(19)
(11) EP 3 779 333 A1

(12) EUROPEAN PATENT APPLICATION
published in accordance with Art. 153(4) EPC

(43) Date of publication:
17.02.2021 Bulletin 2021/07

(21) Application number: 19774782.7

(22) Date of filing: 19.03.2019
(51) International Patent Classification (IPC): 
F25D 21/02(2006.01)
F25D 29/00(2006.01)
F25D 21/00(2006.01)
F25D 17/04(2006.01)
(86) International application number:
PCT/KR2019/003206
(87) International publication number:
WO 2019/190114 (03.10.2019 Gazette 2019/40)
(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
KH MA MD TN

(30) Priority: 26.03.2018 KR 20180034516

(71) Applicant: LG Electronics Inc.
07336 SEOUL (KR)

(72) Inventors:
  • CHOI, Sangbok
    Seoul 08592 (KR)
  • KIM, Sungwook
    Seoul 08592 (KR)
  • PARK, Kyongbae
    Seoul 08592 (KR)
  • JHEE, Sung
    Seoul 08592 (KR)

(74) Representative: Vossius & Partner Patentanwälte Rechtsanwälte mbB 
Siebertstrasse 3
81675 München
81675 München (DE)

   


(54) REFRIGERATOR AND METHOD FOR CONTROLLING SAME


(57) A method for controlling a refrigerator according to an embodiment of the present invention comprises the steps of: operating, for a set duration, a heating element of a sensor disposed on a bypass channel which allows air to bypass an evaporator disposed in a heat-exchange space; sensing the temperature of the heating element in on or off state; and sensing the blockage of an air channel in the heat-exchange space on the basis of the difference in value of the temperature between a first sensed temperature (Ht1), which is the lowest value, and a second sensed temperature (Ht2), which is the highest value, from among the sensed temperatures of the heating element.




Description

[Technical Field]



[0001] The present disclosure relates to a refrigerator and a method for controlling the same.

[Background Art]



[0002] Refrigerators are household appliances that are capable of store objects such as foods at a low temperature in a storage chamber provided in a cabinet. Since the storage space is surrounded by heat insulation wall, the inside of the storage space may be maintained at a temperature less than an external temperature.

[0003] The storage space may be classified into a refrigerating storage space or a freezing storage space according to a temperature range of the storage space.

[0004] The refrigerator may further include an evaporator for supplying cool air to the storage space. Air in the storage space is cooled while flowing to a space, in which the evaporator is disposed, so as to be heat-exchanged with the evaporator, and the cooled air is supplied again to the storage space.

[0005] Here, if the air heat-exchanged with the evaporator is contained in moisture, when the air is heat-exchanged with the evaporator, the moisture is frozen on a surface of the evaporator to generate frost on the surface of the evaporator.

[0006] Since flow resistance of the air acts on the frost, the more an amount of frost frozen on the surface of the evaporator increases, the more the flow resistance increases. As a result, heat-exchange efficiency of the evaporator may be deteriorated, and thus, power consumption may increase.

[0007] Thus, the refrigerator further includes a defroster for removing the frost on the evaporator.

[0008] A defrosting cycle variable method is disclosed in Korean Patent Publication No. 2000-0004806 that is a prior art document.

[0009] In the prior art document, the defrosting cycle is adjusted using a cumulative operation time of the compressor and an external temperature.

[0010] However, like the prior art document, when defrosting cycle is determined only using the cumulative operation time of the compressor and the external temperature, an amount of frost (hereinafter, referred to as a frost generation amount) on the evaporator is not reflected. Thus, it is difficult accurately determine the time point at which the defrosting is required.

[0011] That is, the frost generation amount may increase or decrease according to various environments such as the user's refrigerator usage pattern and the degree to which air retains moisture. In the case of the prior art document, there is a disadvantage in that the defrosting cycle is determined without reflecting the various environments.

[0012] In the prior art document, it is only possible to detect the amount of frost on the evaporator, but it is impossible to detect a phenomenon in which the cool air passage through which the cool air circulating inside the refrigerator flows is clogged by the frost. That is, when frost grows in the cool air inlet, the cool air outlet, or the blowing fan constituting the cool air passage, resistance to the flow of cool air occurs, and in some cases, the cool air passage is completely clogged, preventing the cool air cannot from circulating. When circulation of the cool air is not properly performed, there is a problem that the cooling performance is greatly deteriorated, and power consumption is increased.

[Disclosure]


[Technical Problem]



[0013] An object of the present disclosure is to provide a refrigerator and a control method thereof, which determines a time point for a defrosting operation using parameters that vary depending on the amount of frost on an evaporator.

[0014] In addition, an object of the present disclosure is to provide a refrigerator and a control method thereof, which accurately determine a time point at which defrosting is necessary according to the amount of frost on an evaporator using a sensor having an output value that varies depending on the flow rate of air.

