(19)
(11) EP 3 277 116 B1

(12) EUROPEAN PATENT SPECIFICATION

(45) Mention of the grant of the patent:
27.01.2021 Bulletin 2021/04

(21) Application number: 16721935.1

(22) Date of filing: 24.03.2016
(51) International Patent Classification (IPC): 
A42B 3/24(2006.01)
A42B 3/28(2006.01)
(86) International application number:
PCT/IB2016/051686
(87) International publication number:
WO 2016/157046 (06.10.2016 Gazette 2016/40)

(54)

PROTECTIVE HELMET

SCHUTZHELM

CASQUE DE PROTECTION


(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

(30) Priority: 30.03.2015 IT VR20150050

(43) Date of publication of application:
07.02.2018 Bulletin 2018/06

(73) Proprietor: Dainese S.p.A.
36064 Colceresa (Vicenza) (IT)

(72) Inventor:
  • BERTOLO, Luca
    36060 Molvena (Vicenza) (IT)

(74) Representative: Manfrin, Marta et al
Società Italiana Brevetti S.p.A. Stradone San Fermo 21 sc. B
37121 Verona (VR)
37121 Verona (VR) (IT)


(56) References cited: : 
DE-A1-102004 048 843
US-A- 4 612 675
US-B1- 6 263 513
US-A- 4 514 864
US-A- 5 394 566
   
       
    Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).


    Description


    [0001] The present invention relates to a protective helmet, for example for motorcycling use and in particular a helmet provided with ventilation circuits.

    [0002] Known protective helmets include those, for example for motorcycling use, provided with at least one ventilation opening or port which is formed in the helmet and which places an outer area of the helmet in fluid communication with an inner area so as to allow the entry and/or the circulation of an air flow in the internal space of the helmet. The ventilation of the internal space of the helmet allows comfortable temperatures to be maintained for the motorcyclist's head, in particular during prolonged use, and favours renewal of the air. The ventilation opening or port, or air vent, is generally connected to a series of channels composed of grooves formed in the padding of the helmet, in the polystyrene layer or in another layer of the helmet and designed to distribute the air flow in the internal space in a uniform manner.

    [0003] US 5,394,566 discloses a motorcycle helmet with a ventilation system which allows for the circulation of air within the internal space of the helmet and creates a demisting airflow across the inside surface of the visor.

    [0004] It is also known to air an area of the helmet which is situated between the user's face and the visor of the helmet, namely the chamber which is situated in front of the user's field of vision and is closed by the transparent screen which is situated in the front area of the helmet so as to protect the user's face from the air. This zone, which is not aired, risks becoming misted up, this risk being increased by the fact that in this zone the user breathes and there is greater amount of moisture.

    [0005] In the continuation of the present disclosure, the expression "visor chamber" is understood as meaning that area of the helmet situated between the user's face and the helmet visor.

    [0006] Airing inside the visor chamber is performed by suitably providing fluid communication between the visor chamber and the aforementioned air channels and/or vent(s) for the helmet so as to create an air flow from the visor chamber and a ventilation port, such that the air of the visor chamber may flow out from the visor chamber and reach the ventilation port from where it may exit.

    [0007] The present disclosure arises from the realization on the part of the author or the authors that it is not always possible to create an effective ventilation of the visor chamber since it is not always possible to control the air flows inside the helmet owing to the numerous air ports and channels, considering also that these flow may vary over time for example depending on the position of the helmet during riding, the greater or lesser speed of the motorcycle and/or other factors. As a result, depending on the speed and/or the position of the helmet, turbulences and chaotic flows may be generated inside the helmet and these prevent a regular flow of air from the visor chamber towards the outlet ventilation port, with the risk of a head loss in the flows.

    [0008] It is therefore not always possible to achieve an optimum circulation of the air and satisfactory demisting of the visor.

    [0009] A technical problem underlying the present invention is therefore that of providing a protective helmet which is able to overcome this drawback, namely is able to improve the ventilation efficiency inside the helmet and/or achieve further advantages. Said technical problem is overcome by a protective helmet and a method, the main characteristic features of which are specified in the respective independent claims, while other characteristic features are specified in the remaining claims.

    [0010] The proposed solution forming the basis of the present invention is that, in order to optimize the circulation of air, it is convenient to separate physically, or render independent structurally, one channel which allows the circulation of the air from one area of the helmet, such as the visor chamber, towards the one or more air outlet ventilation ports, and another channel, such as the channel which allows generally circulation of the air or ventilation inside the helmet. Basically, in other words, a proposed idea forming the basis of the present disclosure consists in providing and creating ventilation paths or circuits which are physically separate from each other and/or configured so that there is no mutual fluid communication.

    [0011] In this way, irrespective of the position of the rider's head and/or the air flows which may be generated inside the helmet, the air flows intended to demist the visor chamber and the air flows which concern in general the circulation of air in the helmet, or a specific area of circulation of the air in the helmet, are independent and/or separate as far as possible, so as to reduce the risk of interference and therefore turbulence.

