FIELD OF THE INVENTION
[0001] The present invention is related to a dust collecting device separating dust by cyclone,
particularly to a dust collecting device using multi-cyclone dust filtration.
BACKGROUND OF THE INVENTION
[0002] In practice, cyclone separation is one kind of centrifugal sedimentation, in which
centrifugal force is used to rotate particles at high speed in an eddy airflow. The
higher the rotational speed is, the higher centrifugal sedimentation velocity the
particles obtain. Further, the object of separating the particles from the airflow
is then achieved. A conventional cyclone separator, as schematically illustrated in
Fig. 1, is mainly composed of a separation cylinder 8. The separation cylinder 8 is
provided through the wall surface thereof with an air inlet 81, is tapered in the
tube diameter thereof toward the bottom, and is provided at the top thereof with an
extracting channel 82. When the cyclone separator is put into practice, gas containing
dust particles is allowed to enter from the air inlet 81, and then a down draft is
formed by the gas along an inner wall of the separation cylinder 8. Finally, an updraft
is formed within the separation cylinder 8 due to a suction force applied to the extracting
channel 82. The dust is incapable of being raised along with the updraft owing to
its own force of gravity, and then settled to the bottom of the separation cylinder
8. Further, the effect of dust collection is generated. The related patented technology
is just as disclosed in Taiwan patent no.
1558462.
[0003] The dust filtration effect of the conventional cyclone separator is considerably
limited. If the enhancement of the dust filtration effect of the cyclone separator
is desired, there are mainly two ways of implementation as follows: one is an increased
volume of chamber within the separation cylinder, and the other is a multi-layered
dust filtering inner cylinder provided within the separation cylinder, as disclosed
in the patents Nos.
TW 1411422,
TW 201340929,
CN 103181741,
CN 1572220A,
JP 2000-254551A,
JP 2005-103251A,
JP 2005-224602A,
JP 2006-205162A,
JP 2006-272322A,
JP 2006-297057A,
JP 2006-346669A,
JP 2014-83478A,
JP 2015-131264,
US 2017/0202418 and
US 2018/0036746. However, if the increased volume of chamber within the separation cylinder is put
into practice, there is a tendency for the whole volume of the cyclone separator to
be bulky without doubt. However, if the multi-layered dust filtering inner cylinder
is put into practice, a tendency for the structure of the cyclone separator to be
complex may be resulted, so as to not only be unfavorable to maintenance, but also
raise a big problem of periodic replacement of the dust filtering inner cylinder.
Once the replacement of dust filtering inner cylinder is required in case of an environment
where the filtration of hazardous gas is performed, the whole system should be shut
down, and even stopped for a period of time for the replacement. In recent years,
although the technology of cyclone separation is applied to a household dust suction
device successfully, the dust filtration effect thereof is not in conformity with
the requirement of industrial application significantly if the structure which is
the same as that of the household dust suction device is adopted for industrial practice,
since it is only necessary for the household dust suction device to collect a small
indefinite quantity of dust particles with relatively lower-level requirement for
the dust filtration effect with respect to that required in industry so as to use
a small volume and simply-constructed cyclone separator.
[0004] In addition, the applicant also proposed a patented technology, as disclosed in a
European patent no.
2923625.
US-A-2001054213 discloses a dust collecting device according to the preamble of independent claim
1.
SUMMARY OF THE INVENTION
[0005] It is the main object of the present invention to solve the problem of incapability
of filtering out smaller dust particles by a dust collecting device implemented by
cyclone.
[0006] For achieving the above object, the present invention provides a dust collecting
device using multi-cyclone dust filtration, including a dust collecting chamber, a
cyclone chamber and an airflow guiding component. The cyclone chamber is communicated
with the dust collecting chamber. The cyclone chamber is provided with an intake port
provided for a gas to be filtered to enter, an annular side wall being connected to
the intake port and guiding the gas to be filtered to flow spirally so as to form
a first cyclone, an engaging port being communicated with the dust collecting chamber
and allowing the first cyclone to enter the dust collecting chamber, and an exhaust
port. The airflow guiding component is provided within the cyclone chamber. The airflow
guiding component is provided with a return flow tube receiving the gas to be filtered
returned from the cyclone chamber and guiding the gas to be filtered to flow spirally
so as to form a second cyclone, an airflow guiding bonnet coaxially and separately
located with respect to the return flow tube, and a dust filtration channel formed
between the airflow guiding bonnet and the return flow tube. The first cyclone is
incapable of entering the return flow tube from the dust filtration channel due to
the restriction provided by the airflow guiding bonnet. The second cyclone is allowed
to flow toward the exhaust port. As passing by the dust filtration channel, the second
cyclone is capable of throwing dust contained therein into the dust filtration channel.
The dust is restricted by the airflow guiding bonnet so as to enter the dust collecting
chamber.
[0007] In one embodiment, the airflow guiding component is provided with a drainage tube
connecting the airflow guiding bonnet to the exhaust port.
[0008] In one embodiment, the airflow guiding component is provided with an auxiliary airflow
guiding bonnet, which is provided for the return flow tube and allowed for forming,
together with the airflow guiding bonnet, the dust filtration channel.
[0009] In one embodiment, the airflow guiding component is provided with a plurality of
supporting poles connecting the airflow guiding bonnet to the return flow tube.
[0010] In one embodiment, the airflow guiding component is provided with a drainage bonnet
provided at one side, facing toward the engaging port, of the return flow tube for
guiding the gas to be filtered into the return flow tube.
[0011] In one embodiment, the return flow tube is provided with a plurality of drainage
through-holes provided correspondingly to the drainage bonnet so as to enable part
of the gas to be filtered restricted by the drainage bonnet to enter the return flow
tube.
[0012] In one embodiment, the airflow guiding component is provided with a plurality of
connecting ribs connecting the airflow guiding bonnet to the auxiliary airflow guiding
bonnet.
