TECHNICAL FIELD
[0001] This invention relates to a method of operating a top and bottom blowing converter
effective for suppressing wear of furnace wall refractory and generation of dust.
RELATED ART
[0002] In the operation of a top and bottom blowing converter, especially in the decarburization
refining thereof, an improvement of productivity is attained by increasing an amount
of oxygen gas supplied per a unit time. In this regard, the increase in the supply
amount of oxygen gas leads to an easy scattering of iron content as a dust, which
is a phenomenon that the dust adheres to a surrounding equipment or a neighborhood
of a furnace side wall and/or a furnace throat. The dust is roughly divided into one
obtained by breaking away bubbles generated in the furnace from a bath surface of
molten iron together with grained iron (so-called "bubble burst") and one generated
by evaporating iron atom (so-called "fume"). It is known that a generation ratio between
them is varied with a progress of the decarburization refining.
[0003] In the decarburization refining, hot metal is finally changed into molten steel because
carbon in the hot metal is decreased gradually with the progress of the decarburization
reaction. However, it is not possible to clearly distinguish a state of hot metal
and a state of molten steel, so that the hot metal and molten steel are called generically
as "molten iron" in the following description.
[0004] The scattered dust (iron content) is recovered and then recycled as an iron source
even if it is generated by any of the above causes. In the recovery of iron content
from the dust, however, there is such a problem that the operation cost is increased
or the decrease of the operating rate is caused in the top and bottom blowing converter.
Accordingly, it is examined to suppress the generation of the dust in the conventional
operation of the top and bottom generation of the dust in the conventional operation
of the top and bottom blowing converter during the decarburization refining.
[0005] For example, Patent Document 1 discloses a technique focused on a high-temperature
reaction region exceeding 2000°C (so-called "hot spot") which is formed by impinging
an oxygen jet jetted from respective lance nozzles of a top-blown lance onto the bath
surface of molten iron. That is, when an overlapping state between adjacent hot spots
with each other is defined by an index value as an overlap ratio, the above technique
is a method of suppressing the generation of dust by adjusting a jet angle of the
oxygen jet from the top-blown lance so as to set the index value to not more than
20%.
[0006] Moreover, Patent Document 2 discloses a technique of suppressing the dust with a
top-blown multihole lance having seven holes inclusive of a center hole by adjusting
the jet angle of the oxygen jet from the top-blown lance so that the overlap ratio
is set to not more than 30% and a ratio of a total area of the hot spots occupied
in an area surrounding outermost periphery of the hot spots is set to not more than
75%.
[0007] In these techniques, the generation of the dust due to the bubble burst is suppressed
by controlling mutual interference of the oxygen jets jetted from the top-blown lance.
However, they cannot be said to be effective for suppressing the dust due to the fume.
[0008] On the other hand, it is known in the decarburization refining that the molten iron
accommodated in the top and bottom blowing converter is fluctuated by the oxygen jet
jetted from the top-blown lance or an agitating gas supplied from a bottom-blown tuyere
(such as inert gas, oxidizing gas or the like). The fluctuation of molten iron promotes
scattering of the dust (especially dust due to the bubble burst). Accordingly, it
is important to suppress the fluctuation of molten iron or an oscillation of a furnace
body for suppressing the generation of the dust. Furthermore, the suppression of the
oscillation of the furnace body has an effect for preventing equipment failures.
[0009] In Patent Document 3 is disclosed a technique of suppressing the oscillation of the
furnace body by adjusting the jet angle of the oxygen jet to a range of 20-30° so
as not to overlap the hot spot formed by the oxygen jet jetted from the top-blown
lance with a region floating the agitating gas supplied from the bottom-blown tuyere.
However, if the jet angle of the oxygen jet is increased excessively, a refractory
in the top and bottom blowing converter is easily worn.
[0010] Moreover, the scattering of molten iron or molten slag (so-called slopping) must
be prevented because the scattered material is adhered to a furnace wall or a neighborhood
of a furnace throat like the dust due to bubble burst or fume and then deposited to
bring about troubles in the operation of the top and bottom blowing converter.
[0011] In Patent Documents 4-6 (Patent Document 5:
WO82/01012 A1; Patent Document 6:
JP2013142189 A) are disclosed a technique wherein bottom-blown tuyeres are arranged inside a circle
formed by plural hot spots to suppress spitting. However, since the high-temperature
hot spots are arranged near to the furnace wall, a refractory in the furnace wall
of the top and bottom blowing converter is easily worn.