    [0012] On the basis of this proposed solution, in accordance with an embodiment of the present disclosure, in order to solve said technical problem, the motorcycling helmet comprises a first ventilation path or circuit which is isolated from, or independent of, a second ventilation path or circuit.

    [0013] Moreover, on the basis of the aforementioned proposed solution, in accordance with an embodiment of the present disclosure, in order to solve said technical problem, the motorcycling helmet comprises one or more guiding members which place an area of the helmet in fluid communication with a ventilation port for output of the air and are configured to render an air flow independent of another air flow, so as to avoid the possible creation of turbulence due to interference between flows and consequent head losses due to said turbulence or chaotic flows.

    [0014] A guiding member may be understood as meaning a body with a closed cross-section, such as a tubular body, or a body which, once mounted on the helmet, forms a closed cross-section, able to cause an air flow to flow in an isolated manner from other air flows.

    [0015] Owing to the use of guiding members, it is possible to design a priori a ventilation system which allows the direction of the flow to be controlled and thus the ventilation efficiency to be maximized.

    [0016] For example, in one embodiment of the present disclosure, the guiding members place a visor chamber in direct fluid communication with a ventilation port intended to output air from the helmet.

    [0017] The air output ventilation port may be an opening which is located in the rear area of the helmet which is in technical jargon of the sector is referred to as "rear extractor". Recall of the air from the visor chamber takes place by means of aspiration. In fact, during the movement of the motorcycle, a vacuum is created in the region of the rear extractor and sucks the air from the internal area of the helmet and therefore also from the visor chamber and therefore produces the desired demisting action.

    [0018] If the helmet is a full-face helmet with chin-piece an air vent which is in fluid communication with the visor chamber is provided in the region of the chin-piece. An air flow which departs from the chin-piece, passes into the visor chamber and continues via the guiding members towards an air outlet port is thus produced.

    [0019] Consequently, the air for demisting the visor does not come into contact at all, or only minimally, with an air flow intended for example for ventilation and/or general airing of the helmet, since this demisting air is directed inside the guiding members which lead into the visor chamber and do not allow fluid communication with the remainder of the internal area of the helmet.

    [0020] Further advantages and characteristic features of the motorcycling helmet according to the present invention will become clear to persons skilled in the art from the following detailed and non-limiting description of an embodiment thereof with reference to the accompanying drawings in which:
    • Figure 1 is an axonometric view, from the front, of a protective helmet partially cross-sectioned in accordance with an embodiment of the present disclosure;
    • Figure 2 is a view, from the rear, of a protective helmet partially cross-sectioned in accordance with an embodiment of the present disclosure;
    • Figure 3 is an axonometric view of the protective helmet according to Figure 1 in which, differently from Figure 1, an outer shell has been removed and a guiding member is partially raised;
    • Figure 4 is a view, from the rear, of the helmet according to Figure 2 in which an outer shell has been removed and a guiding member is partially raised;
    • Figure 5 is a front view of the helmet according to Figure 1;
    • Figure 6 shows a cross-section along the line VI-VI of Figure 5;
    • Figure 6A is a detail VI of Figure 6;
    • Figure 7 is a cross-section along the line VII-VII of Figure 5;
    • Figure 7A is a detail VII of Figure 7;
    • Figure 8 is a cross-sectional view along the line VI-VI of Figure 5, in which, differently from the cross-section of Figure 6, the guiding members have been removed.


    [0021] With reference to Figures 1 to 8, the motorcycling helmet 1 according to the invention comprises an outer cap or shell 2 with anti-penetration function and a layer with energy absorption function 3, for example made of polystyrene. The outer shell 2 and the layer with energy absorption function 3 form part of a general body of the helmet.

    [0022] In particular, in a front top area of the outer shell 2, the protective helmet 1 includes a plurality of front ventilation openings or ports 4, 5, in the example two ports 4,5.

    [0023] The protective helmet 1 also includes a visor 21 and a visor chamber 22.

    [0024] The protective helmet 1 shown in the figures is also a helmet of the full-face type and includes a chin-piece.

    [0025] In a rear area of the outer shell 2, the helmet 1 includes a plurality of rear ventilation openings or ports, also called rear extractors 6, in the example two rear extractors 6, only one of which is visible in the figures.

    [0026] As can be seen from the figures, the helmet shown in the present embodiment is symmetrical with respect to a midplane or sagittal plane. In particular the two front ventilation ports 4, 5 and the two rear extractors 6 are symmetrical with respect to the midplane or sagittal plane. As a result, the internal ventilation components of the helmet are arranged symmetrically on both sides, right-hand half and left-hand half, of a sagittal plane, so as to ensure symmetrical ventilation on both sides of the helmet. The description which follows is provided only in relation to a group of ventilation components located in the left-hand half of the helmet. It is understood that the same components are also present in the right-hand half of the helmet. Alternatively, it is also possible for there to be a single group of components centred on a sagittal plane of the helmet.