[0013] In one embodiment, the airflow guiding component is provided with an auxiliary airflow
guiding bonnet, which is provided for the return flow tube and allowed for forming,
together with the airflow guiding bonnet, the dust filtration channel, the return
flow tube is provided with a connecting wall connecting the auxiliary airflow guiding
bonnet to the drainage bonnet.
[0014] In one embodiment, the airflow guiding component includes a plurality of supporting
ribs connecting the return flow tube to the annular side wall. Further, each of the
supporting ribs is provided with a windward end and a discharge end along the flow
direction of the first cyclone, each supporting rib being provided in an inclined
manner, the windward end being higher than the discharge end in position.
[0015] In one embodiment, an outer diameter of the return flow tube is smaller than an inner
diameter of the annular side wall.
[0016] In one embodiment, the cyclone chamber is provided with a first spatial width, while
the dust collecting chamber is provided with a second spatial width greater than the
first spatial width. Further, each of the dust collecting chamber and the cyclone
chamber is formed by a housing, respectively.
[0017] In comparison with the conventional art, there are features, obtained from what is
disclosed in the foregoing of the present invention, as follows. Multiple cyclones
are generated through the airflow guiding component provided in the cyclone chamber
in the present invention. In the case of forming cyclone in the return flow tube of
the airflow guiding component, the cyclone is restricted by the return flow tube so
as to increase rotational speed, and further a higher centrifugal force is used by
the cyclone to throw the tiny dust particles, remained in the gas to be filtered,
into the dust filtration channel so as to accomplish the secondary dust filtration.
Then, gas discharged from the exhaust port is even purer. Thereby, a filter screen
provided for the exhaust port may be eliminated without the need for a user to shut
down frequently to replace the filter screen.
BRIEF DESCRIPTION OF THE DRAWINGS
[0018]
Fig. 1 is a view of the implementation of a conventional cyclone separator.
Fig. 2 is a structural view of one embodiment of the present invention.
Fig. 3 is a structural top view of one embodiment of the present invention.
Fig. 4 is a structural view of another embodiment of the present invention.
Fig. 5 is a view of the implementation of one embodiment of the present invention.
Fig. 6 is an enlarged view of partial structure showing the implementation of one
embodiment of the present invention.
Fig. 7 is a cross-sectional view of three-dimensional structure of another embodiment
of the present invention.
Fig. 8 is a cross-sectional view of three-dimensional structure of one embodiment
of the present invention.
Fig. 9 is a structural view of another embodiment of the present invention.
Fig. 10 is a structural view of another embodiment of the present invention.
Fig. 11 is a view showing the implementation of another embodiment of the present
invention.
Fig. 12 an enlarged view of partial structure showing the implementation of one embodiment
of the present invention.
Fig. 13 a structural view of another embodiment of the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0019] The detailed description and technical content of the present invention will now
be described, in conjunction with drawings, as follows.
[0020] Hereinafter, the terms "first" and "second" used for elements are meant to distinguish
the elements from each other, and not used for limiting the sequential order thereof.
Moreover, the relative spatial expressions including "top end", "bottom edge", "upward",
"downward" and so on., mentioned hereinafter are determined on the basis of orientation
drawn in the drawings of the context. It should be understood that the relative spatial
expressions may be varied along with the change of orientation drawn in the drawings.
For instance, the original "top end" and "bottom edge" may be varied as "left" and
"right", respectively, once the drawings are rotated to horizontal.
[0021] Referring to Fig. 2, Fig. 3, Fig. 4, Fig. 5 and Fig. 6, the present invention provides
a dust collecting device 100 using multi-cyclone dust filtration, the dust collecting
device 100 possibly being applied to an industrial process obtaining pure working
gas necessarily. The dust collecting device 100 includes a dust collecting chamber
11, a cyclone chamber 12 and an airflow guiding component 13. In this case, the dust
collecting chamber 11 is connected to the cyclone chamber 12, the cyclone chamber
12 having a first spatial width 120, while the dust collecting chamber 11 having a
second spatial width 110 greater than the first spatial width 120. Further, the first
spatial width 120 is directed to a spatial length in the cyclone chamber 12, while
the second spatial width 110 is directed to a spatial length in the dust collecting
chamber 11. Then, the dust collecting chamber 11 is significantly larger than the
cyclone chamber 12 in volume in the present invention, as shown in Fig. 2. Furthermore,
the cyclone chamber 12 is communicated with the dust collecting chamber 11, such that
gas is capable of flowing between the cyclone chamber 12 and the dust collecting chamber
11. In one embodiment, each of the cyclone chamber 12 and the dust collecting chamber
11 is formed by a housing (15, 16), respectively; that is to say, each of the cyclone
chamber 12 and the dust collecting chamber 11 is subordinate to different housings
(15, 16), respectively. The two housings (15, 16) are combined through a connecting
structure, the connecting structure possibly being selected from a screwing element,
a fastening element and so on. Accordingly, an operator is allowed to separate the
two housings (15, 16) so as to clean the dust collecting chamber 11 depending on the
state of dust collection of the dust collecting device 100. Additionally, the housing
16 forming the dust collecting chamber 11 may be further a dust collecting barrel.
[0022] The cyclone chamber 12 is provided with an intake port 121, an annular side wall
122 connected to the intake port 121, an engaging port 123 communicated with the dust
collecting chamber 11, and an exhaust port 124. In this case, the intake port 121
is provided on a tangent (as indicated by 125 in Fig. 3) to the annular side wall
122. The intake port 121 may be joined to a tube. In one embodiment, the intake port
121 may be further a tubular structure protruding out of the annular side wall 122.
