darstellen;

    Verarbeiten der Vielzahl von Signalen (Ps, Pi, Pd), um ein Kavitätsausmaßverhältnis zu erhalten, wobei das Kavitätsausmaßverhältnis ein Verhältnis der Differenz zwischen einem gemessenen Zwischendruck der Pumpe (2) und einem gemessenen Ansaugdruck der Pumpe (2) und der Differenz zwischen einem gemessenen Entladedruck der Pumpe (2) und einem gemessenen Ansaugdruck der Pumpe (2) umfasst; und dadurch gekennzeichnet ist, dass,

    Anpassen einer Betriebsgeschwindigkeit der Verdrängungspumpe (2) auf einem Vergleich des Kavitationsausmaßverhältnisses mit einem vordefinierten anwendungsbasierten Ausmaßgrad und einem Zielkavitationsausmaßgrad basiert, wobei der anwendungsbasierte Ausmaßgrad von einem Anwender eingestellt wird und der Zielkavitationsausmaßgrad auf einem Verhältnis von Abständen zwischen der Vielzahl von Stellen basiert.


     
    11. Verfahren nach Anspruch 10, weiter umfassend Beibehalten einer Betriebsgeschwindigkeit der Pumpe (2), wenn das Kavitätsausmaßverhältnis innerhalb einer vorgegebenen Spanne des anwendungsbasierten Ausmaßgrads ist.
     
    12. Verfahren nach Anspruch 10, wobei, wenn das Kavitätsausmaßverhältnis größer als der anwendungsbasierte Ausmaßgrad ist, das Verfahren umfasst, eine Geschwindigkeit der Pumpe (2) zu erhöhen, bis das Kavitätsausmaßverhältnis innerhalb einer vorgegebenen Spanne des anwendungsbasierten Ausmaßgrads ist.
     
    13. Verfahren nach Anspruch 10, wobei, wenn das Kavitätsausmaßverhältnis kleiner als der anwendungsbasierte Ausmaßgrad ist, das Verfahren umfasst, eine Geschwindigkeit der Pumpe (2) zu verringern, bis das Kavitätsausmaßverhältnis innerhalb einer vorgegebenen Spanne des anwendungsbasierten Ausmaßgrads ist.
     
    14. Verfahren nach Anspruch 10, wobei, wenn das Kavitätsausmaßverhältnis kleiner als eine anwendungsbasierte Ausmaßgrenze ist, das Verfahren umfasst, die Pumpe (2) zu stoppen.
     


    Revendications

    1. Système (1) pour la surveillance et la commande d'une pompe volumétrique (2) comprenant :

    une pluralité de capteurs de pression montés sur la pompe volumétrique, la pluralité de capteurs de pression (4, 6, 8) comprenant au moins des premier (4), deuxième (6) et troisième capteurs de pression (8), dans lequel le premier capteur de pression (4) est séparé du deuxième capteur de pression (6) d'une première distance (Li) et le premier capteur de pression (4) est séparé du troisième capteur de pression (6) d'une seconde distance (L) ; et

    un dispositif de commande (28) pour la réception de signaux d'entrée (Ps, Pi, Pd) de la pluralité de capteurs de pression (4, 6, 8), et pour le traitement desdits signaux d'entrée (Ps, Pi, Pd) afin d'obtenir un rapport de sévérité de cavitation, le rapport de sévérité de cavitation comprenant un rapport de la différence entre une pression interétage mesurée de la pompe (2) et une pression d'aspiration mesurée de la pompe (2) et la différence entre une pression de décharge mesurée de la pompe (2) et une pression d'aspiration mesurée de la pompe (2) ;

    le dispositif de commande (28) étant caractérisé en ce qu'il est

    en outre configuré pour ajuster une vitesse opérationnelle de la pompe (2) sur la base d'une comparaison du rapport de sévérité de cavitation avec un niveau de sévérité basé sur l'application prédéfini et un niveau de sévérité de cavitation cible, le niveau de sévérité basé sur l'application étant réglé par un utilisateur et le niveau de sévérité de cavitation cible étant basé sur un rapport entre la première distance (Li) et la seconde distance (L).


     
    2. Système (1) selon la revendication 1, dans lequel lorsque le rapport de sévérité de cavitation est dans une plage prédéterminée du niveau de sévérité basé sur l'application, une vitesse opérationnelle actuelle de la pompe (2) est maintenue.
     