    [0027] It is also pointed out that, in the figures, the helmet is shown in a condition when not worn. However, in the context of the present disclosure it is assumed that the helmet is worn. Consequently, in the context of the present disclosure, any spatial reference such as rear, anterior, front, right-hand, left-hand and similar spatial references are to be understood as referring, by way of indication and/or example, to a condition in which a helmet is worn, and these spatial references are to be understood as being relative to the head of the person. Moreover, when reference to air flows is made, it is to be understood that these are generated in the helmet when a user is riding a vehicle wearing the helmet 1.

    [0028] Moreover, in the context of the present disclosure, the expression "front ventilation port" will be understood as meaning a ventilation port formed in the front area of a user and able to allow the entry and/or the circulation of an air flow in the internal space of the helmet so as to air the head of a user both via channels and via holes formed in the polystyrene or in another layer of the helmet.

    [0029] The layer with energy absorption function 3 includes grooves 9, 10, 11 and front holes 13, 14, 15. In particular, a first longitudinally extending groove 9, which extends along the entire top of the helmet and reaches the rear area, and a second groove 10 of shorter length, which branches off one side of the first groove 9, are provided. The front holes 13, 14, 15 are formed in the second groove 10. The front holes 13, 14, 14 place the housing area, or inner side of the helmet, inside which the user's head is arranged, in communication with the respective front ventilation port 4, 5.

    [0030] The layer with energy absorption function 3 also includes rear holes 18, 19 which place the housing area of the helmet in communication with each respective rear extractor 6. A third groove or recess 11 of smaller length is formed in the layer 3 in the region of the rear holes 18, 19.

    [0031] According to one aspect of the present disclosure, the protective helmet 1 includes one or more guiding members 20, in the example one guiding member 20 for each half, i.e. right-hand half and left-hand half, of the helmet. The guiding member is, for example, a tube or tubular body, or tubular jacket, or sleeve, which is preferably made of soft material and able to be adapted to the cap-shaped form of the helmet and which is in fluid communication with given areas of the helmet and allows the creation of an air circuit which is independent from other circuits or air flows in the protective helmet 1.

    [0032] Alternatively, the guiding member is a body which, when mounted in the helmet, is able to create an air circuit or area which is independent of other air circuits or flows inside the protective helmet 1.

    [0033] In the embodiment shown in the figures, the guiding member 20 is seated inside the first groove 9 and places the visor chamber 22 in fluid communication with the respective rear extractor 6.

    [0034] In order to establish this fluid communication, the guiding member 20 enters, or leads into, or opens out directly inside the visor chamber 22 and opens out in turn inside the respective rear extractor 6. In order to achieve such an opening arrangement, the guiding member 20 may be arranged so as to open out inside the visor chamber 22 on one side and the extractor 6 on the other side, and the guiding member 20 may be retained/held inside the respective groove 9 between the shell 2 and the layer with energy absorption function 3.

    [0035] The layer 20 is preferably not in fluid communication with the respective front ventilation port 4, 5 so that an air flow which flows from the visor chamber 22 towards the rear extractors 6 does not interfere with an air flow which enters via the front ventilation port 4, 5 in order to air the user's head.

    [0036] The management and organization of the air flows is described below with reference to the attached figures.

    [0037] With reference to Figure 6 and Figure 6A it can be seen that the air which strikes the helmet enters via the front ventilation ports 4, 5 and, owing to a vacuum effect which is created, during riding of the motorcycle, in the rear area of the helmet in the region of the rear extractors 6, is sucked inside the helmet.

    [0038] This air, which may be called ventilation/circulation air, passes through the holes 13, 14, 15, enters into the head region and passes out through the rear holes 18, 19 towards the rear extractors 6. The front ventilation ports 4,5, the holes 13, 14, 15, the rear holes 18, 19 and the rear extractors 6 form an air circuit.

    [0039] The ventilation/circulation air flows may vary depending on the speed of the motorcycle, the position/inclination of the helmet and/or the position of the motorcyclist.

    [0040] In order to demist the visor, owing to the vacuum which is created in the region of the rear extractors 6, an air flow is sucked in via the visor chamber 22 and, passing inside the guiding members 20, is expelled through the rear extractors 6 (Figure 7). The air may enter into the visor chamber 22 via the underlying zone of the helmet in the region of the chin and the neck of the user and/or via suitable air vents provided in the chin-piece (not visible in the drawings). The visor chamber 22, the guiding member 20 and the rear extractors 6 form another air circuit.

    [0041] As can be understood from Figure 6 and Figure 6A any air which circulates via the front ventilation port 4, 5 and passes along the first groove 9 on the outer side of the guiding member 20, does not interfere with the air which passes inside the guiding member 20.

    [0042] Consequently, if, depending on the speed of the motorcycle, position/inclination of the helmet and/or position of the motorcyclist, the ventilation/circulation air flow varies inside the helmet, this variation in flow does not affect or interfere with the demisting air flow. Consequently, the risk of turbulence or chaotic air flows being formed, in particular in the intersection zone of the grooves 9, 10, which could result in head losses for the demisting ventilation, is avoided.

    [0043] In fact, if such a guiding member were not present, as can be seen in Figure 8, considerable turbulence could form in the air circuits, in particular with an increase in the ventilation/circulation air flow, with the negative effect of head loss in the demisting air flow.

