[0001] A pressure boosting system is a multi-pump system that is used to pressurise fluids.
Pressure boosting systems are used in various applications. Normally, pressure boosting
systems comprise a plurality of pumps (typically two, three or four pumps) that are
connected to a common pipe system. In the prior art pressure boosting systems, the
inlet pipes of the pumps are connected to an inlet manifold having a flange that is
configured to be directly connected to a main inlet pipe. In the same manner, the
outlet pipes of the pumps are connected to an outlet manifold having a flange that
is configured to be directly connected to a main outlet pipe. The manifolds typically
have a tubular elongated geometry and the pumps are arranged along the longitudinal
axis of the manifolds.
[0002] In the prior pressure boosting system, the inlet manifold and the outlet manifold
extend parallel to one another and are individually spaced from one another. The weight
of the manifolds is often exposed to the pump sleeves and accordingly, the pumps are
often exposed to high mechanical stress, especially at the pump sleeve where the inlet
pipes or outlet pipes are connected to the pump. Due to the mechanical stress caused
by the manifolds and valves during transportation or operation, the pipe connection
of pump sleeve is often subject to damages. Leakages may result from the above mentioned
stress. To overcome the mechanical stress, it is possible to support the manifolds
by a mechanical support structure. This introduces higher costs and mechanical restrictions
regarding service of the pressure boosting system.
[0003] Moreover, replacement and service of pumps requires that all pumps are disconnected.
This procedure is time-consuming and introduces the risk of failure to the system.
[0004] In addition to the above, the prior art pressure boosting systems require a rather
huge clearance area all around the system in order to carry out inspection and service
of the booster system. The manifolds of a pressure boosting system constitute a manifold
system, and a manifold system is required in all pressure boosting systems.
[0005] In the prior art pressure boosting systems stagnant water is present at the blind
end of the manifold even when fluid is pumped through the manifold. This stagnant
water will give rise to bacteria growth. Therefore, it is an object of the present
invention to provide a pressure boosting system in which stagnant water can be avoided
or minimised.
[0006] US 3,542,491 discloses a dual-acting pump arranged between a fluid inlet and a fluid outlet which
is arranged in line. These lines are branched in a 90° angle and the dual-acting pump
is arranged between them. The arrangement is rather bulky as all lines are arranged
in the same plane whereby the two outlet lines project to the left hand side of the
pump and the two inlet lines project to the right hand side of the pump.
[0007] EP 1 936 187 A1 discloses a multiple membrane pump with an intake duct and a delivery duct which
are arranged in parallel, the membrane pumps are arranged between these ducts, they
are surrounded by the ducts so this arrangement is rather bulky. The membrane pumps
are difficult to mount inside these ducts.
[0008] FR 1 006 224 A discloses a pressure boosting system with two hydraulic rotary displacement pumps.
There is a low-pressure boosting pump arranged in series with a high-pressure boosting
pump which are connected by long pipes.
[0009] It is also an object of the present invention to provide a pressure boosting system
that subjects the pump sleeves to less mechanical stress.
[0010] It is also an object of the present invention to provide a pressure boosting system
that avoids the requirement to disconnect all pumps during replacement and service
of a pump.
[0011] Furthermore, it is an object of the present invention to provide a pressure boosting
system that requires less clearance area in order to carry out inspection and service
of the pumps of the pressure boosting system.
[0012] This object can be achieved by a pressure boosting system having the features defined
in claim 1. Preferred embodiments are disclosed in the dependent claims, the following
description and the drawings.
[0013] The pressure boosting system according to the invention comprises two or more pumps
each having an inlet connected to an inlet manifold and an outlet connected to an
outlet manifold, wherein the line that connects an inlet and its corresponding connection
at the inlet manifold defines an inlet line, and wherein the line that connects an
outlet and its corresponding connection at the outlet manifold defines an outlet line.
At least two of the inlet lines are angled relative to each other, wherein the at
least two of the inlet lines are non-parallel to each other and/or that at least two
of the outlet lines are angled relative to each other, wherein the at least two of
the outlet lines are non-parallel to each other. Further, the outlet of each pump
is connected to an outlet pipe comprising a basically straight outlet pipe member,
and the inlet of each pump is connected to an inlet pipe comprising a basically straight
inlet pipe member. The inlet pipes are arranged in a first plane and the outlet pipes
are arranged in a second plane extending basically parallel to the first plane.
[0014] Each pump has a longitudinal axis and the longitudinal axes of the pumps are angled
relative to each other. This makes it possible to arrange the pumps in a formation
so that the pumps can be connected to centrally arranged manifolds. In this way a
very compact pressure boosting system can be achieved.
[0015] By the above arrangement, it is achieved that the pressure boosting system can be
very compact. The distance between the outlets of the pumps and the main outlet as
well as the distance between the inlets of the pumps and the main inlet can be minimised.
It is also achieved that the pump sleeve is subjected to less mechanical stress compared
to prior art pressure boosting systems.
[0016] Moreover, due to the fact that all pumps are arranged at a common pump level, all
inlets may be arranged at a common inlet level, all outlets may be arranged at a common
outlet level, and all outlet pipe members and all inlet pipe members may be arranged
parallel.
[0017] Moreover, the inventive pressure boosting system allows for replacement and service
of a pump being carried out without disconnecting all pumps.
[0018] The pressure boosting system requires less clearance area in order to carry out inspection
and service of the pressure booster system compared to prior art pressure boosting
systems.
[0019] The term "angled relative to each other" means that the lines are non-parallel. The
angle between adjacent pumps may be fixed so that the pumps are uniformly distributed.
However, it is also possible to arrange the pumps with different angles between different
sets of adjacent pumps.
[0020] Advantageously, all inlet lines are angled relative to each other and/or all outlet
lines are angled relative to each other. In this way, it is possible to make the pressure
boosting system very compact.
[0021] Advantageously, the longitudinal axis of each pump extends basically parallel to
the corresponding inlet line and/or to the corresponding outlet line of the pump.
Such a construction may be an advantage because standard components may be used and
because this embodiment is very compact.