Additionally, the intake port 121 is provided at one end of the cyclone chamber 12
away from the dust collecting chamber 11, i.e., the top end of the cyclone chamber
12, while the engaging port 123 is provided at the bottom edge of the cyclone chamber
12. In one embodiment, the engaging port 123 may be defined by the annular side wall
122. Furthermore, the exhaust port 124 is provided at the top end of the cyclone chamber
12. In one embodiment, the cyclone chamber 12 is provided with a barrier wall 126
provided around the exhaust port 124, the barrier wall 126 being not connected to
the airflow guiding component 13, for the reduction of possibility of discharging
the gas, entering the cyclone chamber 12 from the intake port 121, via the exhaust
port 124 directly. Additionally, a first phantom line 127 may be defined in the extension
direction of the intake port 121, while a second phantom line 128 may be defined in
the extension direction of the exhaust port 124. The first phantom line 127 and the
second phantom line 128 are not intersected in the top view from the cyclone chamber
12. Moreover, the second phantom line 128 is extended longitudinally, while the first
phantom line 127 is extended laterally.
[0023] On the other hand, the airflow guiding component 13 is provided within the cyclone
chamber 12. The airflow guiding component 13 is provided with a return flow tube 131
located within the cyclone chamber 12, an airflow guiding bonnet 132 coaxially and
separately located with respect to the return flow tube 131, and a dust filtration
channel 133 formed between the airflow guiding bonnet 132 and the return flow tube
131. Further, an outer diameter 401 of the return flow tube 131 is smaller than an
inner diameter 402 of the annular side wall 122, such that a space allowing the flow
of cyclone is still provided between the return flow tube 131 and the annular side
wall 122. Additionally, a part existing between the airflow guiding bonnet 132 and
the return flow tube 131 is not connected therebetween, and the part is just the dust
filtration channel 133. By way of the dust filtration channel 133, the internal space
of the return flow tube 131 is communicated with the cyclone chamber 12; that is to
say, gas is allowed to enter the cyclone chamber 12 from the return flow tube 131
via the dust filtration channel 133 without being pushed by external force. In one
embodiment, the airflow guiding component 13 is provided with a plurality of supporting
poles 134 connecting the airflow guiding bonnet 132 to the return flow tube 131. Further,
each of the plurality of supporting poles 134 is allowed to connect one end of the
return flow tube 131 facing toward the airflow guiding bonnet 132 to one side of the
airflow guiding bonnet 132 facing toward the return flow tube 131. The pattern and
actual location of the plurality of supporting poles 134 may be modified appropriately
depending on implementation, without being reiterated herein any more. Furthermore,
besides the disclosure in the former embodiment, the airflow guiding bonnet 132 may
be also fixed through the structure disclosed in another embodiment. In this embodiment,
the airflow guiding component 13 is provided with a drainage tube 135 connecting the
airflow guiding bonnet 132 to the exhaust port 124. The drainage tube 135 and the
return flow tube 131 are located coaxially. The drainage tube 135, together with the
airflow guiding bonnet 132, may be formed as integral structure. Furthermore, the
airflow guiding bonnet 132 may be further formed as umbrella-shaped structure. Assuming
a portion of the airflow guiding bonnet 132 corresponding to the return flow tube
131 is considered as a top end, the bottom end of the airflow guiding bonnet 132 may
face toward the engaging port 123. One side of the dust filtration channel 133 is
blocked by the airflow guiding bonnet 132, such that gas coming from the intake port
121 is incapable of entering the dust filtration channel 133. In addition, a portion
of the airflow guiding bonnet 132 corresponding to the return flow tube 131 is a vent
136. In other words, the vent 136, the return flow tube 131 and the drainage tube
135 are located on the same axis. Furthermore, after the cyclone chamber 12 and the
airflow guiding component 13 of the present invention are combined, a first cyclone
path 601 advancing toward the dust collecting chamber 11 along the annular side wall
122 and a second cyclone path 602 being delimited by the return flow tube 131, advancing
toward the exhaust port 124 and passing by the dust filtration channel 133 are formed.
Additionally, the initial part of the second cyclone path 602 is limited by the return
flow tube 131 of the present invention, such that cyclone formed here is compact due
to the effect of the return flow tube 131.
[0024] Referring to Fig. 5 together, when the dust collecting device 100 is put into practice,
the intake port 121 may be connected to an apparatus, capable of generating a gas
to be filtered 300, via a tube, or may be provided within a space filled with the
gas to be filtered 300 directly. On the other hand, the exhaust port 124 is connected
to an air extracting device 200. The cyclone chamber 12 is allowed to enter negative
pressure state after the air extracting device 200 is started, so as to suck the gas
to be filtered 300 into the cyclone chamber 12 via the intake port 121. On the basis
of the design of the intake port 121, however, the gas to be filtered 300 is allowed
to flow spirally along with the annular side wall 122 after entering the cyclone chamber
12, so as to form a first cyclone 301. The first cyclone 301 is allowed to travel
downward along the annular side wall 122, and finally enter the dust collecting chamber
11 via the engaging port 123; that is to say, the first cyclone 301 is allowed to
advance along the first cyclone path 601. Additionally, the first cyclone 301 is incapable
of entering the return flow tube 131 from the dust filtration channel 133 in the process
of downward travel due to the restriction provided by the airflow guiding bonnet 132.