PRIOR ART DOCUMENTS
PATENT DOCUMENTS
SUMMARY OF THE INVENTION
TASK TO BE SOLVED BY THE INVENTION
[0013] An object of the invention is to solve the above problems inherent to the conventional
techniques and to provide a method of operating a top and bottom blowing converter
capable of suppressing oscillation of furnace body and generation of dust as well
as wearing of furnace wall refractory in the operation of the top and bottom blowing
converter during decarburization refining.
SOLUTION FOR TASK
[0014] In order to further improve the techniques disclosed in Patent Documents 1-6 the
inventors have focused attention on mutual interference between mutual oxygen jets
from a top-blown lance having a plurality of lance nozzles (nozzles for jetting oxygen
jet) (hereinafter referred to as "top-blown multihole lance) and mutual interference
between a hot spot formed by oxygen jet from the top-blown multihole lance and a floating
region of an agitating gas supplied from a bottom-blown tuyere, and studied thereto
repeatedly. As a result, it has been found that the following cases (a) and (b) are
effective to suppress wearing of a furnace wall refractory in the top and bottom blowing
converter and generation of dust:
- (a) the number of lance nozzles (for example, Laval nozzle, straight nozzle and so
on) in the top-blown multihole lance especially jetting oxygen jets onto a surface
of molten iron accommodated in the top and bottom blowing converter and jet angles
thereof are adequately controlled, and
- (b) a hot spot formed by the oxygen jet from the top-blown multihole lance and a floating
region of an agitating gas supplied from a bottom-blown tuyere are desirable to be
arranged so as not to mutually interfere to each other.
[0015] That is, the invention is a method of operating a top and bottom blowing converter
by using a top-blown multihole lance having a plurality of lance nozzles for jetting
oxygen gas to jet oxygen jets from the lance nozzles at a nozzle tilting angle θ (°)
inclined with respect to a center axis of the top-blown multihole lance and arranging
n bottom-blown tuyeres in a furnace bottom to blow an agitating gas from the bottom-blown
tuyeres, characterized in that an interference rate (IR) indicated by the following
equation (1) is not more than 0.7 with respect to a positional relation between a
hot spot formed by impinging the top-blown oxygen jets jetted from the top-blown multihole
lance onto a bath surface of molten iron and a floating region of an agitating gas
blown from the bottom-blown tuyeres to molten iron and formed in a bath surface of
molten iron when a point of intersecting a center axis of the top-blown multihole
lance with a plane perpendicular to the center axis of the top-blown multihole lance
at the bath surface of molten iron in the top and bottom blowing converter is a lance
center point L
C and a point of intersecting a jetting direction of the oxygen jets jetted from the
lance nozzle with the plane is a hot spot center point G
J and a point of intersecting a center axis of the bottom-blown tuyere with the plane
is a tuyere center point M
C:

, wherein
IR: interference rate;
n: an integer of 2 or more;
φ: an angle (°) between a line from the lance center point LC to the hot spot center point GJ and a line from the lance center point LC to the tuyere center point MC;
rt: a distance (m) between the lance center point LC and the hot spot center point GJ;
rb: a distance (m) between the tuyere center point MC in each bottom blown tuyere and the lance center point Lc.
[0016] Moreover, φ
i and r
bi are an angle (°) and a distance (m), respectively, determined for i-th (i: 1-n) bottom-blown
tuyere, and wherein a range of a supply amount of the top blown oxygen gas is 2.0-2.85
Nm3/min/t.
[0017] In the operation method according to the invention, the followings are preferable
embodiments:
- (1) the interference rate (IR) satisfies (IR) ≤ 0.70 when the angel φ showing a positional
relation between the lance nozzle and the bottom-blown tuyere is minimum;
- (2) the interference rate (IR) is not more than 0.46;
- (3) the lance nozzle is a Laval nozzle or a straight nozzle;
- (4) the top-blown multihole lance has 2 to 5 lance nozzles; and
- (5) the top and bottom blowing converter is operated by arranging a combination of
the top-blown lance and the bottom-blown tuyere so as to satisfy the interference
rate (IR).
EFFECT OF THE INVENTION
[0018] According to the invention, when decarburization refining is performed by using a
top and bottom blowing converter, the improvement of iron yield can be attained by
suppressing generation of dust and also the oscillation of the furnace body can be
suppressed to effectively prevent wearing of a furnace wall refractory.