[0022] It may be beneficial that the inlet pipes of the pumps are directed basically towards
a first common axis and the outlet pipes of the pumps are directed basically towards
a second axis. In this manner, it is possible to provide a very compact pressure boosting
system, and there is very good access to the pumps (e.g. for service/maintenance of
the pumps, for connection or disconnection of the pumps, etc.).
[0023] It also is possible to arrange the axes such that the first axis and the second axis
are parallel to each other, or even coinciding.
[0024] It is possible that the pumps are arranged along an arced or curved line, preferably
on a section of a circle. By this, a very compact and robust pressure boosting system
can be made.
[0025] It is advantageous if all straight outlet pipe members are of one first length and
all straight inlet pipe members are of one second length. In this embodiment, the
pumps may be arranged on the section of a circle. Hereby, it is achieved that the
pressure boosting system can be made very compact and that a great part of the pipe
structures may be used for both, the inlet pipe members and the outlet pipe members.
[0026] When the inlet pipes of the pumps are directed basically towards a first common axis
and the outlet pipes of the pumps are directed basically towards a second axis, it
may be advantageous if the longitudinal axes of the pumps extend basically perpendicular
to the first axis and/or to the second axis. Hereby, it is possible to use 90 degrees
connections between the outlet pipe members and a main outlet piping extending along
the first and second axes. In the same way, it is possible to use 90 degrees connections
between the inlet pipe members and a main inlet piping extending along the first and
second axes.
[0027] Advantageously, each straight outlet pipe member and/or each straight inlet pipe
member extends basically parallel to the longitudinal axis of the corresponding pump.
Hereby, it is possible to provide a direct and short distance connection between the
pumps and the main inlet and between the pumps and the main outlets. Accordingly,
a very compact and robust pressure boosting system can be achieved.
[0028] It may be advantageous if at least some of the straight outlet pipe members and/or
at least some of the straight inlet pipe members comprise a valve or are connected
to a valve. This may be of great importance during pump replacement or service of
the pumps.
[0029] It may be beneficial if all straight outlet pipe members and all straight inlet pipe
members comprise or are connected to a valve. Hereby, it is achieved that all pumps
can be easily disconnected by using the valves.
[0030] It is possible that the inlet pipes and outlet pipes are connected to a manifold
system that comprises: a basically cylindrical inlet manifold having a longitudinal
axis and being arranged adjacent to a basically cylindrical outlet manifold having
a longitudinal axis; wherein the inlet manifold comprises a connection to the main
inlet and a number of connections for the inlet pipes of the pumps, and wherein the
outlet manifold comprises a connection to the main outlet and a number of connections
for the outlet pipes of the pumps.
[0031] This embodiment allows for a very compact and service-friendly connection of the
pumps to the main inlet and to the main outlet.
[0032] It is possible that the longitudinal axis of the inlet manifold of the manifold system
and the longitudinal axis of the outlet manifold of the manifold system are parallel
to each other, and are basically arranged in a vertical direction.
[0033] Advantageously, the pumps are arranged on a base plate. This embodiment makes it
possible to preassemble the pressure boosting system, and to ensure that the pressure
boosting system is fixed firmly.
[0034] Hereby, it is achieved that the inlet manifold and the outlet manifold of the manifold
system can be arranged in a manner such that the manifold system is very compact.
Moreover, it is possible to use an inlet manifold having the same geometry as the
outlet manifold and vice versa.
[0035] Even though both the outlet manifold and the inlet manifold have a basically cylindrical
structure, the shape and/or diameter of the outlet manifold and the inlet manifold
may differ.
[0036] It is possible to provide a pressure boosting system having a manifold system comprising
an outlet manifold and an inlet manifold with basically the same geometry.
[0037] Advantageously, a valve is provided between the manifold system and each pump inlet
and between the manifold system and each pump outlet.
[0038] It may be advantageous if the pumps are multistage pumps. Multistage pumps are widely
used in pressure boosting systems, and they are capable of generating the required
pressure and flow. The multistage pumps may be arranged horizontally.
[0039] It may be beneficial if each manifold comprises a number of connection pipes provided
at the cylindrical periphery of the manifold and the connection pipes extend radially,
preferably perpendicular, to the longitudinal axis of the manifolds.
[0040] Advantageously, the inlet pipes of the pumps extend basically horizontally from the
pumps to the inlet manifold and the outlet pipes of the pumps comprise a bent section
connecting the outlets to the straight outlet pipe members. The straight outlet pipe
members extend basically horizontally to the outlet manifold, and the outlet manifold
of the manifold system is arranged above and adjacent to the inlet manifold of the
manifold system, and the outlet manifold of the manifold system and the inlet manifold
of the manifold system are separated from each other.
[0041] Accordingly, it is possible to provide a very compact and robust pressure boosting
system.
[0042] The pressure boosting system according to the invention may comprise a manifold system
that comprises a manifold having:
- a manifold space configured to receive a fluid;
- a main connection pipe configured to connect the manifold space to a main pipe; and
- a number of connection pipes each configured to connect the manifold space to a pump.
[0043] At least some connection pipes of the manifold are angled relative to each other.
[0044] In this way the manifold system can be arranged centrally relative to the pumps of
the pressure boosting system and thus, the pressure boosting system can be very compact.
It is also achieved that the pump sleeve is subjected to less mechanical stress compared
to the prior art pressure boosting systems.
[0045] Moreover, the manifold system makes it possible to build a pressure boosting system
that allows for replacement and service of a pump without disconnecting all pumps.
[0046] When the manifold system is used, the pressure boosting system requires less clearance
area in order to carry out inspection and service of the pressure booster system compared
to prior art pressure boosting systems.
[0047] All the connection pipes of the manifold may be angled relative to each other. This
way of arranging the connection pipes makes it possible to simplify the way of producing
the manifold system, and makes it possible to build a very compact pressure boosting
system.
[0048] The manifold may be cylindrical and the connection pipes may be arranged at the outer
periphery of the cylindrical manifold. Hereby, a robust manifold may be produced in
an easy manner.
[0049] It is possible to arrange the connection pipes so that they extend basically perpendicular
to the longitudinal axis of the manifold.