    [0044] The embodiment of the motorcycling helmet described and illustrated here forms only one example which may be subject to numerous variations. For example, it is possible to envisage a version which is double compared to that described, with the use of a guiding member arranged in fluid communication with the front ventilation ports for conveying the ventilation/circulation flow.

    [0045] Alternatively it is possible to envisage the use of guiding members both for the ventilation/circulation air flow and for the demisting air flow.

    [0046] It should in fact be noted that, owing to the use of air guiding members and in general any other system which isolates the air circuits connecting ventilation openings with areas of the helmet or with other ventilation openings, such that the air flows are independent, it is possible to design or organize a priori a ventilation system according to needs and depending on the type of helmet to be made.

    [0047] The number of grooves and ventilation holes, as well as their positioning in the helmet, may also be varied according to needs.

    [0048] The grooves or recesses may be formed in any layer which forms the helmet, depending on the structure and configuration of the helmet. The layer with energy absorption function or the layer with anti-penetration function may be made using any material known to the person skilled in the art.

    [0049] It should also be noted that the fluid flows in the helmet which are independent of each other may be different from the specific air flows described in the aforementioned embodiment.


    Claims

    1. Protective helmet (1) including one or more air guiding members (20) configured to place in fluid communication at least one area of the helmet (22) with one or more ventilation ports (6) for output/expulsion of air so as to define a first ventilation path or circuit intended for the passage of air flow in the helmet, wherein the first ventilation path is independent from, and/or isolated, and/or not in fluid communication with, or not interfering with, a second path or circuit intended for the passage of another air flow in the helmet, wherein the area of the helmet is a visor chamber (22) and the one or more ventilation ports (6) are one or more rear ventilation ports of the helmet, wherein the first path extends between the visor chamber (22) and said rear ventilation port (6) of the helmet and wherein the second path extends between a front ventilation port (4, 5) and said rear ventilation port (6) of the helmet, wherein said one or more guiding members (20) are associated with said first path or circuit.
     
    2. Protective helmet (1) according to claim 1, and wherein said guiding members (20) are associated with said first path or circuit and said second path or circuit.
     
    3. Protective helmet (1) according to claim 1 or 2, wherein said one or more guiding members (20) is/are one or more tubular bodies (20) or bodies configured to define a closed cross-section when mounted in the helmet.
     
    4. Protective helmet (1) according to claim 3 when in combination with claim 1, wherein said one or more tubular bodies are bodies which can be manipulated individually with respect to a structure of the helmet and said first path or circuit is defined by said tubular bodies and said second path or circuit is defined by holes formed in said structure of the helmet.
     
    5. Protective helmet (1) according to claim 4, wherein said tubular bodies are closed with respect to said holes.
     
    6. Protective helmet (1) according to any one of the preceding claims, comprising a body of the helmet, and wherein the first ventilation path or circuit and the second ventilation path or circuit are channels extending in the body of the helmet each between a respective inlet mouth or opening and a respective outlet mouth or opening.
     
    7. Protective helmet (1) according to any one of the preceding claims, wherein the first ventilation path or circuit and the second ventilation path or circuit are paths included in a same layer (3) of the helmet.
     
    8. Protective helmet (1) according to any one of the preceding claims, wherein the first ventilation path or circuit and the second ventilation path or circuit are paths covered by an outer shell (2) of the helmet.
     
    9. Protective helmet (1) according to any one of the preceding claims, including a layer with energy absorption function (3) and wherein both the first ventilation path or circuit and the second ventilation path or circuit extend in the layer with energy absorption function (3) in an area comprised between an intrados side of the layer with energy absorption function (3) and an outer shell (2) of the helmet.
     
    10. Protective helmet (1) according to any one of the preceding claims, wherein the first ventilation path or circuit and the second ventilation path or circuit both extend between a front area of the helmet and a rear area.
     
    11. Protective helmet (1) according to any one of the preceding claims, wherein the first ventilation path or circuit has a ventilation function different from the second ventilation path or circuit, and wherein the first ventilation path or circuit is designed to allow demisting of a visor of the helmet, and the second ventilation path or circuit is designed to allow ventilation or airing of the user's head.
     
    12. Protective helmet (1) according to any one of the preceding claims in combination with claim 3, including one or more grooves or recesses (9, 10) and wherein said one or more tubular bodies (20) are housed in a respective groove or recess (9).
     
    13. Protective helmet (1) according to claim 12 in combination with claim 9, wherein said grooves or recesses (9, 10) are formed in said layer with energy absorption function (3).
     
    14. Protective helmet (1) according to any one of the preceding claims, comprising at least one first longitudinally extending groove (9) which extends along the entire top of the helmet between a front area and a rear area of the helmet, and a second groove (10) that branches off on one side of the first groove (9) and is located in a front region of the helmet, said first groove (9) being intended to accommodate a respective tubular body (20), and said second groove (10) being provided with one or more through-holes (13, 14, 15) intended to provide fluid communication between the front ventilation port (4, 5) and an inner side of the helmet, and wherein the helmet includes one or more through-holes (18, 19) configured to provide fluid communication between the rear ventilation port (6) and an inner side of the helmet.
     