[0015] In addition, another object of the present disclosure is to provide a refrigerator and a control method thereof, which accurately determine an exact defrost time point even when the precision of a sensor used to determine the defrost time point is low.

[0016] Still another object of the present disclosure is to provide a refrigerator capable of detecting clogging of an air passage of the refrigerator using a sensor of which an output value varies according to a flow rate of air and a control method thereof.

[0017] Still another object of the present disclosure is to provide a refrigerator capable of accurately determining the cause of clogging of an air passage based on an output value of a sensor, and a control method thereof.

[Technical Solution]



[0018] In order to resolve the above problems, a method for controlling a refrigerator may include detecting clogging of an air passage in the heat-exchange space based on a temperature difference between a first detection temperature (Ht1) that is a lowest value and a second detection temperature (Ht2) that is a highest value among detection temperatures of a heat generating element.

[0019] The first detection temperature (Ht1) may be a temperature detected by a sensing element of the sensor immediately after the heat generating element is turned on, and the second detection temperature (Ht2) may be a temperature detected by a sensing element of the sensor immediately after the heat generating element is turned off.

[0020] The first detection temperature (Ht1) may be a lowest temperature value during a period of time when the heat generating element is turned on, and the second detection temperature (Ht2) may be a highest temperature value during a period of time when the heat generating element is turned on.

[0021] The method may further include performing a defrosting operation of the evaporator when a temperature difference value between the first detection temperature (Ht1) and the second detection temperature (Ht2) is less than a first reference value.

[0022] The method may further include updating a temperature difference value between the first detection temperature (Ht1) and the second detection temperature (Ht2) after the defrosting operation is completed, and failure of the sensor may be displayed when the updated temperature difference value exceeds a second reference value greater than the second reference value.

[0023] The method may further include determining whether the updated temperature difference value is less than a third reference value less than the second reference value when the updated temperature difference value is less than the second reference value, and displaying the clogging of the air passage in the heat-exchange space when the updated temperature difference value exceeds the third reference value.

[0024] The display of the clogging of the air passage is at least one display of clogging of a cool air inflow hole of a cool air duck defining the heat-exchange space, clogging of a cool air discharge hole of the cool air duck, clogging of a blowing fan provided in the cool air duct or clogging of the bypass passage.

[0025] Therefore, even after the defrosting operation is completed, it is possible to identify whether the air passage of the refrigerator is clogged by using the output value of the sensor and immediately notify a user of clogging of the air passage, thus making it possible to take measures immediately when the clogging of the air passage occurs. Therefore, it is possible to determine not only the cause of the clogging of the air passage, but also whether the sensor is malfunctioning, thus achieving accurate diagnosis and making maintenance and management easy.

[0026] The method may further include determining whether the updated temperature difference value is less than a fourth reference value less than the third reference value when the updated temperature difference value is less than the third reference value, and again performing the defrosting operation of the evaporator when the updated temperature difference value is less than the fourth reference value.

[0027] The method may further include determining whether the updated temperature difference value is increased by a predetermined value or more compared to the temperature difference value before the temperature difference value has been updated when the updated temperature difference value is less than the fourth reference value, and again performing the defrosting operation of the evaporator when the updated temperature difference value is increased by a predetermined value or more compared to the temperature difference value before the temperature difference value has been updated.

[0028] The method may further include again performing the defrosting operation of the evaporator according to whether the updated temperature difference value is less than the first reference value when the updated temperature difference value is not increased by a predetermined value or more compared to the temperature difference value before the temperature difference value has been updated.

[0029] In order to resolve the above problems, a refrigerator a bypass passage configured to allow air flow to bypass the evaporator, a heat generating element disposed in the bypass passage, a sensor including a sensing element for detecting a temperature of the heat generating element and a controller configured to detect clogging of an air passage in the heat-exchange space based on a temperature difference between a first detection temperature (Ht1) that is a lowest value and a second detection temperature (Ht2) that is a highest value among detection temperatures of the heat generating element.

[Advantageous Effects]



[0030] According to the proposed invention, since the time point at which the defrosting is required is determined using the sensor having the output value varying according to the amount of frost generated on the evaporator in the bypass passage, the time point at which the defrosting is required may be accurately determined.

[0031] In addition, even when the precision of a sensor used to determine a defrost time point is low, it is possible to accurately determine the defrost time point, thus significantly reducing the cost of the sensor.

[0032] Even after the defrosting operation is completed, it is possible to identify whether the air passage of the refrigerator is clogged by using the output value of the sensor and immediately notify a user of clogging of the air passage, thus making it possible to take measures immediately when the clogging of the air passage occurs.

[0033] Therefore, it is possible to determine not only the cause of the clogging of the air passage, but also whether the sensor is malfunctioning, thus achieving accurate diagnosis and making maintenance and management easy.