[0050] Preferably, the manifold and the connection pipes are arranged in a star connection
wherein the manifold is the centre of the star.
[0051] It is possible to provide a pressure boosting system in which a diaphragm tank is
arranged on the outlet manifold, or alternatively the diaphragm may be built into
the outlet manifold. Hereby, a pressure can be maintained in the outlet manifold when
the last pump in operation is switched off. Hereby, pressure energy can be stored
in the outlet manifold, and a fluid can be pressurised even when there is no pump
activity.
[0052] Furthermore, it is possible to configure the manifold system such that the longitudinal
axes of the connection pipes span a first plane that is basically perpendicular to
the longitudinal axis of the manifold and such that the main connection pipe extends
basically parallel to the first plane. This configuration will take up less space
than prior art manifold systems, and allows for easily connecting pumps of a similar
type to the manifold system.
[0053] The manifold system may comprise an inlet manifold having a longitudinal axis and
being arranged adjacent to an outlet manifold having a longitudinal axis and furthermore,
the axes of the inlet manifold and the outlet manifold are basically parallel to each
other. It is advantageous to use a manifold system according to this configuration
because both the inlet manifold and the outlet manifold make it possible to achieve
a very compact pressure boosting system.
[0054] It is possible to arrange the inlet manifold and the outlet manifold in several configurations.
By way of example, the inlet manifold and the outlet manifold may be individually
spaced from each other. However, it is also possible to weld the inlet manifold and
the outlet manifold or connect the inlet manifold and the outlet manifold together
by mechanic means. The inlet manifold and the outlet manifold may, for instance, be
arranged on top of each other or in a side-by-side configuration.
[0055] It is possible that the inlet manifold and the outlet manifold are arranged adjacent
to each other and that the longitudinal axes of the inlet manifold and the outlet
manifold are basically parallel to each other. Hereby, a compact manifold system can
be achieved.
[0056] It is possible that the inlet manifold and the outlet manifold are integrally built
in one unit. Still, the two manifolds may be produced separately. Building the manifolds
in one and the same unit may be achieved in several ways. By way of example, two manifolds
may be welded together or fixed to each other by mechanical means. For example, it
would be possible to produce the manifold by one or more moulding processes.
[0057] The connection pipes of the inlet manifold may be evenly distributed so that the
angle between the longitudinal axes of all adjacent connection pipes are basically
the same and/or the connection pipes of the outlet manifold may be evenly distributed
so that the angle between the longitudinal axes of all adjacent connection pipes is
basically the same. In this way, it is possible to distribute the pumps evenly around
the inlet manifold and the outlet manifold and to provide a very compact pressure
boosting system.
[0058] It is possible to provide a pressure boosting system comprising a manifold system
according to any of the described manifold systems.
[0059] The inlet manifold and the outlet manifold may have the same diameter. Accordingly,
it is possible to produce the inlet manifold and the outlet manifold in the same way
by using the same production tools.
[0060] The connection pipes of the inlet manifold may be arranged in a manner such that
the longitudinal axes of the connection pipes of the inlet manifold span a second
plane that is basically perpendicular to the longitudinal axis of the inlet manifold,
and the main connection pipe may extend basically parallel to the first plane, and
the connection pipes of the outlet manifold may be arranged in a manner such that
the longitudinal axes of the connection pipes of the outlet manifold span a third
plane that is basically perpendicular to the longitudinal axis of the outlet manifold,
and wherein the main connection pipe extends basically parallel to the second plane,
and wherein the second plane and the third plane are basically parallel to each other.
[0061] Hereby, a very compact and robust pressure boosting system can be made. Moreover,
this embodiment may be beneficial due to the fact that all pumps may be arranged on
a common pump level, that all inlets may be arranged on a common inlet level, that
all outlets may be arranged on a common outlet level, and that all outlet pipe members
and all inlet pipe members may be arranged in parallel.
[0062] The inlet pipes of the pumps may extend basically horizontally from the pumps to
the inlet manifold, and the outlet pipes of the pumps may comprise a bent section
connecting the outlets with the straight outlet pipe members. The straight outlet
pipe members may extend basically horizontally from the pumps to the outlet manifold,
and the outlet manifold may be arranged above and adjacent to the inlet manifold,
and the outlet manifold and the inlet manifold may be hermetically separated from
each other.
[0063] The present invention will become apparent from the following detailed description
and the accompanying drawings which are given by way of illustration only, and thus,
they are not limiting for the present invention, wherein:
- Fig. 1
- shows a top view of one pressure boosting system according to an embodiment of the
invention;
- Fig. 2
- shows a bottom view of one pressure boosting system shown in Fig. 1 without base plate;
- Fig. 3
- shows a perspective side view of a pressure boosting system shown in Fig. 1;
- Fig. 4
- shows a front view of a manifold system according to another embodiment of the invention;
- Fig. 5
- shows a perspective view of the manifold system shown in Fig. 4;
- Fig. 6
- shows a top view of the manifold system shown in Fig. 4 and Fig. 5;
- Fig. 7
- shows a cross sectional view of a manifold system according to another embodiment
of the invention; and
- Fig. 8
- shows various embodiments of the manifold systems according to the invention.
[0064] Other objects and further scope of applicability of the present invention will become
apparent from the detailed description given hereinafter. It should be understood,
however, that the detailed description and specific examples, an indication of preferred
embodiments of the invention, are given by way of illustration only.
[0065] Referring now in detail to the drawings for the purpose of illustrating preferred
embodiments of the present invention, elements of a pressure boosting system comprising
a manifold system 26 according to an embodiment of the present invention are illustrated
in Fig. 1. The pressure boosting system 2 comprises four pumps 4 arranged along a
section of a circle C. The pumps 4 have longitudinal axes X
1, X
2, X
3 X
4 which are rotational axes of the rotor and which are angled relative to each other.
The angle α
1 between the pump having a longitudinal axis X
1 and the pump having a longitudinal axis X
2 is similar to the angle α
2 between the pump having the longitudinal axis X
2 and the pump having the longitudinal axis X
3. In fact, the angle α
3 between the pump having the longitudinal axis X
3 and the pump having the longitudinal axis X
4 is similar to both, the angle α
1 and the angle α
2.