BRIEF DESCRIPTION OF THE DRAWINGS
[0019]
FIG. 1 is a perspective view schematically showing a relation between a top-blown
multihole lance and a bottom-blown tuyere applied by the invention.
FIG. 2 is a graph showing a relation between an interference rate and an average dust
generation rate.
FIG. 3 is a graph showing a relation between an interference rate and a refractory
wear index.
EMBODIMENTS FOR CARRYING OUT THE INVENTION
[0020] FIG. 1 is a view schematically showing a relation between a top-blown multihole lance
and a bottom-blown tuyere applied by the invention. A top-blown multihole lance 1
has a plurality of lance nozzles 2 for jetting oxygen gas in which an oxygen jet 3
can be jetted from each of the lance nozzles 2. In FIG. 1, the z-axis is a center
axis of the top-blown multihole lance 1 and a bath surface of molten iron is orthogonal
to this axis (z = 0). Therefore, a distance h between a lower end of the top-blown
multihole lance 1 and the bath surface of molten iron is a lance height. A plane perpendicular
to the center axis of the top-blown multihole lance 1 (hereinafter referred to as
"x-y plane") is the bath surface of molten iron defined by the x-axis and y-axis.
A point of intersecting the center axis of the top-blown multihole lance 1 with the
x-y plane corresponds to an origin of coordinate axes, which is called as a lance
center point L
C hereinafter.
[0021] In FIG. 1 is shown an example of arranging two lance nozzles 2, but the number of
the lance nozzles 2 is not limited and is preferable to be set to about 2 to 5.
[0022] The oxygen jet 3 is jetted from the top-blown multihole lance 1 in a direction with
an angle inclined to the center axis of the top-blown multihole lance 1 (hereinafter
referred to as "nozzle tilting angle θ (°)"). A point of intersecting the oxygen jet
3 with the x-y plane corresponds to a center of a hot spot (that is, a high temperature
reaction region exceeding 2000°C formed by impinging the oxygen jet to the bath surface
of molten iron) 4. Hereinafter, this point is called as a hot spot center point G
J. All of the plural lance nozzles 2 disposed in the top-blown multihole lance 1 have
the same nozzle tilting angle θ. Therefore, the top-blown oxygen jets 3 are also jetted
at the same angle.
[0023] On the other hand, a plurality (that is, i = 1-n) of bottom-blown tuyeres 5 are disposed
in the top and bottom blowing converter (not shown). In this regard, only one tuyere
is illustrated in FIG. 1, which is described as i-th bottom-blown tuyere 5 hereinafter.
Moreover, an agitating gas supplied from the bottom-blown tuyere 5 is floated in molten
iron as bubbles to form an aggregated region 6 of the bubbles (hereinafter referred
to as "agitating gas floating region").
[0024] For example, when a point of intersecting the center axis of the bottom-blown tuyere
5 with the x-y plane is a tuyere center point M
C, i-th tuyere center point M
C is indicated as M
Ci in FIG. 1.
[0025] When an angle between a line from the lance center point L
C to the hot spot center point G
J and a line from the lance center point L
C to the tuyere center point M
C is defined as φ (°), an angle of i-th bottom-blown tuyere 5 in FIG. 1 is defined
as φ
i (°).
[0026] Further, a distance (m) between the lance center point L
C and the hot spot center point G
J is defined as r
t. As to the distance r
t, since the nozzle tilting angles θ of the plural lance nozzles 2 are all the same,
a distance r
t defined for each lance nozzle 2 is the same.
[0027] On the other hand, a distance (m) between the lance center point L
C and the tuyere center point M
C is defined as r
b. In this regard, r
bi is represented in FIG. 1 for indicating a distance r
b of i-th bottom-blown tuyere 5.
[0028] An example of the method of operating a top and bottom blowing converter according
to the invention will be described with reference to FIG. 1.
[0029] The inventors have conducted an experiment for decarburization refining of molten
iron with an experimental top and bottom blowing converter (capacity: 5 tons) capable
of jetting the oxygen jet 3 from the top-blown multihole lance 1 and supplying the
agitating gas from the bottom-blown tuyere 5 simultaneously and then investigated
an influence of an arrangement of the top-blown multihole lance 1 and the bottom-blown
tuyere 5, especially an interference rate (IR) of them upon a dust generation amount
and a refractory wearing amount.