[0034] It is possible to prevent a phenomenon that the air passage is completely clogged by frost, thus improving cooling performance by active air circulation by fundamentally preventing the growth of frost in the air passage.

[Description of Drawings]



[0035] 

FIG. 1 is a schematic longitudinal cross-sectional view of a refrigerator according to an embodiment of the present invention.

FIG. 2 is a perspective view of a cool air duct according to an embodiment of the present invention.

FIG. 3 is an exploded perspective view illustrating a state in which a passage cover and a sensor are separated from each other in the cool air duct.

FIG. 4 is a view illustrating a flow of air in a heat exchange space and a bypass passage before and after frost is generated.

FIG. 5 is a schematic view illustrating a state in which a sensor is disposed in the bypass passage.

FIG. 6 is a view of the sensor according to an embodiment of the present invention.

FIG. 7 is a view illustrating a thermal flow around the sensor depending on a flow of air flowing through the bypass passage.

FIG. 8 is a control block diagram of a refrigerator according to an embodiment of the present disclosure.

FIG. 9 is a flowchart showing a method of performing a defrost operation by determining a time point when a refrigerator needs to be defrosted according to an embodiment of the present disclosure.

FIG. 10 is a view showing changes in a temperature of a heat generating element according to the on/off of the heat generating element before and after frost on the evaporator according to an embodiment of the present disclosure.

FIG. 11 is a flowchart schematically showing a method of detecting clogging of an air passage of a refrigerator according to an embodiment of the present disclosure.

FIG. 12 is a flowchart showing a detailed method for detecting clogging of an air passage of a refrigerator according to an embodiment of the present disclosure.


[Mode for Invention]



[0036] Hereinafter, some embodiments of the present invention will be described in detail with reference to the accompanying drawings. Exemplary embodiments of the present invention will be described below in more detail with reference to the accompanying drawings. It is noted that the same or similar components in the drawings are designated by the same reference numerals as far as possible even if they are shown in different drawings. Further, in description of embodiments of the present disclosure, when it is determined that detailed descriptions of well-known configurations or functions disturb understanding of the embodiments of the present disclosure, the detailed descriptions will be omitted.

[0037] Also, in the description of the embodiments of the present disclosure, the terms such as first, second, A, B, (a) and (b) may be used. Each of the terms is merely used to distinguish the corresponding component from other components, and does not delimit an essence, an order or a sequence of the corresponding component. It should be understood that when one component is "connected", "coupled" or "joined" to another component, the former may be directly connected or jointed to the latter or may be "connected", coupled" or "joined" to the latter with a third component interposed therebetwee.

[0038] FIG. 1 is a schematic longitudinal cross-sectional view of a refrigerator according to an embodiment of the present invention, FIG. 2 is a perspective view of a cool air duct according to an embodiment of the present invention, and FIG. 3 is an exploded perspective view illustrating a state in which a passage cover and a sensor are separated from each other in the cool air duct.

[0039] Referring to FIGS. 1 to 3, a refrigerator 1 according to an embodiment of the present invention may include an inner case 12 defining a storage space 11.

[0040] The storage space may include one or more of a refrigerating storage space and a freezing storage space.

[0041] A cool air duct 20 providing a passage, through which cool air supplied to the storage space 11 flows, in a rear space of the storage space 11. Also, an evaporator 30 is disposed between the cool air duct 20 and a rear wall 13 of the inner case 12. That is, a heat exchange space 222 in which the evaporator 30 is disposed is defined between the cool air duct 20 and the rear wall 13.

[0042] Thus, air of the storage space 11 may flow to the heat exchange space 222 between the cool air duct 20 and the rear wall 13 of the inner case 12 and then be heat-exchanged with the evaporator 30. Thereafter, the air may flow through the inside of the cool air duct 20 and then be supplied to the storage space 11.

[0043] The cool air duct 20 may include, but is not limited thereto, a first duct 210 and a second duct 220 coupled to a rear surface of the first duct 210.

[0044] A front surface of the first duct 210 is a surface facing the storage space 11, and a rear surface of the first duct 220 is a surface facing the rear wall 13 of the inner case 12.

[0045] A cool air passage 212 may be provided between the first duct 210 and the second duct 220 in a state in which the first duct 210 and the second duct 220 are coupled to each other.

[0046] Also, a cool air inflow hole 221 may be defined in the second duct 220, and a cool air discharge hole 211 may be defined in the first duct 210.

[0047] A blower fan (not shown) may be provided in the cool air passage 212. Thus, when the blower fan rotates, air passing through the evaporator 13 is introduced into the cool air passage 212 through the cool air inflow hole 221 and is discharged to the storage space 11 through the cool air discharge hole 211.

[0048] The evaporator 30 is disposed between the cool air duct 20 and the rear wall 13. Here, the evaporator 30 may be disposed below the cool air inflow hole 221.