[0066] It would, however, be possible to arrange the pumps 4 differently with the pumps
4 still being arranged along a section of a circle. This may be done by choosing the
angle α
1 differently from the angle α
2 and α
3.
[0067] The pumps 4 are connected to a manifold system 26 comprising an outlet manifold 28
and an inlet manifold 30 (shown in Fig. 3). The outlet manifold 28 is connected to
a main outlet pipe 10. The outlet manifold 28 is connected to the outlets 8 of the
pumps 4 via a pipe system 22. Since Fig. 1 shows a top view of the pumps 4, only the
pump outlet 8 can be seen. The input manifold 30 (as can be seen in Fig. 2 and 3)
comprises a main connection pipe 48 that is provided with a flange 44. This flange
44 is bearing against flange 44' of the main outlet pipe 10. Preferably, the flanges
44 and 44' may be mechanically attached to each other with a sealing in between. The
output manifold 28 comprises a main connection pipe 46 that has a flange 42 bearing
against a flange 42' of a main outlet pipe 10.
[0068] For each pump 4, an outlet line ω
1, ω
2, ω
3, and ω
4, respectively, connecting the pump outlets 8 to the corresponding connection at the
outlet manifold 28 is indicated. The angles β
1, β
2 and β
3 between the outlet lines ω
1 and ω
2, ω
2 and ω
3, and ω
3 and ω
4, respectively, are indicated. It can be seen that even though all outlet lines ω
1, ω
2, ω
3, and ω
4 are angled relative to each other, the angles β
1, β
2, and β
3 between the outlet lines are equal.
[0069] Fig. 2 illustrates a bottom view of the pressure boosting system 2 basically similar
to the one shown in Fig. 1. The four pumps 4 are shown from the bottom side and thus,
the inlet pipes 20 can be seen. The inlet lines λ
1, λ
2, λ
3, λ
4 connecting the pumps inlet 6 and their corresponding connection at the inlet manifold
30 are indicated. The angles α
1, α
2, and α
3 between the inlet lines λ
1 and λ
2, λ
2 and λ
3, and λ
3 and λ
4, respectively, are shown. All inlet lines λ
1, λ
2, λ
3 and λ
4 are angled relative to each other, however all of the angles α
1, α
2, and α
3 between the inlet lines are equal.
[0070] Fig. 3 illustrates a perspective view of the pressure boosting system 2 basically
similar to the one shown in Fig. 1. The four pumps 4 of the pressure boosting system
2 comprise inlet pipes 20 connecting the inlet manifold 30 of the manifold system
26 and outlet pipes 18 connecting the outlet manifold 28 of the manifold system 26.
The outlet manifold 28 of the manifold system 26 is connected to a main outlet pipe
10 and the inlet manifold 30 of the manifold system 26 is connected to a main inlet
pipe 12. The inlet pipes 20 of all pumps 4 comprise a straight inlet pipe member 16
and the outlet pipes 18 of all pumps comprise a straight outlet pipe member 14. A
non-return valve is provided between each pump outlet 8 and the outlet manifold 28.
During operation of the pressure boosting system 2, one or more pumps 4 can be turned
on. The non-return valves 62 make sure that no fluid can enter the pump outlet 8 of
a pump that has been switched off.
[0071] The fluid that is pressurised by the pressure boosting system 2 enters the inlet
manifold 30 through the main connection pipe 48 via the main inlet pipe 12, and the
inlet manifold 30 distributes the fluid to the pumps 4 via the inlet pipes 20. The
fluid enters a pump 4 through the inlet 6 and leaves the pump 4 through the outlet
8 from where it is pumped through the outlet pipe 18 and enters the outlet manifold
28 of the manifold system 26 that is connected to a main outlet pipe 10.
[0072] Each pump 4 has an inlet 6 and an outlet 8. The inlets 6 are provided at the axial
extremity of the pumps 4 facing the manifold system 26. Each inlet 6 is connected
to an inlet pipe 20 that is further connected to a connection pipe 36 of the inlet
manifold 30 of the manifold system 26. The outlets 8 of the pumps 4 are provided at
the radial surface of the pump sleeve and a bent section 34 is connected to each outlet
8. The bent section 34 is further connected to an outlet pipe 18 that is connected
to a connection pipe 38 of the outlet manifold 28 of the manifold system 26 through
the main pipe connection 46.
[0073] A valve 24 is arranged in each straight inlet pipe member 16 and straight outlet
pipe member 14. When a pump is removed, installed, or exposed to service, the valve
24 may be closed so that there is no access of fluid into the pump. The valves may
be of any suitable type. Both the straight outlet pipe member 14 and the straight
inlet pipe member 16 of each pump 4 extend parallel to the rotational axis of the
pump X
1, X
2, X
3, X
4. Both the inlet manifold 30 and the outlet manifold 28 of the manifold system 26
have a cylindrical geometry and the longitudinal (cylinder) axis B of the inlet manifold
30 as well as the longitudinal (cylinder) axis A of the outlet manifold 28 of the
manifold system 26 extend basically perpendicular to the straight outlet pipe members
14, the straight inlet pipe members 16, the axes of the pump X
1, X
2, X
3, X
4, the inlet lines λ
1, λ
2, λ
3, λ
4 and the outlet lines ω
1, ω
2, ω
3 and ω
4. In fact, the longitudinal axis B of the inlet manifold 30 and the longitudinal axis
A of the outlet manifold 28 of the manifold system 26 are basically parallel to one
another.
[0074] The pressure boosting system 2 is fastened to a base plate 32 by a number of screws.
The base plate 32 is configured to be arranged in a 90 degree corner; however it may
be possible to arrange the pressure boosting system 2 on a base plate 32 having another
shape or geometry. By way of example, it is possible to arrange five to eight pumps
on a 180 degree section of a circle.