[0030] As the top-blown multihole lance 1 is used a lance of water-cooled type having a
triple tube structure. A plurality of lance nozzles 2 capable of jetting the oxygen
jet 3 into a direction inclined by the nozzle tilting angle θ with respect to the
center axis of the top-blown multihole lance 1 are disposed in a tip portion of the
lance on the same circumference at equal intervals. Moreover, the shape and dimensions
of the lance nozzle 2 are shown in Table 1. In this experiment, an oxygen gas (flow
rate: m
3/minute (Normal)) is used as the oxygen jet 3 and argon gas is used as the agitating
gas. Moreover, the lance height h is set to 400 mm, and the jet of the oxygen jet
3 starts when a carbon concentration in molten iron is 4.0 mass% and stops when it
decreases to 0.05 mass%.
Table 1
Number of nozzles |
Nozzle shape |
Throat diameter of nozzle (mm) |
Exit diameter of nozzle (mm) |
Nozzle tilting angle (°) |
4 |
Laval type |
10.1 |
11.9 |
14 |
23 |
5 |
9.0 |
10.7 |
14 |
23 |
5 |
8.2 |
9.7 |
14 |
23 |
[0031] In this experiment, combinations showing a relation between the top-blown multihole
lance 1 and the bottom-blown tuyere 5 are as shown in Table 2, Table 3, Table 4 and
Table 5. The interference rate (IR) shown in Table 2 and Table 3 is a value calculated
by the following equation (1), which shows a positional relation between the hot spot
4 formed by impinging the top-blown oxygen jet 3 jetted from the top-blown multihole
lance 1 onto the bath surface of molten iron and the agitating gas floating region
6 formed on the bath surface of molten iron by blowing and floating the agitating
gas from the bottom-blown tuyere 5 in molten iron:

, wherein
IR: an interference rate;
n: an integer of 2 or more;
φ: an angle (°) between a line from the lance center point LC to the hot spot center point GJ and a line from the lance center point LC to the tuyere center point Mc;
rt: a distance (m) between the lance center point LC and the hot spot center point GJ;
rb: a distance (m) between the tuyere center point MC in each bottom blown tuyere and the lance center point LC.
[0032] Moreover, φ
i and r
bi are an angle (°) and a distance (m), respectively, determined for i-th (i: 1-n) bottom-blown
tuyere.

[0033] When the experiment of decarburization refining is conducted in this manner, a dust
concentration in an exhaust gas is measured to calculate a dust generation rate (kg/[minute
· ton of molten iron]) by using the following equation (2). Moreover, an average value
every each level of the experiment is used as a dust generation rate, a dust concentration
in an exhaust gas and an exhaust gas flow rate in the equation (2). A relation between
the average dust generation rate and the interference rate (IR) is shown in FIG. 2.

[0034] As seen from FIG. 2, the dust generation rate is decreased as the interference rate
(IR) is decreased or the interference (involving degree) between the hot spot 4 and
the agitating gas floating region 6 becomes smaller. When the interference rate (IR)
is lower than 0.70, the dust generation rate becomes lower than the average value
thereof at a maximum value 0.95 of the interference rate (IR) in this experiment.
Moreover, when the interference rate (IR) is not more than 0.46, the average dust
generation rate is largely decreased to not more than 1/2 of the maximum value of
the average dust generation rate within a range of the interference rate in this experiment.
[0035] In this respect, the interference rate (IR) of 1.0 means a state of completely overlapping
the hot spot 4 with the agitating gas floating region 6.
[0036] After the end of the experiment, the MgO concentration (mass%) in the slag is measured
every each level of the experiment to calculate a refractory wear index by using the
following equation (3). As seen from the equation (3), the refractory wear index in
the level 18 becomes 1.0. A relation between the refractory wear index and the interference
rate (IR) is shown in FIG. 3.

[0037] As seen from FIG. 3, an influence of the interference rate (IR) exerted to the refractory
wear index is small and rather an influence of the nozzle tilting angel θ exerted
thereto is large. That is, it can be seen that the refractory wear index in the decarburization
refining with the top-blown multihole lance 1 having a nozzle tilting angle θ of 23°
is increased as compared to the decarburization refining with the top-blown multihole
lance 1 having a nozzle tilting angle θ of 14°, that is, the refractory wear is liable
to be progressed.
[0038] From these experimental results, the interference rate (IR) is limited to not more
than 0.70, preferably not more than 0.46 in the invention.