[0049] Thus, the air in the storage space 11 ascends to be heat-exchanged with the evaporator 30 and then is introduced into the cool air inflow hole 221.

[0050] According to this arrangement, when an amount of frost generated on the evaporator 30 increases, an amount of air passing through the evaporator 30 may be reduced to deteriorate heat exchange efficiency.

[0051] In this embodiment, a time point at which defrosting for the evaporator 30 is required may be determined using a parameter that is changed according to the amount of frost generated on the evaporator 30.

[0052] For example, the cool air duct 20 may further include a frost generation sensing portion configured so that at least a portion of the air flowing through the heat exchange space 222 is bypassed and configured to determine a time point, at which the defrosting is required, by using the sensor having a different output according to a flow rate of the air.

[0053] The frost generation sensing portion may include a bypass passage 230 bypassing at least a portion of the air flowing through the heat exchange space 222 and a sensor 270 disposed in the bypass passage 230.

[0054] Although not limited, the bypass passage 230 may be provided in a recessed shape in the first duct 210. Alternatively, the bypass passage 230 may be provided in the second duct 220.

[0055] The bypass passage 230 may be provided by recessing a portion of the first duct 210 or the second duct 220 in a direction away from the evaporator 30.

[0056] The bypass passage 230 may extend from the cool air duct 20 in a vertical direction.

[0057] The bypass passage 230 may be disposed to face the evaporator 30 within a left and right width range of the evaporator 30 so that the air in the heat exchange space 222 is bypassed to the bypass passage 230.

[0058] The frost generation sensing portion may further include a passage cover 260 that allows the bypass passage 230 to be partitioned from the heat exchange space 222.

[0059] The passage cover 260 may be coupled to the cool air duct 20 to cover at least a portion of the bypass passage 230 extending vertically.

[0060] The passage cover 260 may include a cover plate 261, an upper extension portion 262 extending upward from the cover plate 261, and a barrier 263 provided below the cover plate 261.

[0061] FIG. 4 is a view illustrating a flow of air in the heat exchange space and the bypass passage before and after frost is generated.

[0062] (a) of FIG. 4 illustrates a flow of air before frost is generated, and (b) of FIG. 4 illustrates a flow of air after frost is generated. In this embodiment, as an example, it is assumed that a state after a defrosting operation is complicated is a state before frost is generated.

[0063] First, referring to (a) of FIG. 4, in the case in which frost does not exist on the evaporator 30, or an amount of generated frost is remarkably small, most of the air passes through the evaporator 30 in the heat exchange space 222 (see arrow A). On the other hand, some of the air may flow through the bypass passage 230 (see arrow B).

[0064] Referring to (b) of FIG. 4, when the amount of frost generated on the evaporator 30 is large (when the defrosting is required), since the frost of the evaporator 30 acts as flow resistance, an amount of air flowing through the heat exchange space 222 may decrease (see arrow C), and an amount of air flowing through the bypass passage 230 may increase (see arrow D).

[0065] As described above, the amount (or flow rate) of air flowing through the bypass passage 230 varies according to an amount of frost generated on the evaporator 30.

[0066] In this embodiment, the sensor 270 may have an output value that varies according to a change in flow rate of the air flowing through the bypass passage 230. Thus, whether the defrosting is required may be determined based on the change in output value.

[0067] Hereinafter, a structure and principle of the sensor 270 will be described.

[0068] FIG. 5 is a schematic view illustrating a state in which the sensor is disposed in the bypass passage, FIG. 6 is a view of the sensor according to an embodiment of the present invention, and FIG. 7 is a view illustrating a thermal flow around the sensor depending on a flow of air flowing through the bypass passage.

[0069] Referring to FIGS. 5 to 7, the sensor 270 may be disposed at one point in the bypass passage 230. Thus, the sensor 270 may contact the air flowing along the bypass passage 230, and an output value of the sensor 270 may be changed in response to a change in a flow rate of air.

[0070] The sensor 270 may be disposed at a position spaced from each of an inlet 231 and an outlet 232 of the bypass passage 230. For example, the sensor 270 may be positioned a central portion of the bypass passage 230.

[0071] Since the sensor 270 is disposed on the bypass passage 230, the sensor 270 may face the evaporator 30 within the left and right width range of the evaporator 30.

[0072] The sensor 270 may be, for example, a generated heat temperature sensor. Particularly, the sensor 270 may include a sensor PCB 271, a heat generating element 273 installed on the sensor PCB 271, and a sensing element 274 installed on the sensor PCB 271 to sense a temperature of the heat generating element 273.

[0073] The heat generating element 273 may be a resistor that generates heat when current is applied.

[0074] The sensing element 274 may sense a temperature of the heat generating element 273.

[0075] When a flow rate of air flowing through the bypass passage 230 is low, since a cooled amount of the heat generating element 273 by the air is small, a temperature sensed by the sensing element 274 is high.