[0075] The manifold system 26 has an inlet manifold 30 and an outlet manifold 28, and the
bottom part of the outlet manifold 28 is mechanically and hermetically separated from
the top part of the inlet manifold 30. The outlet manifold 28 is arranged on the top
of the inlet manifold 30 and the two manifolds 28, 30 are separated from each other
by a flexible thin intermediate plate 40. It would, however, be possible to attach
the outlet manifold 28 and the inlet manifold 30 to each other by welding or any other
suitable kind of attachment. The outlet manifold 28 and the inlet manifold 30 may
also be individually separated and displaced from one another.
[0076] Fig. 4 illustrates a perspective view of the manifold system 26 according to the
invention. The manifold system 26 consists of an outlet manifold 28 arranged on top
of an inlet manifold 30. Both manifolds 28, 30 are cylindrical, and connection pipes
36, 38 are arranged on the cylindrical periphery thereof. The outlet manifold 28 comprises
a main connection pipe 46 having a flange 42 that is configured to be connected to
a main outlet pipe. The connection pipes 46, 48 (see Fig. 5 for connection pipe 48)
are provided with sensor inlets 60 that are configured to receive a sensor. For example,
a pressure sensor (not shown in the figures) may be inserted into the sensor inlet.
In the same manner, the inlet manifold 30 comprises a main connection pipe 48 having
a flange 44 that is configured to be connected to a main inlet pipe (this is indicated
in Fig. 5).
[0077] Fig. 5 illustrates a perspective view of the manifold system 26 shown in Fig. 4.
[0078] In Fig. 6, a top view of a manifold system 26 according to the embodiment shown in
Fig. 4 and Fig. 5. It can be seen that the connection pipes 36, 38 (see Fig. 5 for
connection pipe 36) of the inlet manifold 30 (see Fig. 5) and of the outlet manifold
28, respectively, are arranged on the same side of the respective manifold system
26. It can also be seen that the main connection pipes 46, 48 are angled at 90 degrees
relative to each other. It is possible to arrange the main connection pipes 46, 48
in another way. For example, the main connection pipes 46, 48 may be arranged parallel
to one another.
[0079] Fig. 7 illustrates a cross sectional view of an outlet manifold 28 according to an
embodiment of the invention. The manifold 28 has a manifold space 58 configured to
receive a fluid. The main connection pipe 46 connects the manifold space 58 to a main
pipe (not shown). Further, the connection pipes 38 connect the manifold space 58 to
a pump 4 (see Fig. 3). A diaphragm tank 50 is built into the outlet manifold 28 so
that pressure may be maintained in the outlet manifold 28 even with the pumps not
being active. In the top of the diaphragm tank 50 an air screw 56 is arranged. Through
this screw 56 pressurised air 52 can be filled into the diaphragm tank 50. The diaphragm
tank 50 will change its geometry according to the pressure conditions on both sides
of it, and it is adapted to transfer pressure forces between the air side of the diaphragm
54 and the fluid side of the diaphragm 54. The outlet manifold 28 comprises a main
connection pipe 46 with a flange 42 and four connection pipes 38 as well as a sensor
inlet 60.
[0080] The diaphragm tank 50 is also known as an expansion tank or an expansion vessel that
typically is used in domestic hot water systems and closed water heating systems.
The diaphragm tank 50 may be divided into two by a rubber diaphragm 54 or a diaphragm
of another suitable material. As the fluid pressure increases, the diaphragm moves
compressing the air on its fluid-free side.
[0081] Fig. 8 illustrates four different embodiments of the manifold systems 26 according
to the invention. It can be seen that the manifold connections 46, 48 can be oriented
in different ways. Fig. 8 a) shows an embodiment according to which the manifold connection
46 of the outlet manifold 28 extends vertically while the manifold connection 48 of
the inlet manifold 30 extends horizontally. In Fig. 8 b), both the manifold connection
46 of the outlet manifold 28 and the manifold connection 48 of the inlet manifold
30 extend vertically. In Fig. 8 c), the manifold connection 46 of the outlet manifold
28 extends horizontally while the manifold connection 48 of the inlet manifold 30
extends vertically. In Fig. 8 d), a diaphragm tank is integrated in the outlet manifold
28, and both the manifold connection 46 of the outlet manifold 28 and the manifold
connection 48 of the inlet manifold 30 extend horizontally.
List of reference numerals
[0082]
- 2
- - Pressure boosting system
- 4
- - Pump
- 6
- - Inlet
- 8
- - Outlet
- 10
- - Main outlet pipe
- 12
- - Main inlet pipe
- 14
- - Straight outlet pipe member
- 16
- - Straight inlet pipe member
- 18
- - Outlet pipe
- 20
- - Inlet pipe
- 22
- - Pipe system
- 24
- - Valve
- 26
- - Manifold system
- 28
- - Outlet manifold
- 30
- - Inlet manifold
- 32
- - Base plate
- 34
- - Bent section
- A
- - Axis
- B
- - Axis
- X1, X2, X3, X4,
- - Axes of the pumps
- 36, 38
- - Connection pipes
- 40
- - Intermediate plate
- ω1, ω2, ω3, ω4
- - Outlet lines
- λ1, λ2, λ3, λ4
- - Inlet lines
- 42, 44, 42', 44'
- - Flanges
- 46, 48
- - Main connection pipes
- 50
- - Diaphragm tank
- 52
- - Pressurised air
- 54
- - Flexible diaphragm
- 56
- - Air screw
- 58
- - Manifold space
- 60
- - Sensor inlet
- C
- - Section of a circle
1. A pressure boosting system (2) comprising:
- two or more pumps (4) each having:
- an inlet (6) connected to an inlet manifold (30), and
- an outlet (8) connected to an outlet manifold (28);
wherein the line connecting the inlet (6) and its corresponding connection at the
inlet manifold (30) defines an inlet line (λ
1, λ
2, λ
3, λ
4), and
wherein the line connecting the outlet (8) and its corresponding connection at the
outlet manifold (28) defines an outlet line (ω
1, ω
2, ω
3, ω
4),
wherein at least two of the inlet lines (λ
1, λ
2, λ
3, λ
4) are angled relative to each other, wherein the at least two of the inlet lines (λ
1, λ
2, λ
3, λ
4) are non-parallel to each other, and/or that at least two of the outlet lines (ω
1, ω
2, ω
3, ω
4) are angled relative to each other, wherein the at least two of the outlet lines
(ω
1, ω
2, ω
3, ω
4) are non-parallel to each other,
wherein the outlet (8) of each pump (4) is connected to an outlet pipe (18) comprising
a basically straight outlet pipe member (14), and
wherein the inlet (6) of each pump (4) is connected to an inlet pipe (20) comprising
a basically straight inlet pipe member (16), wherein the inlet pipes (20) are arranged
in a first plane and the outlet pipes (18) are arranged in a second plane extending
basically parallel to the first plane,
wherein each pump (4) has a longitudinal axis (X1, X2, X3, X4) and the longitudinal
axes (X1, X2, X3, X4) of the pumps (4) are angled relative to each other,
characterized in that the manifolds (28), (30) are centrally arranged and the pumps (4) are arranged in
a formation such that they are connected to the centrally arranged manifolds (28),
(30).