[0039] That is, in order to make the interference rate (IR) calculated by the equation (1)
to a smaller value, it is understood that it is effective to arrange the bottom-blown
tuyere 5 in a position apart from the top-blown multihole lance 1 (that is, each of
the distances r
bi is made larger) or arrange the hot spot 4 and the agitating gas floating region 6
in positions apart from each other (that is, each of the angles φ
i is made larger).
[0040] If the nozzle tilting angle θ is too large, there is caused a problem that a region
of the hot spot 4 comes close to an inner wall of the top and bottom blowing converter
and the wearing of the refractory is promoted. Therefore, the nozzle tilting angle
θ is preferable to be less than 23°.
[0041] It is preferable that the number of the lance nozzles 2 arranged in the top-blown
multihole lance 1 is not more than 5 (so-called 5 holes). The reason is that the size
of the hot spot 4 can be made smaller by decreasing the number of the lance nozzles
2. As a result, a freedom in the arrangement of the bottom-blown tuyeres 5 can be
increased and hence the angle φ can be enlarged easily. In the combinations of the
top-blown multihole lance 1 and the bottom-blown tuyere arrangement used in the experiment,
the number of nozzles in the top-blown multihole lance 1 capable of minimizing the
interference rate (IR) is only 4 or 5 (see Table 2, Table 3, Table 4 and Table 5).
In the top-blown multihole lance 1 having the nozzle number of 6, it is not possible
to obtain an arrangement satisfying an interference rate (IR) ≤ 0.46. Therefore, it
can be seen that it is preferable to use a top-blown multihole lance 1 having the
nozzle number of not more than 5.
EXAMPLES
[0042] An experiment of operating a top and bottom blowing converter for decarburization
refining of molten iron is conducted by using an actual top and bottom blowing converter
(capacity: 350 tons). An arrangement of lance nozzles in the top-blown multihole nozzle
and an arrangement of bottom-blown tuyeres in the top and bottom blowing converter
used are shown in Table 6. As the lance nozzles are used a Laval nozzle. In the lance
nozzle used in levels A and B, a throat diameter is 82.8 mm and an exit diameter is
87.1 mm. In the lance nozzle used in levels C and D, a throat diameter is 74.0 mm
and an exit diameter is 77.8 mm. In the lance nozzle used in levels E and F, a throat
diameter is 67.6 mm and an exit diameter is 71.1 mm. All of these lance nozzles are
designed so as to make an adequate expanding pressure to 0.33 MPa.

[0043] In the experimental operation, iron scraps are first charged into a top and bottom
blowing converter and then molten iron (temperature: 1260-1280 °C) previously subjected
to a dephosphorization treatment is charged into the top and bottom blowing converter.
Thereafter, an oxygen jet is jetted onto a bath surface of molten iron from a top-blown
multihole lance, while an agitating gas is supplied from bottom-blown tuyeres, and
further quicklime is charged in such an amount that a basicity of slag in the converter
is 2.5 as a flux, whereby the decarburization refining is conducted till a carbon
concentration in molten iron is decreased to 0.05 mass%. Ingredients of molten iron
are as shown in Table 7. Moreover, the basicity is a value calculated by the following
equation (4).

, wherein
[mass% CaO]: CaO concentration in slag inside the converter
[mass% SiO
2]: SiO
2 concentration in slag inside the converter.
Table 7
Molten iron temperature (°C) and chemical composition(mass%) |
Temperature |
C |
Si |
Mn |
P |
S |
Cr |
1,260 |
3.9 |
0.01 |
0.12 |
0.016 |
0.006 |
tr |
- |
- |
- |
- |
- |
- |
1,280 |
4.2 |
0.04 |
0.25 |
0.036 |
0.015 |
[0044] An oxygen gas is used for the oxygen jet and an argon gas is used as the agitating
gas. Flow rates of the oxygen jet and the agitating gas and a lance height are shown
in Table 8.