    15. Protective helmet (1) according to claim 14, wherein said one or more front ventilation ports (4, 5), said one or more first through-holes (13, 14, 15) and said one or more second through-holes (18, 19) and said one or more rear ventilation ports (6) are part of said second circuit.
     
    16. Method for managing ventilation in a protective helmet, wherein the method envisages

    - arranging a first ventilation path or circuit and a second ventilation path or circuit, wherein the first ventilation path or circuit and the second ventilation path or circuit are paths or circuits physically separate or independent from each other, or paths or circuits not in mutual fluid communication, or otherwise paths or circuits configured to avoid a mutual interference between flows of air, or

    - directing at least one air flow in a first air circuit of the helmet from an area of the helmet towards one or more ventilation ports (6) for output/expulsion of air independently and/or separately and/or without fluid communication with respect to, or without interfering with, at least one second circuit intended to allow passage of an air flow into the helmet, wherein an air flow, which extends from the visor chamber (22) towards the ventilation port (6) for output of air for demisting the visor is made independent from, or is isolated with respect to, an air flow extending between a front ventilation port (4, 5) and said ventilation port (6) for output of air and intended to air an internal area of the helmet intended to accommodate the head of a user, wherein the air is made to exit from a rear area of the helmet via the two independent paths.


     
    17. Method according to claim 16, wherein an air flow which extends from the visor chamber towards the ventilation port for output of air is made independent, or isolated, from another flow, wherein one of said flows is conveyed in one or more tubular bodies (20) or bodies configured to form a closed cross-section once mounted in the helmet and the other of said flows is conveyed in holes formed in a layer with energy absorption function (3), said tubular bodies (20) or bodies configured to form a closed cross-section once mounted in the helmet being bodies which are structurally independent or singly able to be maneuvered with respect to said layer with energy absorption function (3).
     


    Ansprüche

    1. Schutzhelm (1) mit einem oder mehreren Luftführungselementen (20), die so ausgelegt sind, dass mindestens einen Bereich des Helms (22) mit einer oder mehreren Belüftungsöffnungen (6) zum Abgeben/Ausstoßen von Luft in Fluidverbindung setzen, um so einen ersten Belüftungspfad oder -kreis zu bilden, der für den Durchtritt eines Luftstroms im Helm gedacht ist, wobei der erste Belüftungspfad unabhängig von und/oder isoliert von und/oder nicht in Fluidverbindung oder Überlagerung mit einem zweiten Pfad oder Kreis ist, der für den Durchtritt eines anderen Luftstroms im Helm gedacht ist, wobei der Bereich des Helms eine Visierkammer (22) darstellt und es sich bei der einen oder den mehreren Belüftungsöffnungen (6) um eine oder mehrere hintere Belüftungsöffnungen des Helms handelt, wobei der erste Pfad zwischen der Visierkammer (22) und der hinteren Belüftungsöffnung (6) des Helms verläuft und der zweite Pfad zwischen einer vorderen Belüftungsöffnung (4, 5) und der hinteren Belüftungsöffnung (6) des Helms verläuft, wobei das eine oder die mehreren Führungselemente (20) dem ersten Pfad oder Kreis zugeordnet ist bzw. sind.
     
    2. Schutzhelm (1) nach Anspruch 1, wobei die Führungselemente (20) dem ersten Pfad oder Kreis und dem zweiten Pfad oder Kreis zugeordnet sind.
     
    3. Schutzhelm (1) nach Anspruch 1 oder 2, wobei es sich bei dem einen oder den mehreren Führungselementen (20) um einen oder mehrere Schlauchkörper (20) oder Körper handelt, die so ausgelegt sind, dass sie bei Anbringung im Helm einen geschlossenen Querschnitt bilden.
     
    4. Schutzhelm (1) nach Anspruch 3, wenn in Kombination mit Anspruch 1, wobei es sich bei dem einen oder den mehreren Schlauchkörpern um Körper handelt, die in Bezug auf eine Struktur des Helms einzeln betätigt werden können, und der erste Pfad oder Kreis durch die Schlauchkörper definiert ist und der zweite Pfad oder Kreis durch in der Struktur des Helms gebildete Öffnungen definiert ist.
     
    5. Schutzhelm (1) nach Anspruch 4, wobei die Schlauchkörper in Bezug auf die Öffnungen geschlossen sind.
     
    6. Schutzhelm (1) nach einem der vorhergehenden Ansprüche, mit einem Korpus des Helms, und wobei es sich beim ersten Belüftungspfad oder -kreis und zweiten Belüftungspfad oder -kreis um Kanäle handelt, die im Korpus des Helms jeweils zwischen einer jeweiligen Einlassmündung oder -öffnung und einer jeweiligen Auslassmündung oder -öffnung verlaufen.
     
    7. Schutzhelm (1) nach einem der vorhergehenden Ansprüche, wobei es sich beim ersten Belüftungspfad oder -kreis und zweiten Belüftungspfad oder -kreis um Pfade handelt, die in derselben Schicht (3) des Helms enthalten sind.
     