2. Pressure boosting system (2) according to claim 1 characterised in that all inlet lines (λ1, λ2, λ3, λ4) are angled relative to each other and/or that all outlet lines (ω1, ω2, ω3, ω4) are angled relative to each other.
3. Pressure boosting system (2) according to claim 1 or 2 characterised in that the longitudinal axis (X1, X2, X3, X4) of each pump (4) extends basically parallel to the corresponding inlet line (λ1, λ2, λ3, λ4) and/or to the corresponding outlet line (ω1, ω2, ω3, ω4) of the pump (4).
4. Pressure boosting system (2) according to any one of the preceding claims characterised in that the inlet pipes (20) of the pumps (4) are directed basically towards a first common
axis, and that the outlet pipes (18) of the pumps (4) are directed basically towards
a second axis.
5. Pressure boosting system (2) according to any one of the preceding claims characterised in that the pumps (4) are arranged along an arced line, preferably on a section of a circle.
6. Pressure boosting system (2) according to any one of the preceding claims characterised in that the longitudinal axes (X1, X2, X3, X4) of the pumps (4) extend basically perpendicular
to a first axis and/or to a second axis.
7. Pressure boosting system (2) according to any one of the preceding claims characterised in that each straight outlet pipe member (14) and/or each straight inlet pipe member (16)
extends basically parallel to the longitudinal axis (X1, X2, X3, X4) of the corresponding pump (4).
8. Pressure boosting system (2) according to any one of the preceding claims
characterised in that the inlet pipes (20) and outlet pipes (18) are connected to a manifold system (26)
that comprises:
- a basically cylindrical inlet manifold (30) having a longitudinal axis (B), and
being arranged adjacent to a basically cylindrical outlet manifold (28),
- the basically cylindrical outlet manifold (28) having a longitudinal axis (A);
wherein the inlet manifold (30) comprises a connection to the main inlet (12) and
a number of connections (36) for the inlet pipes (20) of the pumps (4), and wherein
the outlet manifold (28) comprises a connection to the main outlet (10) and a number
of connections (38) for the outlet pipes (18) of the pumps (4).
9. Pressure boosting system (2) according to claim 8, characterised in that the longitudinal axis (B) of the inlet manifold (30) of the manifold system (26)
and the longitudinal axis (A) of the outlet manifold (28) of the manifold system (26)
are parallel to each other, and are arranged basically in a vertical direction.
10. Pressure boosting system (2) according to claim 8 or claim 9 characterised in that each manifold comprises a number of connection pipes (36, 38) provided at the cylindrical
periphery of the manifold, and that the connection pipes extend radially, preferably
perpendicular to the longitudinal axis of the manifolds (A, B).
11. Pressure boosting system (2) according to any one of the preceding claims
characterised in that
- the inlet pipes (20) of the pumps (4) extend basically horizontally from the pumps
(4) to the inlet manifold (30);
- the outlet pipes (18) of the pumps (4) comprise a bent section (34) connecting the
outlets (8) to the straight outlet pipe members (14);
- the straight outlet pipe members (14) extend basically horizontally with respect
to the outlet manifold (28);
- the outlet manifold (28) of the manifold system (26) is arranged above and adjacent
to the inlet manifold (30) of the manifold system (26); and
- the outlet manifold (28) of the manifold system (26) and the inlet manifold (30)
of the manifold system (26) are separated from each other.
12. Pressure boosting system (2) according to any one of the preceding claims characterised in that a diaphragm tank (50) is arranged on the outlet manifold (28), or in that a diaphragm is build into the outlet manifold (28).
1. Druckverstärkungssystem (2), das umfasst:
- zwei oder mehr Pumpen (4), die jeweils aufweisen:
- einen Einlass (6), der mit einem Einlassverteiler (30) verbunden ist, und
- einen Auslass (8), der mit einem Auslassverteiler (28) verbunden ist, und
wobei die Leitung, die den Einlass (6) und seine entsprechende Verbindung mit dem
Einlassverteiler (30) verbindet, eine Einlassleitung (λ
1, λ
2, λ
3, λ
4) definiert, und
wobei die Leitung, die den Auslass (8) und seine entsprechende Verbindung mit dem
Auslassverteiler (28) verbindet, eine Auslassleitung (ω
1, ω
2, ω
3, ω
4) definiert,
wobei mindestens zwei der Einlassleitungen (λ
1, λ
2, λ
3, λ
4) zueinander abgewinkelt sind, wobei die mindestens zwei der Einlassleitungen (λ
1, λ
2, λ
3, λ
4) zueinander nicht parallel sind, und/oder mindestens zwei der Auslassleitungen (ω
1, ω
2, ω
3, ω
4) zueinander abgewinkelt sind, wobei die mindestens zwei der Auslassleitungen (ω
1, ω
2, ω
3, ω
4) zueinander nicht parallel sind,
wobei der Auslass (8) jeder Pumpe (4) mit einem Auslassrohr (18) verbunden ist, das
ein im Wesentlichen gerades Auslassrohrelement (14) umfasst, und
wobei der Einlass (6) jeder Pumpe (4) mit einem Einlassrohr (20) verbunden ist, das
ein im Wesentlichen gerades Einlassrohrelement (16) umfasst,
wobei die Einlassrohre (20) in einer ersten Ebene eingerichtet sind, und die Auslassrohre
(18) in einer zweiten Ebene, die sich im Wesentlichen parallel zu der ersten Ebene
erstreckt, eingerichtet sind,
wobei jede Pumpe (4) eine Längsachse (X
1, X
2, X
3, X
4) aufweist, und die Längsachsen (X
1, X
2, X
3, X
4) der Pumpen (4) zueinander abgewinkelt sind,
dadurch gekennzeichnet, dass die Verteiler (28), (30) zentral eingerichtet sind, und die Pumpen (4) in einer Formation
derart eingerichtet sind, dass sie mit den zentral eingerichteten Verteilern (28),
(30) verbunden sind.