Table 8
Experiment level |
Cconcentration in molten iron |
Flow rate of top-blown oxygen gas jetted from top-blown multihole lance (m3/minute (Normal)) |
Height of top-blown multihole lance (m) |
Flow rate of agitating gas jetted from bottom-blown tuyere * (m3/minute (Normal)) |
A and B |
More than 0.4 mass % |
1000 |
2.6 |
15 |
Not more than 0.4 mass % |
700 |
2.2 |
25 |
C and D |
More than 0.4 mass % |
1000 |
2.3 |
15 |
Not more than 0.4 mass % |
700 |
2.0 |
25 |
E and F |
More than 0.4 mass % |
1000 |
2.1 |
15 |
Not more than 0.4 mass % |
700 |
1.8 |
25 |
[0045] In the decarburization refining are examined a time required for refining (minute),
T. Fe (mass%) in the slag at the blowing stop, a dust generation rate and a refractory
wear index. The results are shown in Table 9. Interference rates (IR) calculated from
the arrangement of the top-blown multihole lance and the bottom-blown tuyeres used
are as shown in Table 9. These values are an average obtained by conducting decarburization
refining at 3 charges every each level. Moreover, a dust generation rate is indicated
as a relative value when a dust generation rate in level F is 1, and a refractory
wear index is indicated as a relative value when a refractory wear index in level
F is 1.
Table 9
Experiment level |
Top-blown multihole lance |
Bottom-blown tuyere |
Interference rate (IR) |
Decarburization refining |
Remarks |
Number of nozzles |
Throat diameter of nozzle (mm) |
Exit diameter of nozzle (mm) |
Nozzle tilting angle (°) |
Number |
Refining time (minute) |
T.Fe at blowing stop (mass%) |
Dust generation rate *3 |
Refractory wear index*4 |
A |
4 |
82.8 |
87.1 |
14 |
6 |
0.37 |
15.8 |
12.6 |
0.57 |
0.97 |
Invention Example |
B |
4 |
82.8 |
87.1 |
23 |
6 |
0.44 |
15.9 |
12.7 |
0.58 |
1.00 |
Invention Example |
C |
5 |
74.0 |
77.8 |
14 |
6 |
0.50 |
15.8 |
12.6 |
0.77 |
0.97 |
Invention Example |
D |
5 |
74.0 |
77.8 |
23 |
6 |
0.58 |
15.8 |
12.7 |
0.78 |
1.00 |
Invention Example |
E |
6 |
67.6 |
71.1 |
14 |
6 |
0.56 |
15.9 |
12.6 |
0.98 |
0.97 |
Invention Example |
F |
6 |
67.6 |
71.1 |
23 |
6 |
0.95 |
15.8 |
12.7 |
1.00 |
1.00 |
Comparative Example |
*3 A relative value when a dust generation rate in level F is 1
*4 A relative value when a refractory wear index in level F is 1 |
[0046] As seen from the results shown in Table 9, when invention examples (levels A, B,
C, D and E) are compared with comparative examples (level F), the dust generation
rate can be largely decreased though the refining time and T. Fe in the slag at the
blowing stop are equal. Especially, the wearing of the refractory can be suppressed
in the level A.
DESCRIPTION OF REFERENCE SYMBOLS
[0047]
- 1
- top-blown multihole lance
- 2
- lance nozzle
- 3
- oxygen jet
- 4
- hot spot
- 5
- bottom-blown tuyere
- 6
- agitating gas floating region
1. A method of operating a top and bottom blowing converter by using a top-blown multihole
lance (1) having a plurality of lance nozzles (2) for jetting oxygen gas to jet oxygen
jets (3) from the lance nozzles(2) at a nozzle tilting angle θ (°) inclined with respect
to a center axis of the top-blown multihole lance (1) and arranging n bottom-blown
tuyeres (5) in a furnace bottom to blow an agitating gas from the bottom-blown tuyeres
(5),
characterized in that an interference rate (IR) indicated by a following equation (1) is not more than
0.7 with respect to a positional relation between a hot spot (4) formed by impinging
the top-blown oxygen jets (3) jetted from the top-blown multihole lance (1) onto a
bath surface of molten iron and a floating region of an agitating gas (6) blown from
the bottom-blown tuyeres (5) to molten iron and formed in a bath surface of molten
iron when a point of intersecting a center axis of the top-blown multihole lance (1)
with a plane perpendicular to the center axis of the top-blown multihole lance (1)
at the bath surface of molten iron in the top and bottom blowing converter is a lance
center point L
C and a point of intersecting a jetting direction of the oxygen jets (3) jetted from
the lance nozzle (2) with the plane is a hot spot center point G
J and a point of intersecting a center axis of the bottom-blown tuyere (5) with the
plane is a tuyere center point M
C:

, wherein
IR: interference rate;
n: an integer of 2 or more;
φ: an angle (°) between a line from the lance center point LC to the hot spot center point GJ and a line from the lance center point LC to the tuyere center point MC;
rt: a distance (m) between the lance center point LC and the hot spot center point GJ;
rb: a distance (m) between the tuyere center point MC in each bottom blown tuyere and the lance center point Lc and
φi and rbi are an angle (°) and a distance (m), respectively, determined for i-th (i: 1-n) bottom-blown
tuyere (5), and
wherein a range of a supply amount of top-blown oxygen gas is 2.0-2.85 Nm
3/min/t.