Furthermore, the size of the dust collecting chamber 11 is larger than that of the
cyclone chamber 12, such that the rotational speed of the first cyclone 301 is reduced,
and meanwhile the dust (for instance, 501 depicted in Fig. 5) mingled with the gas
to be filtered 300 is separated from the gas to be filtered 300 so as to fall into
the dust collecting chamber 11 owing to the effect of the reduction of rotational
speed of the first cyclone 301 and the force of gravity of the dust itself. In this
way, the primary dust filtration is completed. Furthermore, the air extracting device
200 is not stopped working, in such a way that the gas to be filtered 300 entering
the dust collecting chamber 11 is sucked into the return flow tube 131. As entering
the return flow tube 131, the gas to be filtered 300 is also allowed to flow spirally
along the return flow tube 131 immediately and then form a second cyclone 302. At
this moment, the dust collected within the dust collecting chamber 11 is not mixed
into the second cyclone 302 due to its own weight. Furthermore, the speed of the second
cyclone 302 is higher than that of the first cyclone 301 significantly due to a tube
diameter of the return flow tube 131 being smaller than that of the dust collecting
chamber 11, such that a higher centrifugal force may be generated by the second cyclone
302. Subsequently, when the second cyclone 302 is allowed to travel upward along the
return flow tube 131; that is to say, when the second cyclone 302 is allowed to advance
in the second cyclone path 602, dust (502 depicted in Fig. 5 and Fig. 6) entrained
in the second cyclone 302 is thrown into the dust filtration channel 133 due to centrifugal
force of the second cyclone 302, as the second cyclone 302 passing by the dust filtration
channel 133, for the secondary dust filtration. The dust thrown into the dust filtration
channel 133, however, is restricted by the airflow guiding bonnet 132, so as to be
mixed into the first cyclone 301 again. Afterward, the second cyclone 302 is allowed
to advance toward the exhaust port 124 continuously, and then leave the dust collecting
device 100 via the exhaust port 124. Additionally, the dusts contained in the gas
to be filtered 300 are different in size, such that the larger dust grains may be
separated from the gas to be filtered 300 in the primary dust filtration, while the
smaller dust grains may be separated from the gas to be filtered 300 in the secondary
dust filtration of the dust collecting device 100. In this way, not only purer gas
may be obtained, but also the filter screen provided for the exhaust port 124 may
be eliminated. It is unnecessary for a user to dismantle the dust collecting device
100 several times to replace the filter screen if the filter screen is eliminated,
so as to facilitate the use in a working environment where the gas to be filtered
300 includes hazardous gas.
[0025] In one embodiment, referring to Fig. 7, Fig. 8, Fig. 9, Fig. 10, Fig. 11, Fig. 12
and Fig. 13 together, the airflow guiding component 13 is provided with an auxiliary
airflow guiding bonnet 137, which is provided for the return flow tube 131 and allowed
for forming, together with the airflow guiding bonnet 132, the dust filtration channel
133. The auxiliary airflow guiding bonnet 137 may be extended from an edge, facing
toward the airflow guiding bonnet 132, of the return flow tube 131, while the auxiliary
airflow guiding bonnet 137 and the airflow guiding bonnet 132 are provided as the
same umbrella-shaped structure with an identical pattern. Further, each of the auxiliary
airflow guiding bonnet 137 and the airflow guiding bonnet 132 is located at one side
of the dust filtration channel 133, respectively. The dust, when thrown by the second
cyclone 302, is allowed to advance toward the cyclone chamber 12 along a space between
the auxiliary airflow guiding bonnet 137 and the airflow guiding bonnet 132, as depicted
in Fig. 12. In another embodiment, referring to Fig. 9 again, the airflow guiding
component 13 may be provided with a plurality of connecting ribs 144 connecting the
airflow guiding bonnet 132 to the auxiliary airflow guiding bonnet 137. The plurality
of connecting ribs 144 are provided in a spaced manner; that is to say, a space for
gas to flow is presented between any two adjacent connecting ribs 144. The plurality
of connecting ribs 144 are allowed to support the airflow guiding bonnet 132, so as
to enable not only separation of the airflow guiding bonnet 132 and the auxiliary
airflow guiding bonnet 137, but also non-necessity for the airflow guiding bonnet
132 to obtain support from other members. On the other hand, the airflow guiding component
13 is provided with a drainage bonnet 138 provided at one side, facing toward the
engaging port 123, of the return flow tube 131 for guiding the gas to be filtered
300 into the return flow tube 131, so as to enable the gas to be filtered 300 to enter
the return flow tube 131 more positively. Further, referring to Fig. 10, it is possible
to provide the drainage bonnet 138 at an edge, facing toward the engaging port 123,
of the return flow tube 131. Moreover, the pattern of the drainage bonnet 138 is identical
to that of the airflow guiding bonnet 132. A port, connected to one end of the return
flow tube 131, of the drainage bonnet 138 is smaller than the other port, far away
from the return flow tube 131, of the drainage bonnet 138 in diameter. Referring to
Fig. 7, Fig. 8 and Fig 9 again, the drainage bonnet 138 is not necessary to be provided
at the edge, facing toward the engaging port 123, of the return flow tube 131, but
is only necessary to be provided at one side, close to the engaging port 123, of the
return flow tube 131. Moreover, the return flow tube 131 is provided, at one side
close to the engaging port 123 thereof, with at least one drainage through-hole 139
provided correspondingly to the drainage bonnet 138, in the case that the drainage
bonnet 138 is mounted to the side wall of the return flow tube 131, such that the
drainage through-holes 139 may enable part of the gas to be filtered 300, which is
not allowed to enter the return flow tube 131 from the end thereof and then restricted
by the drainage bonnet 138, to enter the return flow tube 131 via the drainage through-holes
139, just as depicted in Fig. 11.
[0026] Referring to Fig. 13 together, in one embodiment, the return flow tube 131 is provided
with a connecting wall 140 connecting the auxiliary airflow guiding bonnet 137 to
the drainage bonnet 138. The connecting wall 140 may be provided in parallel with
the tube wall of the return flow tube 131. The connecting wall 140 and the auxiliary
airflow guiding bonnet 137 are cooperated to restrict the moving path of the first
cyclone 301, so as to reduce the possibility of abnormity of the first cyclone 301.
Additionally, the return flow tube 131 of this embodiment may be integrally formed.
[0027] Referring to Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6, Fig. 7, Fig. 8, Fig. 9, Fig.
10, Fig. 11, Fig. 12 and Fig. 13 again, the airflow guiding component 13 of the present
invention includes a plurality of supporting ribs 141 connecting the return flow tube
131 to the annular side wall 122. The plurality of supporting ribs 141 are provided
in a spaced manner, such that a zone allowing gas to flow is presented between any
two adjacent supporting ribs 141. The return flow tube 131 may be provided at the
center of the cyclone chamber 12 due to the plurality of supporting ribs 141. Moreover,
referring to Fig. 7, each of the plurality of supporting ribs 141 is provided with
a windward end 142 and a discharge end 143 along the flow direction of the first cyclone
301 in one embodiment. Each supporting rib 141 is provided in an inclined manner,
in which the windward end 142 is higher than the discharge end 143 in position. More
specifically, in this embodiment, the function of guiding the first cyclone 301, besides
supporting the return flow tube 131, is further provided for each supporting rib 141.