2. Druckverstärkungssystem nach Anspruch 1, dadurch gekennzeichnet, dass alle Einlassleitungen (λ1, λ2, λ3, λ4) zueinander abgewinkelt sind, und/oder dass alle Auslassleitungen (ω1, ω2, ω3, ω4) zueinander abgewinkelt sind.
3. Druckverstärkungssystem (2) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass sich die Längsachsen (X1, X2, X3, X4) jeder Pumpe (4) im Wesentlichen parallel zu der entsprechenden Einlassleitung (λ1, λ2, λ3, λ4) und/oder zu der entsprechenden Auslassleitung (ω1, ω2, ω3, ω4) der Pumpe (4) erstrecken.
4. Druckverstärkungssystem (2) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Einlassrohre (20) der Pumpen (4) im Wesentlichen zu einer ersten gemeinsamen
Achse gerichtet sind, und dass die Auslassrohre (18) der Pumpen (4) im Wesentlichen
zu einer zweiten Achse gerichtet sind.
5. Druckverstärkungssystem (2) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Pumpen (4) entlang einer gebogenen Linie, vorzugsweise auf einem Abschnitt eines
Kreises eingerichtet sind.
6. Druckverstärkungssystem (2) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass sich die Längsachsen (X1, X2, X3, X4) der Pumpen (4) im Wesentlichen senkrecht zu einer ersten Achse und/oder zu einer
zweiten Achse erstrecken.
7. Druckverstärkungssystem (2) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass sich jedes gerade Auslassrohrelement (14) und/oder jedes gerade Einlassrohrelement
(16) im Wesentlichen parallel zu der Längsachse (X1, X2, X3, X4) der entsprechenden
Pumpe (4) erstreckt.
8. Druckverstärkungssystem (2) nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass die Einlassrohre (20) und die Auslassrohre (18) mit einem Verteilersystem (26) verbunden
sind, das umfasst:
- einen im Wesentlichen zylindrischen Einlassverteiler (30), der eine Längsachse (B)
aufweist und an einen im Wesentlichen zylindrischen Auslassverteiler (28) angrenzend
eingerichtet ist,
- einen im Wesentlichen zylindrischen Auslassverteiler (28), der eine Längsachse (A)
aufweist;
wobei der Einlassverteiler (30) eine Verbindung zu dem Haupteinlass (12) und eine
Anzahl von Verbindungen (36) für die Einlassrohre (20) der Pumpen (4) umfasst, und
wobei der Auslassverteiler (28) eine Verbindung zu dem Hauptauslass (10) und eine
Anzahl von Verbindungen (38) für die Auslassrohre (18) der Pumpen (4) aufweist.
9. Druckverstärkungssystem (2) nach Anspruch 8, dadurch gekennzeichnet, dass die Längsachse (B) des Einlassverteilers (30) des Verteilersystems (26) und die Längsachse
(A) des Auslassverteilers (28) des Verteilersystems (26) zueinander parallel sind
und im Wesentlichen in eine vertikale Richtung eingerichtet sind.
10. Druckverstärkungssystem (2) nach Anspruch 8 oder Anspruch 9, dadurch gekennzeichnet, dass jeder Verteiler eine Anzahl von Verbindungsrohren (36, 38) umfasst, die an dem zylindrischen
Umfang des Verteilers bereitgestellt ist, und dass sich die Verbindungsrohre radial,
vorzugsweise senkrecht zu der Längsachse der Verteiler (A, B) erstrecken.
11. Druckverstärkungssystem (2) nach einem der vorstehenden Ansprüche,
dadurch gekennzeichnet, dass
- sich die Einlassrohre (20) der Pumpen (4) im Wesentlichen horizontal von den Pumpen
(4) zu dem Einlassverteiler (30) erstrecken;
- die Auslassrohre (18) der Pumpen (4) einen gebogenen Teilabschnitt (34) umfassen,
der die Auslässe (8) mit den geraden Auslassrohrelementen (14) verbindet;
- sich die geraden Auslassrohrelemente (14) im Wesentlichen horizontal in Bezug auf
den Auslassverteiler (28) erstrecken;
- der Auslassverteiler (28) des Verteilersystems (26) über dem Einlassverteiler (30)
des Verteilersystems (26) und an ihn angrenzend eingerichtet ist; und
- der Auslassverteiler (28) des Verteilersystems (26) und der Einlassverteiler (30)
des Verteilersystems (26) voneinander getrennt sind.
12. Druckverstärkungssystem (2) nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass ein Membrangefäß (50) auf dem Auslassverteiler (28) eingerichtet ist, oder dass eine
Membran in den Auslassverteiler (28) eingebaut ist.