2. The method of operating a top and bottom blowing converter according to claim 1, wherein
the interference rate (IR) is not more than 0.46.
3. The method of operating a top and bottom blowing converter according to claim 1 or
2, wherein the lance nozzle (2) is a Laval nozzle or a straight nozzle.
4. The method of operating a top and bottom blowing converter according to any one of
claims 1 to 3, wherein the top-blown multihole lance (1) has 2 to 5 lance nozzles
(2).
5. The method of operating a top and bottom blowing converter according to any one of
claims 1 to 4, wherein the top and bottom blowing converter is operated by arranging
a combination of the top-blown lance and the bottom-blown tuyere (5) so as to satisfy
the interference rate (IR).
1. Verfahren zum Betreiben eines oben und unten blasenden Konverters unter Verwendung
einer oben geblasenen Mehrlochlanze (1) mit mehreren Lanzendüsen (2) zum Ausstoßen
von Sauerstoffgas, um Sauerstoffstrahlen (3) aus den Lanzendüsen (2) bei einem Düsenkippwinkel
θ (°), der in Bezug auf eine Mittelachse der oben geblasenen Mehrlochlanze (1) geneigt
ist, auszustoßen und n unten geblasene Düsen (5) in einem Ofenboden anzuordnen, um
ein Erregungsgas aus den unten geblasenen Düsen (5) zu blasen,
dadurch gekennzeichnet, dass eine durch eine folgende Gleichung (1) angegebene Interferenzrate (IR) nicht mehr
als 0,7 in Bezug auf eine Positionsbeziehung zwischen einem Heißpunkt (4), der durch
Auftreffen der oben geblasenen Sauerstoffstrahlen (3), die aus der oben geblasenen
Mehrlochlanze (1) auf eine Badoberfläche aus geschmolzenem Eisen ausgestoßen werden,
ausgebildet ist, und einem Strömungsbereich eines Anregungsgases (6) ist, das von
den unten geblasenen Düsen (5) auf geschmolzenes Eisen geblasen und in einer Badoberfläche
von geschmolzenem Eisen ausgebildet wird, beträgt, wenn ein Schnittpunkt einer Mittelachse
der oben geblasenen Mehrlochlanze (1) mit einer Ebene senkrecht zu der Mittelachse
der oben geblasenen Mehrlochlanze (1) an der Badoberfläche von geschmolzenem Eisen
in dem oben und unten blasenden Konverter ein Lanzenmittelpunkt Lc ist, ein Schnittpunkt
einer Ausstoßrichtung der aus der Lanzendüse (2) ausgestoßenen Sauerstoffstrahlen
(3) mit der Ebene ein Heißpunkt-Mittelpunkt G
J ist und ein Schnittpunkt einer Mittelachse der unten geblasenen Düse (5) mit der
Ebene ein Düsenmittelpunkt Mc ist:

wobei
IR: die Interferenzrate ist;
n: eine ganze Zahl von 2 oder mehr ist;
φ: ein Winkel (°) zwischen einer Linie von dem Lanzenmittelpunkt LC zu dem Heißpunkt-Mittelpunkt GJ und einer Linie von dem Lanzenmittelpunkt LC zu dem Düsenmittelpunkt MC ist;
RT: ein Abstand (m) zwischen dem Lanzenmittelpunkt LC und dem Heißpunkt-Mittelpunkt GJ ist;
rb: ein Abstand (m) zwischen dem Düsenmittelpunkt MC in jeder unten geblasenen Düse und dem Lanzenmittelpunkt LC ist und
φi und rbi ein Winkel (°) bzw. ein Abstand (m) sind, die für die i-te (i: 1-n) unten geblasene
Düse (5) bestimmt sind, und
ein Bereich einer Zuführmenge von oben geblasenem Sauerstoffgas 2,0-2,85 Nm
3/min/t beträgt.
2. Verfahren zum Betreiben eines oben und unten blasenden Konverters nach Anspruch 1,
bei dem die Interferenzrate (IR) nicht mehr als 0,46 beträgt.