Each supporting rib 141 is inclined in the flow direction of the first cyclone 301.
Once contacting the windward end 142, the first cyclone 301 is guided by the supporting
rib 141 so as to flow toward the dust collecting chamber 11 and finally leave the
supporting rib 141 from the discharge end 143. Accordingly, the resistance to the
first cyclone 301 may be reduced due to each supporting rib 141 when the present invention
is embodied.
1. A dust collecting device using multi-cyclone dust filtration, comprising:
a dust collecting chamber (11);
a cyclone chamber (12), communicated with said dust collecting chamber (11), said
cyclone chamber (12) being provided with an intake port (121) provided for a gas to
be filtered (300) to enter, an annular side wall (122) being connected to said intake
port (121) and guiding said gas to be filtered (300) to flow spirally so as to form
a first cyclone (301), an engaging port (123) being communicated with said dust collecting
chamber (11) and allowing said first cyclone (301) to enter said dust collecting chamber
(11), and an exhaust port (124); and
an airflow guiding component (13), provided within said cyclone chamber (12), characterized in that said airflow guiding component (13) is provided with a return flow tube (131) receiving
said gas to be filtered (300) returned from said cyclone chamber (12) and guiding
said gas to be filtered (300) to flow spirally so as to form a second cyclone (302),
an airflow guiding bonnet (132) coaxially and separately located with respect to said
return flow tube (131), and a dust filtration channel (133) formed between said airflow
guiding bonnet (132) and said return flow tube (131), said first cyclone (301) being
incapable of entering said return flow tube (131) from said dust filtration channel
(133) due to the restriction provided by said airflow guiding bonnet (132), said second
cyclone (302) flowing toward said exhaust port (124), said second cyclone (302) throwing
dust (502) contained therein into said dust filtration channel (133) as passing by
said dust filtration channel (133), dust (502) being restricted by said airflow guiding
bonnet (132) so as to enter said dust collecting chamber (11).
2. The dust collecting device using multi-cyclone dust filtration according to claim
1, wherein said airflow guiding component (13) is provided with a drainage tube (135)
connecting said airflow guiding bonnet (132) to said exhaust port (124).
3. The dust collecting device using multi-cyclone dust filtration according to claim
1, wherein said airflow guiding component (13) is provided with an auxiliary airflow
guiding bonnet (137), which is provided for said return flow tube (131) and allowed
for forming, together with said airflow guiding bonnet (132), said dust filtration
channel (133).
4. The dust collecting device using multi-cyclone dust filtration according to claim
3, wherein said airflow guiding component (13) is provided with a drainage bonnet
(138) provided at one side, facing toward said engaging port (123), of said return
flow tube (131) for guiding said gas to be filtered (300) into said return flow tube
(131).
5. The dust collecting device using multi-cyclone dust filtration according to claim
4, wherein said return flow tube (131) is provided with at least one drainage through-hole
(139) provided correspondingly to said drainage bonnet (138) so as to enable part
of said gas to be filtered (300) restricted by said drainage bonnet (138) to enter
said return flow tube (131).
6. The dust collecting device using multi-cyclone dust filtration according to claim
3, wherein said airflow guiding component (13) is provided with a plurality of connecting
ribs (144) connecting said airflow guiding bonnet (132) to said auxiliary airflow
guiding bonnet (137).
7. The dust collecting device using multi-cyclone dust filtration according to claim
3, wherein said airflow guiding component (13) includes a plurality of supporting
ribs (141) connecting said return flow tube (131) to said annular side wall (122).
8. The dust collecting device using multi-cyclone dust filtration according to claim
7, wherein each of said plurality of supporting ribs (141) is provided with a windward
end (142) and a discharge end (143) along the flow direction of said first cyclone
(301), each of said plurality of supporting ribs (141) being provided in an inclined
manner, said windward end (142) being higher than said discharge end (143) in position.
9. The dust collecting device using multi-cyclone dust filtration according to claim
1, wherein said airflow guiding component (13) is provided with a plurality of supporting
poles (134) connecting said airflow guiding bonnet (132) to said return flow tube
(131).
10. The dust collecting device using multi-cyclone dust filtration according to claim
1, wherein said airflow guiding component (13) is provided with a drainage bonnet
(138) provided at one side, facing toward said engaging port (123), of said return
flow tube (131) for guiding said gas to be filtered (300) into said return flow tube
(131).
11. The dust collecting device using multi-cyclone dust filtration according to claim
10, wherein said return flow tube (131) is provided with a plurality of drainage through-holes
(139) provided correspondingly to said drainage bonnet (138) so as to enable part
of said gas to be filtered (300) restricted by said drainage bonnet (138) to enter
said return flow tube (131).
12. The dust collecting device using multi-cyclone dust filtration according to claim
10, wherein said airflow guiding component (13) is provided with an auxiliary airflow
guiding bonnet (137), which is provided for said return flow tube (131) and allowed
for forming, together with said airflow guiding bonnet (132), said dust filtration
channel (133), said return flow tube (131) is provided with a connecting wall (140)
connecting said auxiliary airflow guiding bonnet (137) to said drainage bonnet (138).
13. The dust collecting device using multi-cyclone dust filtration according to claim
1, wherein said airflow guiding component (13) includes a plurality of supporting
ribs (141) connecting said return flow tube (131) to said annular side wall (122).
14. The dust collecting device using multi-cyclone dust filtration according to claim
13, wherein each of said plurality of supporting ribs (141) is provided with a windward
end (142) and a discharge end (143) along the flow direction of said first cyclone
(301), each of said plurality of supporting ribs (141) being provided in an inclined
manner, said windward end (142) being higher than said discharge end (143) in position.