    8. Schutzhelm (1) nach einem der vorhergehenden Ansprüche, wobei es sich beim ersten Belüftungspfad oder -kreis und zweiten Belüftungspfad oder -kreis um Pfade handelt, die von einer Außenhülle (2) des Helms überdeckt sind.
     
    9. Schutzhelm (1) nach einem der vorhergehenden Ansprüche, eine Schicht mit Energieabsorptionsfunktion (3) aufweisend, und wobei sowohl der erste Belüftungspfad oder -kreis als auch der zweite Belüftungspfad oder -kreis in der Schicht mit Energieabsorptionsfunktion (3) in einem Bereich verlaufen, der sich zwischen einer Intrados-Seite der Schicht mit Energieabsorptionsfunktion (3) und der Außenhülle (2) des Helms erstreckt.
     
    10. Schutzhelm (1) nach einem der vorhergehenden Ansprüche, wobei der ersten Belüftungspfad oder -kreis und der zweite Belüftungspfad oder -kreis jeweils zwischen einem vorderen Bereich des Helms und einem hinteren Bereich verlaufen.
     
    11. Schutzhelm (1) nach einem der vorhergehenden Ansprüche, wobei der ersten Belüftungspfad oder -kreis eine andere Belüftungsfunktion hat als der zweite Belüftungspfad oder -kreis, und wobei der ersten Belüftungspfad oder -kreis dafür konzipiert ist, eine Anti-Beschlagfunktion für ein Visier des Helms zu ermöglichen, und der zweite Belüftungspfad oder -kreis dafür konzipiert ist, eine Belüftung oder Lüftung des Kopfes eines Benutzers zu ermöglichen.
     
    12. Schutzhelm (1) nach einem der vorhergehenden Ansprüche in Kombination mit Anspruch 3, eine oder mehrere Rillen oder Aussparungen (9, 10) aufweisend, und wobei der eine oder die mehreren Schlauchkörper (20) in einer jeweiligen Rille oder Aussparung (9) aufgenommen sind.
     
    13. Schutzhelm (1) nach Anspruch 12 in Kombination mit Anspruch 9, wobei die Rillen oder Aussparungen (9, 10) in der Schicht mit Energieabsorptionsfunktion (3) gebildet sind.
     
    14. Schutzhelm (1) nach einem der vorhergehenden Ansprüche, mit mindestens einer ersten längs verlaufenden Rille (9), die entlang der gesamten Oberseite des Helms zwischen einem vorderen Bereich und einem hinteren Bereich des Helms verläuft, und einer zweiten Rille (10), die auf einer Seite der ersten Rille (9) abzweigt und sich in einer vorderen Zone des Helms befindet, wobei die erste Rille (9) dazu gedacht ist, einen jeweiligen Schlauchkörper (20) aufzunehmen, und die zweite Rille (10) mit einer oder mehreren Durchgangsöffnungen (13, 14, 15) versehen ist, die dazu gedacht sind, eine Fluidverbindung zwischen der vorderen Belüftungsöffnung (4, 5) und einer Innenseite des Helms bereitzustellen, und wobei der Helm eine oder mehrere Durchgangsöffnungen (18, 19) aufweist, die so ausgelegt sind, dass sie eine Fluidverbindung zwischen der hinteren Belüftungsöffnung (6) und einer Innenseite des Helms bereitstellen.
     
    15. Schutzhelm (1) nach Anspruch 14, wobei die eine oder die mehreren vorderen Belüftungsöffnungen (4, 5), die eine oder die mehreren ersten Durchgangsöffnungen (13, 14, 15), die eine oder die mehreren zweiten Durchgangsöffnungen (18, 19) und die eine oder die mehreren hinteren Belüftungsöffnungen (6) Teil des zweiten Kreises sind.
     
    16. Verfahren zum Steuern der Belüftung in einem Schutzhelm, wobei das Verfahren Folgendes vorsieht:

    - Anordnen eines ersten Belüftungspfads oder -kreises und eines zweiten Belüftungspfads oder -kreises, wobei es sich bei dem ersten Belüftungspfad oder -kreis und dem zweiten Belüftungspfad oder -kreis um Pfade oder Kreise handelt, die physisch getrennt oder voneinander unabhängig sind, oder um Pfade oder Kreise, die nicht in gegenseitiger Fluidverbindung stehen, oder anderweitig um Pfade oder kreise, die so ausgelegt sind, dass eine gegenseitige Beeinflussung von Luftströmen vermieden wird, oder

    - Leiten von mindestens einem Luftstrom in einem ersten Luftkreis des Helms von einem Bereich des Helms zu einer oder mehreren Belüftungsöffnungen (6) zum unabhängigen und/oder separaten Abgeben/Ausstoßen von Luft und/oder ohne Fluidverbindung oder Überlagerung mit mindestens einem zweiten Kreis, der dazu gedacht ist, einen Durchtritt eines Luftstroms im Helm zu ermöglichen, wobei ein Luftstrom, der von der Visierkammer (22) zur Belüftungsöffnung (6) zur Abgabe von Luft für eine Anti-Beschlagfunktion des Visiers verläuft, unabhängig von oder isoliert in Bezug auf einen Luftstrom ist, der zwischen einer vorderen Belüftungsöffnung (4, 5) und der Belüftungsöffnung (6) zur Abgabe von Luft verläuft und dafür gedacht ist, einen inneren Bereich des Helms zu belüften, der zur Aufnahme des Kopfes eines Benutzers gedacht ist, wobei die Luft von einem hinteren Bereich des Helms über die zwei unabhängigen Pfade zum Ausströmen gebracht wird.