[0076] On the other hand, if a flow rate of the air flowing through the bypass passage 230 is large, since the cooled amount of the heat generating element 273 by the air flowing through the bypass passage 230 increases, a temperature sensed by the sensing element 274 decreases.

[0077] The sensor PCB 271 may determine a difference between a temperature sensed by the sensing element 274 in a state in which the heat generating element 273 is turned off and a temperature by the sensing element 274 in a state in which the heat generating element 273 is turned on.

[0078] The sensor PCB 271 may determine whether the difference value between the states in which the heat generating element 273 is turned on/off is less than a reference difference value.

[0079] For example, referring to FIGS. 4 and 7, when an amount of frost generated on the evaporator 30 is small, a flow rate of air flowing to the bypass passage 230 is small. In this case, a heat flow of the heat generating element 273 is little, and a cooled amount of the heat generating element 273 by the air is small.

[0080] On the other hand, when the amount of frost generated on the evaporator 30 is large, a flow rate of air flowing to the bypass passage 230 is large. Then, the heat flow and cooled amount of the heat generating element 273 are large by the air flowing along the bypass passage 230.

[0081] Thus, the temperature sensed by the sensing element 274 when the amount of frost generated on the evaporator 30 is large is less than that sensed by the sensing element 274 when the amount of frost generated on the evaporator 30 is small.

[0082] Thus, in this embodiment, when the difference between the temperature sensed by the sensing element 274 in the state in which the heat generating element 273 is turned on and the temperature by the sensing element 274 in the state in which the heat generating element 273 is turned off is less than the reference temperature difference, it may be determined that the defrosting is required.

[0083] According to this embodiment, the sensor 270 may sense a variation in temperature of the heat generating element 273, which varies by the air of which a flow rate varies according to the amount of generated frost to accurately determine a time point, at which the defrosting is required, according to the amount of frost generated on the evaporator 30.

[0084] The sensor 270 may be further provided with a sensor housing 272 such that air flowing through the bypass passage 230 is prevented from directly contacting the sensor PCB 271, the heat generating element 273, and the temperature sensor 274. In a state in which the sensor housing 272 is opened at one side, an electric wire connected to the sensor PCB 271 may be drawn out and then the opened portion may be covered by a cover portion.

[0085] The sensor housing 271 may surround the sensor PCB 271, the heat generating element 273, and the temperature sensor 274.

[0086] FIG. 8 is a control block diagram of a refrigerator according to an embodiment of the present disclosure.

[0087] Referring to FIG. 8, the refrigerator 1 according to an embodiment of the present disclosure may include the sensor 270 described above, a defrosting device 50 operating for defrosting the evaporator 30, a compressor 60 for compressing refrigerant, a blowing fan 70 for generating air flow, and a controller 40 for controlling the sensor 270, the defrosting device 50, the compressor 60 and the blowing fan 70.

[0088] The defrosting device 50 may include, for example, a heater. When the heater is turned on, heat generated by the heater is transferred to the evaporator 30 to melt frost generated on the surface of the evaporator 30. The heater may be connected to one side of the evaporator 30, or may be disposed spaced apart from a position adjacent to the evaporator 30. The defrosting device 50 may further include a defrost temperature sensor. The defrost temperature sensor may detect an ambient temperature of the defrosting device 50. A temperature value detected by the defrost temperature sensor may be used as a factor that determines when the heater is turned on or off.

[0089] The compressor 60 is a device for compressing low-temperature low-pressure refrigerant into a high-temperature high-pressure supersaturated gaseous refrigerant. Specifically, the high-temperature high-pressure supersaturated gaseous refrigerant compressed in the compressor 60 flows into a condenser (not shown). The refrigerant is condensed into a high-temperature high-pressure saturated liquid refrigerant, and the condensed high-temperature high-pressure saturated liquid refrigerant is introduced to an expander (not shown) and is expanded to a low-temperature low-pressure two-phase refrigerant.

[0090] Further, the low-temperature low-pressure two-phase refrigerant is evaporated as the low-temperature low-pressure gaseous refrigerant while passing through the evaporator 30. In this process, the refrigerant flowing through the evaporator 30 may exchange heat with outside air, that is, air flowing through the heat exchange space 222, thereby archiving air cooling.

[0091] The blowing fan 70 is provided in the cool air passage 212 to generate air flow. Specifically, when the blowing fan 70 is rotated, air passing through the evaporator 30 flows into the cool air passage 212 through the cool air inflow hole 221 and is then discharged to the storage compartment 11 through the cool air discharge hole 211.

[0092] The controller 40 may control the heat generating element 273 of the sensor 270 to be turned on at regular cycles.

[0093] In order to determine when defrosting is necessary, the heat generating element 273 may maintain a turned-on state for a predetermined period of time, and the temperature of the heat generating element 273 may be detected by the sensing element 274.