3. Verfahren zum Betreiben eines oben und unten blasenden Konverters nach Anspruch 1
oder 2, bei dem die Lanzendüse (2) eine Laval-Düse oder eine gerade Düse ist.
4. Verfahren zum Betreiben eines oben und unten blasenden Konverters nach einem der Ansprüche
1 bis 3, bei dem die oben geblasene Mehrlochlanze (1) 2 bis 5 Lanzendüsen (2) aufweist.
5. Verfahren zum Betreiben eines oben und unten blasenden Konverters nach einem der Ansprüche
1 bis 4, wobei der oben und unten blasende Konverter durch Anordnen einer Kombination
der oben geblasenen Lanze und der unten geblasenen Düse (5) betrieben wird, um die
Interferenzrate (IR) zu erfüllen.
1. Procédé d'exploitation d'un convertisseur à soufflage par le haut et par le bas en
utilisant une lance de soufflage par le haut à orifices multiples (1) ayant une pluralité
de buses de lance (2) pour projeter de l'oxygène gazeux pour projeter des jets d'oxygène
(3) depuis les buses de lance (2) suivant un angle d'inclinaison de buse θ (°) incliné
par rapport à un axe central de la lance de soufflage par le haut à orifices multiples
(1) et en disposant n tuyères de soufflage par le bas (5) dans le bas d'un four pour
souffler un gaz d'agitation à partir des tuyères de soufflage par le bas (5),
caractérisé en ce qu'un taux d'interférence (IR) indiqué par une équation (1) ci-après n'est pas supérieur
à 0,7 en ce qui concerne une relation positionnelle entre un point chaud (4) formé
par l'impact des jets d'oxygène soufflés par le haut (3) projetés depuis la lance
de soufflage par le haut à orifices multiples (1) sur une surface d'un bain de fer
fondu et une région de flottaison d'un gaz d'agitation (6) soufflé depuis les tuyères
de soufflage par le bas (5) dans le fer fondu et formée dans la surface d'un bain
de fer fondu, quand un point d'intersection entre un axe central de la lance de soufflage
par le haut à orifices multiples (1) et un plan perpendiculaire à l'axe central de
la lance de soufflage par le haut à orifices multiples (1) au niveau de la surface
du bain de fer fondu dans le convertisseur à soufflage par le haut et par le bas est
appelé centre de lance L
C et qu'un point d'intersection entre une direction de projection des jets d'oxygène
(3) projetés depuis la buse de lance (2) et le plan est appelé centre du point chaud
G
J et qu'un point d'intersection entre un axe central de la tuyère de soufflage par
le bas (5) et le plan est appelé centre de tuyère M
C :

où
IR : taux d'interférence ;
n : entier supérieur ou égal à 2 ;
Φ : angle (°) entre une ligne allant du centre de lance LC au centre du point chaud GJ et une ligne allant du centre de lance LC au centre de tuyère MC ;
rt : distance (m) entre le centre de lance LC et le centre du point chaud GJ ;
rb : distance (m) entre le centre de tuyère MC dans chaque tuyère de soufflage par le bas et le centre de lance LC et
Φi et rbi sont, respectivement, un angle (°) et une distance (m) déterminés pour la ième (i : 1 à n) tuyère de soufflage par le fond (5), et
où une plage de quantité d'alimentation en oxygène gazeux soufflé par le haut va de
2,0 à 2,85 Nm
3/min/t.
2. Procédé d'exploitation d'un convertisseur à soufflage par le haut et par le bas selon
la revendication 1, dans lequel le taux d'interférence (IR) n'est pas supérieur à
0,46.
3. Procédé d'exploitation d'un convertisseur à soufflage par le haut et par le bas selon
la revendication 1 ou 2, dans lequel la buse de lance (2) est une buse Laval ou une
buse droite.
4. Procédé d'exploitation d'un convertisseur à soufflage par le haut et par le bas selon
l'une quelconque des revendications 1 à 3, dans lequel la lance de soufflage par le
haut à orifices multiples (1) comporte de 2 à 5 buses de lance (2).
5. Procédé d'exploitation d'un convertisseur à soufflage par le haut et par le bas selon
l'une quelconque des revendications 1 à 4, le convertisseur à soufflage par le haut
et par le bas étant exploité en disposant une combinaison de la lance de soufflage
par le haut et de la tuyère de soufflage par le bas (5) de façon à satisfaire le taux
d'interférence (IR).