    3. Système (1) selon la revendication 1, dans lequel lorsque le rapport de sévérité de cavitation est supérieur au niveau de sévérité basé sur l'application, une vitesse de la pompe (2) est augmentée jusqu'à ce que le rapport de sévérité de cavitation soit dans une plage prédéterminée du niveau de sévérité basé sur l'application.
     
    4. Système (1) selon la revendication 1, dans lequel lorsque le rapport de sévérité de cavitation est inférieur au niveau de sévérité basé sur l'application, une vitesse de la pompe (2) est diminuée jusqu'à ce que le rapport de sévérité de cavitation soit dans une plage prédéterminée du niveau de sévérité basé sur l'application.
     
    5. Système (1) selon la revendication 1, dans lequel lorsque le rapport de sévérité de cavitation est inférieur à une limite de niveau de sévérité basé sur l'application, la pompe est arrêtée.
     
    6. Système (1) selon la revendication 1, dans lequel le rapport de sévérité de cavitation Ra est obtenu selon la formule :

    Pi est la pression interétage mesurée de la pompe, Ps est la pression d'aspiration mesurée de la pompe, et Pd est la pression de décharge mesurée de la pompe.
     
    7. Système (1) selon la revendication 1, le dispositif de commande (28) étant en outre configuré pour stocker une pluralité de valeurs discrètes de rapport de sévérité de cavitation dans le temps, et pour obtenir une déviation standard de la pluralité de valeurs discrètes pour déterminer si un changement dans la pluralité de valeurs discrètes excède une limite prédéterminée.
     
    8. Système (1) selon la revendication 7, dans lequel lorsque le changement dans la pluralité de valeurs discrètes excède la limite prédéterminée, le dispositif de commande (28) est configuré pour fournir une indication à un utilisateur sur la présence de bulles de gaz dans la cavité de pompe.
     
    9. Système (1) selon la revendication 8, dans lequel en réponse à l'indication, le dispositif de commande (28) est configuré pour recevoir une entrée utilisateur afin de changer une condition opérationnelle de la pompe (2).
     
    10. Procédé de surveillance et de commande d'une pompe volumétrique (2), comprenant :

    l'obtention d'une pluralité de signaux (Ps, Pi, Pd) représentatifs de pressions à une pluralité d'emplacements dans la pompe volumétrique (2) ;

    le traitement de la pluralité de signaux (Ps, Pi, Pd) pour obtenir un rapport de sévérité de cavitation, le rapport de sévérité de cavitation comprenant un rapport de la différence entre une pression interétage mesurée de la pompe (2) et une pression d'aspiration mesurée de la pompe (2) et la différence entre une pression de décharge mesurée de la pompe (2) et une pression d'aspiration mesurée de la pompe (2) ; et étant caractérisé en ce que

    l'ajustement d'une vitesse opérationnelle de la pompe volumétrique (2) est basé sur une comparaison du rapport de sévérité de cavitation à un niveau de sévérité basé sur l'application et un niveau de sévérité de cavitation cible, le niveau de sévérité basé sur l'application étant réglé par un utilisateur et le niveau de sévérité de cavitation cible étant basé sur un rapport de distances entre la pluralité d'emplacements.


     
    11. Procédé selon la revendication 10, comprenant en outre le maintien d'une vitesse opérationnelle actuelle de la pompe (2) lorsque le rapport de sévérité de cavitation est dans une plage prédéterminée du niveau de sévérité basé sur l'application.
     
    12. Procédé selon la revendication 10, dans lequel lorsque le rapport de sévérité de cavitation est supérieur au niveau de sévérité basé sur l'application, le procédé comprend l'augmentation d'une vitesse de la pompe (2) jusqu'à ce que le rapport de sévérité de cavitation soit dans une plage prédéterminée du niveau de sévérité basé sur l'application.
     
    13. Procédé selon la revendication 10, dans lequel lorsque le rapport de sévérité de cavitation est inférieur au niveau de sévérité basé sur l'application, le procédé comprend la diminution d'une vitesse de la pompe (2) jusqu'à ce que le rapport de sévérité de cavitation soit dans une plage prédéterminée du niveau de sévérité basé sur l'application.
     
    14. Procédé selon la revendication 10, dans lequel lorsque le rapport de sévérité de cavitation est inférieur à une limite de sévérité basée sur l'application, le procédé comprend l'arrêt de la pompe (2).
     




    Drawing























    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description