1. Système d'amplification de pression (2) comprenant :
- deux pompes (4) ou plus ayant chacune :
- une entrée (6) connectée à un collecteur d'admission (30), et
- une sortie (8) connectée à un collecteur de sortie (28) ;
dans lequel la ligne connectant l'entrée (6) et sa connexion correspondante au collecteur
d'admission (30) définit une ligne d'entrée (λ1, λ2, λ3, λ4), et
dans lequel la ligne connectant la sortie (8) et sa connexion correspondante au collecteur
de sortie (28) définit une ligne de sortie (ω1, ω2, ω3, ω4),
dans lequel au moins deux des lignes d'entrée (λ1, λ2, λ3, λ4) sont inclinées les
unes par rapport aux autres, dans lequel les au moins deux des lignes d'entrée (λ1,
λ2, λ3, λ4) ne sont pas parallèles les unes aux autres, et/ou ces au moins deux des
lignes de sortie (ω1, ω2, ω3, ω4),) sont inclinées les unes par rapport aux autres,
dans lequel les au moins deux des lignes de sortie (ω1, ω2, ω3, ω4) ne sont pas parallèles
les unes aux autres,
dans lequel la sortie (8) de chaque pompe (4) est connectée à un tuyau de sortie (18)
comprenant un élément de tuyau de sortie essentiellement droit (14), et
dans lequel l'entrée (6) de chaque pompe (4) est connectée à un tuyau d'entrée (20)
comprenant un élément de tuyau d'entrée essentiellement droit (16),
dans lequel les tuyaux d'entrée (20) sont agencés dans un premier plan et les tuyaux
de sortie (18) sont agencés dans un second plan s'étendant essentiellement parallèlement
au premier plan,
dans lequel chaque pompe (4) a un axe longitudinal (X1, X2, X3, X4) et les axes longitudinaux
(X1, X2, X3, X4) des pompes (4) sont inclinés les uns par rapport aux autres,
caractérisé en ce que les collecteurs (28), (30) sont agencés de manière centrale et les pompes (4) sont
agencées en une formation telle qu'elles sont connectées aux collecteurs (28), (30)
agencés de manière centrale.
2. Système d'amplification de pression (2) selon la revendication 1, caractérisé en ce que toutes les lignes d'entrée (λ1, λ2, λ3, λ4) sont inclinées les unes par rapport aux autres et/ou en ce que toutes les lignes de sortie (ω1, ω2, ω3, ω4) sont inclinées les unes par rapport aux autres.
3. Système d'amplification de pression (2) selon la revendication 1 ou 2, caractérisé en ce que l'axe longitudinal (X1, X2, X3, X4) de chaque pompe (4) s'étend essentiellement parallèlement à la ligne d'entrée (λ1, λ2, λ3, λ4) correspondante et/ou à la ligne de sortie (ω1, ω2, ω3, ω4) correspondante de la pompe (4).
4. Système d'amplification de pression (2) selon l'une quelconque des revendications
précédentes, caractérisé en ce que les tuyaux d'entrée (20) des pompes (4) sont orientés essentiellement vers un premier
axe commun, et en ce que les tuyaux de sortie (18) des pompes (4) sont orientés essentiellement vers un second
axe.
5. Système d'amplification de pression (2) selon l'une quelconque des revendications
précédentes, caractérisé en ce que les pompes (4) sont agencées le long d'une ligne en arc, de préférence sur une section
d'un cercle.
6. Système d'amplification de pression (2) selon l'une quelconque des revendications
précédentes, caractérisé en ce que les axes longitudinaux (X1, X2, X3, X4) des pompes (4) s'étendent essentiellement
perpendiculairement à un premier axe et/ou à un second axe.
7. Système d'amplification de pression (2) selon l'une quelconque des revendications
précédentes, caractérisé en ce que chaque élément de tuyau de sortie droit (14) et/ou chaque élément de tuyau d'entrée
droit (16) s'étend essentiellement parallèlement à l'axe longitudinal (X1, X2, X3,
X4) de la pompe (4) correspondante.
8. Système d'amplification de pression (2) selon l'une quelconque des revendications
précédentes,
caractérisé en ce que les tuyaux d'entrée (20) et les tuyaux de sortie (18) sont reliés à un système de
collecteurs (26) qui comprend.
- un collecteur d'admission (30) essentiellement cylindrique ayant un axe longitudinal
(B), et étant agencé de manière adjacente à un collecteur de sortie (28) essentiellement
cylindrique,
- le collecteur de sortie (28) essentiellement cylindrique ayant un axe longitudinal
(A) ;
dans lequel le collecteur d'admission (30) comprend une connexion à l'entrée principale
(12) et un certain nombre de connexions (36) pour les tuyaux d'entrée (20) des pompes
(4), et dans lequel le collecteur de sortie (28) comprend une connexion à la sortie
principale (10) et un certain nombre de connexions (38) pour les tuyaux de sortie
(18) des pompes (4).
9. Système d'amplification de pression (2) selon la revendication 8, caractérisé en ce que l'axe longitudinal (B) du collecteur d'admission (30) du système de collecteurs (26)
et l'axe longitudinal (A) du collecteur de sortie (28) du système de collecteurs (26)
sont parallèles l'un à l'autre, et sont agencés essentiellement dans une direction
verticale.
10. Système d'amplification de pression (2) selon la revendication 8 ou la revendication
9, caractérisé en ce que chaque collecteur comprend un certain nombre de tuyaux de connexion (36, 38) prévus
à la périphérie cylindrique du collecteur, et en ce que les tuyaux de connexion s'étendent radialement, de préférence perpendiculairement
à l'axe longitudinal des collecteurs (A, B).
11. Système d'amplification de pression (2) selon l'une quelconque des revendications
précédentes,
caractérisé en ce que
- les tuyaux d'entrée (20) des pompes (4) s'étendent essentiellement horizontalement
à partir des pompes (4) vers le collecteur d'admission (30) ;
- les tuyaux de sortie (18) des pompes (4) comprennent une section coudée (34) connectant
les sorties (8) aux éléments de tuyau de sortie droit (14) ;
- les éléments de tuyau de sortie droit (14) s'étendent essentiellement horizontalement
par rapport au collecteur de sortie (28) ;
- le collecteur de sortie (28) du système de collecteur (26) est agencé au-dessus
et de manière adjacente au collecteur d'admission (30) du système de collecteur (26)
; et
- le collecteur de sortie (28) du système de collecteur (26) et le collecteur d'admission
(30) du système de collecteur (26) sont séparés l'un de l'autre.
12. Système d'amplification de pression (2) selon l'une quelconque des revendications
précédentes, caractérisé en ce qu'un réservoir à membrane (50) est agencé sur le collecteur de sortie (28), ou en ce qu'une membrane est intégrée dans le collecteur de sortie (28).