15. The dust collecting device using multi-cyclone dust filtration according to claim
1, wherein an outer diameter (401) of said return flow tube (131) is smaller than
an inner diameter (402) of said annular side wall (122).
16. The dust collecting device using multi-cyclone dust filtration according to claim
1, wherein said cyclone chamber (12) is provided with a first spatial width (120),
while said dust collecting chamber (11) is provided with a second spatial width (110)
greater than said first spatial width (120).
17. The dust collecting device using multi-cyclone dust filtration according to claim
16, wherein each of said dust collecting chamber (11) and said cyclone chamber (12)
is formed by a housing (16, 15), respectively.
1. Staubsammelvorrichtung unter Verwendung von Multizyklon-Staubfiltration, umfassend:
eine Staubsammelkammer (11);
eine Zyklonkammer (12), die mit der Staubsammelkammer (11) in Verbindung steht, wobei
die Zyklonkammer (12) mit einer Einlassöffnung (121) versehen ist, in die ein zu filterndes
Gas (300) eintreten kann, eine ringförmige Seitenwand (122), die mit der Einlassöffnung
(121) verbunden ist und das zu filternde Gas (300) so führt, dass es spiralförmig
strömt, so dass ein erster Zyklon (301) gebildet wird, eine Eingriffsöffnung (123),
die mit der Staubsammelkammer (11) in Verbindung steht und es dem ersten Zyklon (301)
ermöglicht, in die Staubsammelkammer (11) einzutreten, und eine Auslassöffnung (124);
und
eine Luftstromleitkomponente (13), die innerhalb der Zyklonkammer (12) vorgesehen
ist, dadurch gekennzeichnet, dass
die Luftstromführungskomponente (13) mit einem Rückstromrohr (131) versehen ist, das
das von der Zyklonkammer (12) zurückgeführte zu filternde Gas (300) aufnimmt und das
zu filternde Gas (300) so führt, dass es spiralförmig strömt, um einen zweiten Zyklon
(302) zu bilden, einer Luftstromführungshaube (132), die koaxial und getrennt in Bezug
auf das Rückstromrohr (131) angeordnet ist, und einem Staubfilterkanal (133), der
zwischen der Luftstromführungshaube (132) und dem Rückstromrohr (131) ausgebildet
ist, der erste Zyklon (301) aufgrund der durch die Luftstromführungshaube (132) geschaffenen
Drosselung nicht in der Lage ist, von dem Staubfiltrationskanal (133) in das Rückstromrohr
(131) einzutreten, der zweite Zyklon (302) zu der Auslassöffnung (124) strömt, der
zweite Zyklon (302) den darin enthaltenen Staub (502) in den Staubfiltrationskanal
(133) wirft, wenn er den Staubfiltrationskanal (133) passiert, wobei der Staub (502)
durch die Luftstromführungshaube (132) so begrenzt wird, dass er in die Staubsammelkammer
(11) eintritt.
2. Staubsammelvorrichtung unter Verwendung von Multizyklon-Staubfilterung nach Anspruch
1, wobei das Luftstromführungsbauteil (13) mit einem Drainagerohr (135) versehen ist,
das die Luftstromführungshaube (132) mit der Auslassöffnung (124) verbindet.
3. Staubsammelvorrichtung unter Verwendung von Multizyklon-Staubfilterung nach Anspruch
1, wobei das Luftstromführungsbauteil (13) mit einer Hilfsluftstromführungshaube (137)
versehen ist, die für das Rücklaufrohr (131) vorgesehen ist und zusammen mit der Luftstromführungshaube
(132) den Staubfilterkanal (133) bilden kann.
4. Staubsammelvorrichtung unter Verwendung von Multizyklon-Staubfilterung nach Anspruch
3, wobei die Luftstromleitkomponente (13) mit einer Drainagehaube (138) versehen ist,
die an einer Seite des Rückstromrohrs (131), die der Eingriffsöffnung (123) zugewandt
ist, vorgesehen ist, um das zu filternde Gas (300) in das Rückstromrohr (131) zu leiten.
5. Staubsammelvorrichtung unter Verwendung von Multizyklon-Staubfilterung nach Anspruch
4, wobei das Rücklaufrohr (131) mit mindestens einem Abfluss-Durchgangsloch (139)
versehen ist, das entsprechend der Abflusshaube (138) vorgesehen ist, so dass ein
Teil des zu filternden Gases (300), das durch die Abflusshaube (138) begrenzt wird,
in das Rücklaufrohr (131) eintreten kann.
6. Staubsammelvorrichtung unter Verwendung von Multizyklon-Staubfilterung nach Anspruch
3, wobei das Luftstromführungsbauteil (13) mit einer Vielzahl von Verbindungsrippen
(144) versehen ist, die die Luftstromführungshaube (132) mit der Hilfsluftstromführungshaube
(137) verbinden.
7. Staubsammelvorrichtung unter Verwendung von Multizyklon-Staubfilterung nach Anspruch
3, wobei das Luftstromführungsbauteil (13) eine Vielzahl von Stützrippen (141) aufweist,
die das Rücklaufrohr (131) mit der ringförmigen Seitenwand (122) verbinden.
8. Staubsammelvorrichtung unter Verwendung von Multizyklon-Staubfilterung nach Anspruch
7, wobei jede der Vielzahl von Stützrippen (141) mit einem luvseitigen Ende (142)
und einem Austragsende (143) entlang der Strömungsrichtung des ersten Zyklons (301)
versehen ist, wobei jede der Vielzahl von Stützrippen (141) in einer geneigten Weise
vorgesehen ist, wobei das luvseitige Ende (142) höher als das Austragsende (143) in
Position ist.
9. Staubsammelvorrichtung unter Verwendung von Multizyklon-Staubfilterung nach Anspruch
1, wobei das Luftstromführungsbauteil (13) mit einer Vielzahl von Stützstangen (134)
versehen ist, die die Luftstromführungshaube (132) mit dem Rücklaufrohr (131) verbinden.