     
    17. Verfahren nach Anspruch 16, wobei ein Luftstrom, der von der Visierkammer zur Belüftungsöffnung zur Abgabe von Luft verläuft, unabhängig von oder isoliert von einem anderen Strom ist, wobei einer der Ströme in einem oder mehreren Schlauchkörpern (20) oder Körpern befördert wird, die so ausgelegt sind, dass sie einen geschlossenen Querschnitt bilden, sobald sie im Helm angebracht sind, und der andere der Ströme in Öffnungen befördert wird, die in einer Schicht mit Energieabsorptionsfunktion (3) gebildet sind, wobei es sich bei den Schlauchkörpern (20) oder Körpern, die so ausgelegt sind, dass sie einen geschlossenen Querschnitt bilden, sobald sie im Helm angebracht sind, um Körper handelt, die strukturell unabhängig sind oder in Bezug auf die Schicht mit Energieabsorptionsfunktion (3) einzeln betätigt werden können.
     


    Revendications

    1. Casque de protection (1) comprenant un ou plusieurs éléments de guidage d'air (20) configurés pour placer, en communication de fluide, au moins une zone du casque (22) avec un ou plusieurs orifices de ventilation (6) pour la sortie / l'expulsion de l'air afin de définir une première trajectoire ou circuit de ventilation prévu(e) pour le passage de l'écoulement d'air dans le casque, dans lequel la première trajectoire de ventilation est indépendante de et/ou isolée et/ou pas en communication de fluide ou n'interférant pas avec une seconde trajectoire ou circuit prévu(e) pour le passage d'un autre écoulement d'air dans le casque, dans lequel la zone du casque est une chambre de visière (22) et les un ou plusieurs orifices de ventilation (6) sont un ou plusieurs orifices de ventilation arrière du casque, dans lequel la première trajectoire s'étend entre la chambre de visière (22) et ledit orifice de ventilation arrière (6) du casque et dans lequel la seconde trajectoire s'étend entre un orifice de ventilation avant (4, 5) et ledit orifice de ventilation arrière (6) du casque, dans lequel lesdits un ou plusieurs éléments de guidage (20) sont associés avec ladite première trajectoire ou circuit.
     
    2. Casque de protection (1) selon la revendication 1, et dans lequel lesdits éléments de guidage (20) sont associés avec ladite première trajectoire ou circuit et ladite seconde trajectoire ou circuit.
     
    3. Casque de protection (1) selon la revendication 1 ou 2, dans lequel lesdits un ou plusieurs éléments de guidage (20) est/sont un ou plusieurs corps tubulaires (20) ou corps configurés pour définir une section transversale fermée lorsqu'ils sont montés dans le casque.
     
    4. Casque de protection (1) selon la revendication 3, lorsqu'elle est en combinaison avec la revendication 1, dans lequel lesdits un ou plusieurs corps tubulaires sont des corps qui peuvent être manipulés individuellement par rapport à une structure du casque et ladite première trajectoire ou circuit est défini(e) par lesdits corps tubulaires et ladite seconde trajectoire ou circuit est défini(e) par des trous formés dans ladite structure du casque.
     
    5. Casque de protection (1) selon la revendication 4, dans lequel lesdits corps tubulaires sont fermés par rapport auxdits trous.
     
    6. Casque de protection (1) selon l'une quelconque des revendications précédentes, comprenant un corps du casque et dans laquelle la première trajectoire ou circuit de ventilation et la seconde trajectoire ou circuit de ventilation sont des canaux s'étendant dans le corps du casque, chacun entre une bouche ou ouverture d'entrée respective et une bouche ou ouverture de sortie respective.
     
    7. Casque de protection (1) selon l'une quelconque des revendications précédentes, dans lequel la première trajectoire ou circuit de ventilation et la seconde trajectoire ou circuit de ventilation sont des trajectoires incluses dans la même couche (3) du casque.
     
    8. Casque de protection (1) selon l'une quelconque des revendications précédentes, dans lequel la première trajectoire ou circuit de ventilation et la seconde trajectoire ou circuit de ventilation sont des trajectoires recouvertes par une coque externe (2) du casque.
     
    9. Casque de protection (1) selon l'une quelconque des revendications précédentes, comprenant une couche avec une fonction d'absorption d'énergie (3) et dans lequel à la fois la première trajectoire ou circuit de ventilation et la seconde trajectoire ou circuit de ventilation s'étendent dans la couche avec la fonction d'absorption d'énergie (3) dans une zone comprise entre un côté intrados de la couche avec la fonction d'absorption d'énergie (3) et une coque externe (2) du casque.
     