[0094] After the heat generating element 273 is turned on for the predetermined period of time, the heat generating element 274 is turned off, and the sensing element 274 may detect the temperature of the heat generating element 273 which is turned off. In addition, the sensor PCB 263 may determine whether the maximum value of the temperature difference between the turned-on/off state of the heat generating element 273 is equal to or less than a reference difference value.

[0095] In addition, it is determined that defrosting is necessary when the maximum value of the temperature difference between the turned-on/off states of the heat generating element 273 is equal to or less than the reference difference value, and the defrosting device 50 may be turned on by the controller 40.

[0096] Although it has been described above that the sensor PCB 263 determines whether the temperature difference between the turned-on/off states of the heat generating element 273 is equal to or less than the reference difference value, alternatively, the controller 40 may determine whether the temperature difference between the turned-on/off states of the heat generating element 273 is equal to or less than the reference difference value, and control the defrosting device 50 according to a result of the determination. That is, the sensor PCB 263 and the controller 40 may be electrically connected to each other.

[0097] The controller 40 may detect a temperature of the heat generating element 273 in a state in which the heat generating element 273 is turned on or off, and detect clogging of an air passage based on a temperature difference value between a first detection temperature and a second detection temperature among the detection temperatures of the heat generating element 273.

[0098] For example, the first detection temperature may be a temperature detected by the sensing element 274 immediately after the heat generating element 273 is turned on, and the second detection temperature may be a temperature detected by the sensing element 274 immediately after the heat generating element 273 is turned off.

[0099] As another example, the first detection temperature may be a lowest temperature value during a period of time when the heat generating element 273 is turned on, and the second detection temperature may be a highest temperature value during a period of time when the heat generating element 273 is turned on.

[0100] Hereinafter, a method for detecting the amount of frost on the evaporator 30 using the heat generating element 273 will be described in detail with reference to the drawings.

[0101] FIG. 9 is a flowchart showing a method of performing a defrost operation by determining a time point when a refrigerator needs to be defrosted according to an embodiment of the present disclosure, and FIG. 10 is a view showing changes in a temperature of a heat generating element according to the on/off of the heat generating element before and after frost on the evaporator according to an embodiment of the present disclosure.

[0102] In FIG. 10, (a) shows a change in temperature of the freezing compartment and a change in temperature of the heat generating element before occurrence of frost on the evaporator 30, and (b) shows a change in temperature of the freezing compartment and a change in temperature of the heat generating element after occurrence of frost on the evaporator 30. In the present embodiment, it is assumed that a state before occurrence of frost is a state after a defrosting operation is completed.

[0103] Referring to FIGS. 9 and 10, in step S21, the heat generating element 27 is turned on.

[0104] Specifically, the heat generating element 273 may be turned on in a state in which a cooling operation is being performed on the storage compartment 11 (e.g., freezing compartment).

[0105] Here, the state in which the cooling operation of the freezing compartment is performed may mean a state in which the compressor 60 and the blowing fan 70 are being driven.

[0106] As described above, when a change in the flow rate of the air increases as the amount of frost on the evaporator 30 is large or small, the detection accuracy of the sensor 260 may be improved. That is, when the change in the flow rate of the air is large as the amount of frost on the evaporator 30 is large or small, the amount of change in the temperature detected by the sensor 270 becomes large, so that the time point at the defrosting is necessary may be accurately determined.

[0107] Therefore, it is possible to increase the accuracy of the sensor only when frost on the evaporator 30 is detected in a state in which air flow occurs, that is, the blowing fan 70 is being driven.

[0108] As an example, as shown in FIG. 11, the heat generating element 273 may be turned on at a certain time point S1 while the blowing fan 70 is being driven.

[0109] The blower fan 70 may be driven for a predetermined period of time to cool the freezing compartment. In this case, the compressor 60 may be driven at the same time. Therefore, when the blowing fan 70 is driven, the temperature Ft of the freezing compartment may decrease.

[0110] On the other hand, when the heat generating element 273 is turned on, the temperature detected by the sensing element 274, that is, the temperature Ht of the heat generating element 273 may increase rapidly.

[0111] Next, in step S22, it may be determined whether the blowing fan 70 is turned on.

[0112] As described above, the sensor 270 may detect a change in temperature of the heat generating element 273, which is changed due to air of which the flow rate is changed according to the amount of frost on the evaporator 30. Therefore, when no air flow occurs, it is difficult for the sensor 270 to accurately detect the amount of front on the evaporator 30.

[0113] When the blowing fan 70 is being driven, in step S23, the temperature Ht1 of the heat generating element may be detected.

[0114] Specifically, the heat generating element 273 may be turned on for a predetermined period of time, and the temperature (Ht1) of the heat generating element 273 may be detected by the sensing element at a certain time point in the state in which the heat generating element 273 is turned on.