10. Staubsammelvorrichtung unter Verwendung einer Multizyklon-Staubfilterung nach Anspruch
1, wobei die Luftstromleitkomponente (13) mit einer Drainagehaube (138) versehen ist,
die an einer Seite des Rückstromrohrs (131), die der Eingriffsöffnung (123) zugewandt
ist, vorgesehen ist, um das zu filternde Gas (300) in das Rückstromrohr (131) zu leiten.
11. Staubsammelvorrichtung unter Verwendung von Multizyklon-Staubfilterung nach Anspruch
10, wobei das Rücklaufrohr (131) mit einer Vielzahl von Drainage-Durchgangslöchern
(139) versehen ist, die entsprechend der Drainagehaube (138) vorgesehen sind, so dass
ein Teil des zu filternden Gases (300), das durch die Drainagehaube (138) begrenzt
wird, in das Rücklaufrohr (131) eintreten kann.
12. Staubsammelvorrichtung unter Verwendung von Multizyklon-Staubfiltration nach Anspruch
10, wobei das Luftstromführungsbauteil (13) mit einer Hilfsluftstromführungshaube
(137) versehen ist, die für das Rücklaufrohr (131) vorgesehen ist und zusammen mit
der Luftstromführungshaube (132) den Staubfiltrationskanal (133) bilden kann, wobei
das Rücklaufrohr (131) mit einer Verbindungswand (140) versehen ist, die die Hilfsluftstromführungshaube
(137) mit der Entwässerungshaube (138) verbindet.
13. Staubsammelvorrichtung unter Verwendung von Multizyklon-Staubfilterung nach Anspruch
1, wobei das Luftstromführungsbauteil (13) eine Vielzahl von Stützrippen (141) aufweist,
die das Rücklaufrohr (131) mit der ringförmigen Seitenwand (122) verbinden.
14. Staubsammelvorrichtung unter Verwendung von Multizyklon-Staubfilterung nach Anspruch
13, wobei jede der Vielzahl von Stützrippen (141) mit einem luvseitigen Ende (142)
und einem Austragsende (143) entlang der Strömungsrichtung des ersten Zyklons (301)
versehen ist, wobei jede der Vielzahl von Stützrippen (141) in einer geneigten Weise
vorgesehen ist, wobei das luvseitige Ende (142) höher als das Austragsende (143) in
Position ist.
15. Staubsammelvorrichtung unter Verwendung von Multizyklon-Staubfilterung nach Anspruch
1, wobei ein Außendurchmesser (401) des Rücklaufrohrs (131) kleiner ist als ein Innendurchmesser
(402) der ringförmigen Seitenwand (122).
16. Staubsammelvorrichtung unter Verwendung von Multizyklon-Staubfiltration nach Anspruch
1, wobei die Zyklonkammer (12) mit einer ersten räumlichen Breite (120) versehen ist,
während die Staubsammelkammer (11) mit einer zweiten räumlichen Breite (110) versehen
ist, die größer als die erste räumliche Breite (120) ist.
17. Staubsammelvorrichtung unter Verwendung von Multizyklon-Staubfiltration nach Anspruch
16, wobei sowohl die Staubsammelkammer (11) als auch die Zyklonkammer (12) jeweils
durch ein Gehäuse (16, 15) gebildet wird.
1. Dispositif de collecte de poussière utilisant une filtration de poussière multi-cyclone,
comprenant :
une chambre de collecte de poussière (11) ;
une chambre à cyclones (12), en communication avec ladite chambre de collecte de poussière
(11), ladite chambre à cyclones (12) comportant un orifice d'admission (121) prévu
pour l'entrée d'un gaz à filtrer (300), une paroi latérale annulaire (122) étant reliée
audit orifice d'admission (121) et guidant ledit gaz à filtrer (300) pour qu'il s'écoule
en spirale de façon à former un premier cyclone (301), un orifice d'engagement (123)
en communication avec ladite chambre de collecte de poussière (11) et permettant audit
premier cyclone (301) d'entrer dans ladite chambre de collecte de poussière (11),
et un orifice d'évacuation (124) ; et
un composant de guidage d'écoulement d'air (13), disposé à l'intérieur de ladite chambre
à cyclones (12), caractérisé par le fait que ledit composant de guidage d'écoulement d'air (13) comporte un tube d'écoulement
de retour (131) recevant ledit gaz à filtrer (300) renvoyé à partir de ladite chambre
à cyclones (12) et guidant ledit gaz à filtrer (300) pour qu'il s'écoule en spirale
de façon à former un second cyclone (302), un capot de guidage d'écoulement d'air
(132) placé coaxialement et séparément par rapport audit tube d'écoulement de retour
(131), et un canal de filtration de poussière (133) formé entre ledit capot de guidage
d'écoulement d'air (132) et ledit tube d'écoulement de retour (131), ledit premier
cyclone (301) étant incapable d'entrer dans ledit tube d'écoulement de retour (131)
à partir dudit canal de filtration de poussière (133) en raison de l'entrave assurée
par ledit capot de guidage d'écoulement d'air (132), ledit second cyclone (302) s'écoulant
vers ledit orifice d'évacuation (124), ledit second cyclone (302) éjectant de la poussière
(502) contenue dans celui-ci dans ledit canal de filtration de poussière (133) lorsqu'il
passe par ledit canal de filtration de poussière (133), la poussière (502) étant entravée
par ledit capot de guidage d'écoulement d'air (132) de façon à entrer dans ladite
chambre de collecte de poussière (11).
2. Dispositif de collecte de poussière utilisant une filtration de poussière multi-cyclone
selon la revendication 1, dans lequel ledit composant de guidage d'écoulement d'air
(13) comporte un tube de drainage (135) reliant ledit capot de guidage d'écoulement
d'air (132) audit orifice d'évacuation (124).