    10. Casque de protection (1) selon l'une quelconque des revendications précédentes, dans lequel la première trajectoire ou circuit de ventilation et la seconde trajectoire ou circuit de ventilation s'étendent toutes deux entre une zone avant du casque et une zone arrière.
     
    11. Casque de protection (1) selon l'une quelconque des revendications précédentes, dans lequel la première trajectoire ou circuit de ventilation a une fonction de ventilation différente de la seconde trajectoire ou circuit de ventilation, et dans lequel la première trajectoire ou circuit de ventilation est conçu(e) pour permettre le désembuage d'une visière du casque, et la seconde trajectoire ou circuit de ventilation est conçu(e) pour permettre la ventilation ou l'aération de la tête de l'utilisateur.
     
    12. Casque de protection (1) selon l'une quelconque des revendications précédentes, en combinaison avec la revendication 3, comprenant une ou plusieurs rainures ou évidements (9, 10) et dans lequel lesdits un ou plusieurs corps tubulaires (20) sont logés dans une rainure respective ou un évidement (9) respectif.
     
    13. Casque de protection (1) selon la revendication 12, en combinaison avec la revendication 9, dans lequel lesdites rainures ou évidements (9, 10) sont formés dans ladite couche avec la fonction d'absorption d'énergie (3).
     
    14. Casque de protection (1) selon l'une quelconque des revendications précédentes, comprenant au moins une première rainure s'étendant longitudinalement (9) qui s'étend le long de toute la partie supérieure du casque entre une zone avant et une zone arrière du casque, et une seconde rainure (10) qui bifurque d'un côté de la première rainure (9) et est positionnée dans une région avant du casque, ladite première rainure (9) étant prévue pour loger un corps tubulaire (20) respectif, et ladite seconde rainure (10) étant prévue avec un ou plusieurs trous débouchants (13, 14, 15) prévus pour fournir la communication de fluide entre l'orifice de ventilation avant (4, 5) et un côté interne du casque, et dans lequel le casque comprend un ou plusieurs trous débouchants (18, 19) configurés pour fournir la communication de fluide entre l'orifice de ventilation arrière (6) et un côté interne du casque.
     
    15. Casque de protection (1) selon la revendication 14, dans lequel lesdits un ou plusieurs orifices de ventilation avant (4, 5), lesdits un ou plusieurs premiers trous débouchants (13, 14, 15) et lesdits un ou plusieurs seconds trous débouchants (18, 19) et lesdits un ou plusieurs orifices de ventilation arrière (6) font partie dudit second circuit.
     
    16. Procédé pour gérer la ventilation dans un casque de protection, dans lequel le procédé envisage les étapes suivantes :

    agencer une première trajectoire ou circuit de ventilation et une seconde trajectoire ou circuit de ventilation, dans lequel la première trajectoire ou circuit de ventilation et la seconde trajectoire ou circuit de ventilation sont des trajectoires ou des circuits physiquement séparés ou indépendants les uns des autres, ou des trajectoires ou des circuits qui ne sont pas en communication de fluide mutuelle ou bien des trajectoires ou des circuits configurés pour éviter une interférence mutuelle entre les écoulements d'air, ou

    diriger au moins un écoulement d'air dans un premier circuit d'air du casque à partir d'une zone du casque vers un ou plusieurs orifices de ventilation (6) pour la sortie / l'expulsion de l'air indépendamment et/ou séparément et/ou sans communication de fluide par rapport à ou sans interférer avec au moins un second circuit prévu pour permettre le passage d'un écoulement d'air dans le casque, dans lequel un écoulement d'air, qui s'étend à partir de la chambre de visière (22) vers l'orifice de ventilation (6) pour la sortie d'air afin de désembuer la visière, est réalisé indépendamment de ou est isolé par rapport à un écoulement d'air s'étendant entre un orifice de ventilation avant (4, 5) et ledit orifice de ventilation (6) pour la sortie d'air et prévu pour aérer une zone interne du casque prévue pour loger la tête d'un utilisateur, dans lequel l'air peut sortir par une zone arrière du casque via les deux trajectoires indépendantes.


     
    17. Procédé selon la revendication 16, dans lequel un écoulement d'air qui s'étend à partir de la chambre de visière vers l'orifice de ventilation pour la sortie de l'air est rendu indépendant, ou isolé d'un autre écoulement, dans lequel l'un desdits écoulements est transporté dans un ou plusieurs corps tubulaires (20) ou corps configurés pour former une section transversale fermée, une fois montés dans le casque et l'autre desdits écoulements est transporté dans des trous formés dans une couche avec la fonction d'absorption d'énergie (3), lesdits corps tubulaires (20) ou corps configurés pour former une section transversale fermée, une fois montés dans le casque, étant des corps qui sont structurellement indépendants ou peuvent être manœuvrés seuls par rapport à ladite couche avec la fonction d'absorption d'énergie (3).
     




    Drawing

















    Cited references

    REFERENCES CITED IN THE DESCRIPTION



    This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

    Patent documents cited in the description