[0115] In the present embodiment, the temperature Ht1 of the heat generating element 273 may be detected at a time point at which the heat generating element 273 is turned on. That is, in the present disclosure, the temperature immediately after the heat generating element 273 is turned on may be detected. Therefore, the detection temperature Ht1 of the heat generating element may be defined as the lowest temperature in the state in which the heat generating element 273 is turned on.

[0116] Here, the temperature of the heat generating element 273 detected for the first time may be referred to as a"first detection temperature (Ht1)".

[0117] Next, in step S24, it is determined whether a first reference time T1 has elapsed while the heat generating element 273 is turned on.

[0118] When the heat generating element 273 is maintained in the turned-on state, the temperature detected by the sensing element 274, that is, the temperature Ht1 of the heat generating element 273 may continuously increase. However, when the heat generating element 273 is maintained in the turned-on state, the temperature of the heat generating element 273 may increase gradually and converge to the highest temperature point.

[0119] On the other hand, when the amount of frost on the evaporator 30 is large, the flow rate of the air flowing into the bypass passage 230 increases, and thus the amount of cooling for the heat generating element 273 by air flowing through the bypass passage 230 increases. Then, the highest temperature point of the heat generating element 273 may be set to be low by the air flowing through the bypass passage 230 (see (b) of FIG. 10).

[0120] When the amount of frost on the evaporator 30 is small, the flow rate of the air flowing into the bypass passage 230 decreases, and thus the amount of cooling for the heat generating element 273 by air flowing through the bypass passage 230 decreases. Then, the highest temperature point of the heat generating element 273 may be set to be high by the air flowing through the bypass passage 230 (see (a) of FIG. 10).

[0121] In the present embodiment, the temperature of the heat generating element 273 may be detected at a time point at which the heat generating element 273 is turned on. That is, in the present disclosure, it can be understood that the lowest temperature value of the heat generating element 273 is detected after the heat generating element 273 is turned on.

[0122] Here, the first reference time T1 for which the heat generating element 273 is maintained in the turned-on state may be 3 minutes but is not limited thereto.

[0123] When a predetermined period of time has elapsed while the heat generating element 273 is turned on, in step S25, the heat generating element 273 is turned off.

[0124] As in FIG. 10, the heat generating element 273 may be turned on for the first reference time T1 and then turned off. When the heat generating element 273 is turned off, the heat generating element 273 may be rapidly cooled by air flowing through the bypass passage 230. Therefore, the temperature Ht of the heat generating element 273 may rapidly decrease.

[0125] However, when the turned-off state of the heat generating element 273 is maintained, the temperature Ht of the heat generating element may gradually decrease, and the decrease rate thereof is significantly reduced.

[0126] Next, in step S26, the temperature Ht2 of the heat generating element may be detected.

[0127] That is, the temperature Ht2 of the heat generating element is detected by the sensing element 273 at a certain time point S2 in a state in which the heat generating element 273 is turned off.

[0128] In the present embodiment, the temperature Ht2 of the heat generating element may be detected at a time point at which the heat generating element 273 is turned off. That is, in the present disclosure, the temperature immediately after the heat generating element 273 is turned off may be detected. Therefore, the detection temperature Ht2 of the heat generating element may be defined as the lowest temperature in the state in which the heat generating element 273 is turned off.

[0129] Here, the temperature of the heat generating element 273 detected for the second time may be referred to as a "second detection temperature (Ht2)".

[0130] In summary, the temperature Ht of the heat generating element may be first detected at a time point S1 when the heat generating element 273 is turned on, and may be additionally detected at a time point S2 at which the heat generating element 273 is turned off. In this case, the first detection temperature Ht1 that is detected for the first time may be the lowest temperature in the state in which the heat generating element 273 is turned on, and the second detection temperature Ht2 that is additionally detected may be the highest temperature in the state in which the heat generating element 273 is turned off.

[0131] Next, in step S27, it is determined whether a temperature stabilization state has been achieved.

[0132] Here, the temperature stabilization state may mean a state in which internal refrigerator load does not occur, that is, a state in which the cooling of the storage compartment is normally performed. In other words, the fact that the temperature stabilization state is made may mean that the opening/closing of a refrigerator door is not performed or there are no defects in components (e.g., a compressor and an evaporator) for cooling the storage compartment or the sensor 270.

[0133] That is, the sensor 270 may accurately detect the amount of frost on the evaporator 30 by determining whether or not temperature stabilization has been achieved.

[0134] In the present embodiment, in order to determine the temperature stabilization state is achieved, it is possible to determine the amount of change in the temperature of the freezing compartment for a predetermined period of time. Alternatively, in order to determine the temperature stabilization state is achieved, it is possible to determine the amount of change in the temperature of the evaporator 30 for a predetermined period of time.