3. Dispositif de collecte de poussière utilisant une filtration de poussière multi-cyclone
selon la revendication 1, dans lequel ledit composant de guidage d'écoulement d'air
(13) comprend un capot de guidage d'écoulement d'air auxiliaire (137), qui est prévu
pour ledit tube d'écoulement de retour (131) et autorisé à former, conjointement avec
ledit capot de guidage d'écoulement d'air (132), ledit canal de filtration de poussière
(133).
4. Dispositif de collecte de poussière utilisant une filtration de poussière multi-cyclone
selon la revendication 3, dans lequel ledit composant de guidage d'écoulement d'air
(13) comporte un capot de drainage (138) disposé à un côté, orienté vers ledit orifice
d'engagement (123), dudit tube d'écoulement de retour (131) pour guider ledit gaz
à filtrer (300) dans ledit tube d'écoulement de retour (131).
5. Dispositif de collecte de poussière utilisant une filtration de poussière multi-cyclone
selon la revendication 4, dans lequel ledit tube d'écoulement de retour (131) comporte
au moins un trou traversant de drainage (139) disposé de manière correspondante audit
capot de drainage (138) de façon à permettre à une partie dudit gaz à filtrer (300)
entravée par ledit capot de drainage (138) d'entrer dans ledit tube d'écoulement de
retour (131).
6. Dispositif de collecte de poussière utilisant une filtration de poussière multi-cyclone
selon la revendication 3, dans lequel ledit composant de guidage d'écoulement d'air
(13) comporte une pluralité de nervures de liaison (144) reliant ledit capot de guidage
d'écoulement d'air (132) audit capot de guidage d'écoulement d'air auxiliaire (137).
7. Dispositif de collecte de poussière utilisant une filtration de poussière multi-cyclone
selon la revendication 3, dans lequel ledit composant de guidage d'écoulement d'air
(13) comprend une pluralité de nervures de support (141) reliant ledit tube d'écoulement
de retour (131) à ladite paroi latérale annulaire (122).
8. Dispositif de collecte de poussière utilisant une filtration de poussière multi-cyclone
selon la revendication 7, dans lequel chacune de ladite pluralité de nervures de support
(141) comporte une extrémité à l'amont (142) et une extrémité de décharge (143) le
long de la direction d'écoulement dudit premier cyclone (301), chacune de ladite pluralité
de nervures de support (141) étant disposée d'une manière inclinée, ladite extrémité
à l'amont (142) étant plus haute que ladite extrémité de décharge (143) en position.
9. Dispositif de collecte de poussière utilisant une filtration de poussière multi-cyclone
selon la revendication 1, dans lequel ledit composant de guidage d'écoulement d'air
(13) comporte une pluralité de tiges de support (134) reliant ledit capot de guidage
d'écoulement d'air (132) audit tube d'écoulement de retour (131).
10. Dispositif de collecte de poussière utilisant une filtration de poussière multi-cyclone
selon la revendication 1, dans lequel ledit composant de guidage d'écoulement d'air
(13) comporte un capot de drainage (138) disposé à un côté, orienté vers ledit orifice
d'engagement (123), dudit tube d'écoulement de retour (131) pour guider ledit gaz
à filtrer (300) dans ledit tube d'écoulement de retour (131).
11. Dispositif de collecte de poussière utilisant une filtration de poussière multi-cyclone
selon la revendication 10, dans lequel ledit tube d'écoulement de retour (131) comporte
une pluralité de trous traversants de drainage (139) disposés de manière correspondante
audit capot de drainage (138) de façon à permettre à une partie dudit gaz à filtrer
(300) entravée par ledit capot de drainage (138) d'entrer dans ledit tube d'écoulement
de retour (131).
12. Dispositif de collecte de poussière utilisant une filtration de poussière multi-cyclone
selon la revendication 10, dans lequel ledit composant de guidage d'écoulement d'air
(13) comporte un capot de guidage d'écoulement d'air auxiliaire (137), qui est prévu
pour ledit tube d'écoulement de retour (131) et autorisé à former, conjointement avec
ledit capot de guidage d'écoulement d'air (132), ledit canal de filtration de poussière
(133), ledit tube d'écoulement de retour (131) comportant une paroi de liaison (140)
reliant ledit capot de guidage d'écoulement d'air auxiliaire (137) audit capot de
drainage (138).
13. Dispositif de collecte de poussière utilisant une filtration de poussière multi-cyclone
selon la revendication 1, dans lequel ledit composant de guidage d'écoulement d'air
(13) comprend une pluralité de nervures de support (141) reliant ledit tube d'écoulement
de retour (131) à ladite paroi latérale annulaire (122).
14. Dispositif de collecte de poussière utilisant une filtration de poussière multi-cyclone
selon la revendication 13, dans lequel chacune de ladite pluralité de nervures de
support (141) comporte une extrémité à l'amont (142) et une extrémité de décharge
(143) le long de la direction d'écoulement dudit premier cyclone (301), chacune de
ladite pluralité de nervures de support (141) étant disposée d'une manière inclinée,
ladite extrémité à l'amont (142) étant plus haute que ladite extrémité de décharge
(143) en position.
15. Dispositif de collecte de poussière utilisant une filtration de poussière multi-cyclone
selon la revendication 1, dans lequel un diamètre externe (401) dudit tube d'écoulement
de retour (131) est plus petit qu'un diamètre interne (402) de ladite paroi latérale
annulaire (122).
16. Dispositif de collecte de poussière utilisant une filtration de poussière multi-cyclone
selon la revendication 1, dans lequel ladite chambre à cyclones (12) comporte une
première largeur spatiale (120), tandis que ladite chambre de collecte de poussière
(11) comporte une seconde largeur spatiale (110) plus grande que ladite première largeur
spatiale (120).
17. Dispositif de collecte de poussière utilisant une filtration de poussière multi-cyclone
selon la revendication 16, dans lequel chacune de ladite chambre de collecte de poussière
(11) et de ladite chambre à cyclones (12) est formée par un boîtier (16, 15), respectivement.