[0135] For example, a state in which the amount of change in temperature of the freezing compartment or in temperature of the evaporator 30 during the predetermined period of time does not exceed 1.5 degrees may be defined as the temperature stabilization state.

[0136] As described above, the temperature Ht of the heat generating element may rapidly decrease immediately after the heat generating element 273 is turned off, and then the temperature Ht of the heat generating element may gradually decrease. Here, it is possible to determine whether temperature stabilization has been achieved by determining whether the temperature Ht of the heat generating element decreases normally after decreasing rapidly.

[0137] When the temperature stabilization state is achieved, in step S28, the temperature difference ΔHt between the temperature Ht1 detected when the heat generating element 273 is turned on and the temperature Ht2 detected when the heat generating element 273 is turned off may be calculated.

[0138] In step S29, it is determined whether the temperature difference ΔHt is less than a first reference temperature value.

[0139] Specifically, when the amount of frost on the evaporator 30 is large, the flow rate of the air flowing into the bypass passage 230 increases, and thus the amount of cooling for the heat generating element 273 by air flowing through the bypass passage 230 may increase. When the amount of cooling increases, the temperature Ht2 of the heat generating element detected immediately after the heat generating element 273 is turned off may be relatively low compared to a case where the amount of frost on the evaporator 30 is small.

[0140] As a result, when the amount of frost on the evaporator 30 is large, the temperature difference ΔHt may be small. Accordingly, it is possible to determine the amount of frost on the evaporator 30 through the temperature difference ΔHt.

[0141] Here, the first reference temperature value may be 32 degrees, for example.

[0142] Next, when the temperature difference ΔHt is less than the first reference temperature value, in step S30, a defrosting operation is performed.

[0143] When the defrosting operation is performed, the defrosting device 50 is driven and heat generated by the heater is transferred to the evaporator 30 so that the frost generated on the surface of the evaporator 30 is melted.

[0144] On the other hand, in step S27, when the temperature stabilization state is not achieved or, in step S29, when the temperature difference ΔHt is greater than or equal to the first reference temperature value, the algorithm ends without performing the defrosting operation.

[0145] In the present embodiment, the temperature difference value ΔHt may be defined as a "logic temperature" for detection of frosting. The logic temperature may be used as a temperature for determining a time point for a defrosting operation of the refrigerator, and may be used as a temperature for detecting clogging of an air passage, which is to be described later.

[0146] Meanwhile, in the present disclosure, it may be possible to detect whether the air passage of the refrigerator is clogged or a sensor failure occurs by determining whether the temperature difference value between the first detection temperature Ht1 and the second detection temperature Ht2 is out of a normal range.

[0147] Here, the clogging of the air passage may include at least one or more of clogging of a passage through which cool air circulating inside the refrigerator flows, that is, clogging of the cool air inflow hole 221 or the cool air discharge hole 211 of the cool air duct 20 defining the heat-exchange space 222, clogging of the blowing fan 70 provided in the cool air duct 20, or clogging of the bypass passage 230.

[0148] The cool air inflow hole 221, the cool air discharge hole 211, the blowing fan 70, and the bypass passage 230 may be clogged by frost due to condensation of moisture contained in the air on the surface. As described above, when the air passage is clogged by growth of frost, there is a problem that air flow resistance is caused, and as a result, heat exchange efficiency of the evaporator is reduced and power consumption is increased.

[0149] Accordingly, the present disclosure is characterized in that the cause of the clogging of the air passage of the refrigerator is diagnosed and appropriate measures are taken accordingly.

[0150] FIG. 11 is a flowchart schematically showing a method of detecting clogging of an air passage of a refrigerator according to an embodiment of the present disclosure.

[0151] Referring to FIG. 11, in step S41, the heat generating element 273 is operated for a predetermined time.

[0152] Specifically, the heat generating element 273 may be turned on for a predetermined time and then turned off. For example, the heat generating element 273 may be turned on for 3 minutes.

[0153] Next, in step S43, the controller 40 may detect a temperature of the heat generating element 273 in a state in which the heat generating element 273 is turned on or off.

[0154] For example, the controller 40 may detect the temperature of the heat generating element 273 immediately after the heat generating element 273 is turned on and the heat generating element 273 is turned off.

[0155] As another example, the controller 40 may detect the temperature of the heat generating element 273 during a period of time when the heat generating element 273 is turned on.

[0156] Next, in step S45, the controller 40 may detect clogging of the air passage based on a temperature difference value between the first detection temperature that is the the lowest value and the second detection temperature that is the the highest value, among detection temperatures of the heat generating element 273.

[0157] The method of detecting the amount of frost on the evaporator 30 according to a temperature difference value between the first detection temperature and the second detection temperature of the heat generating element 273, that is, a logic temperature ΔHt has been described above.

[0158] However, in the present embodiment, when the logic temperature ΔHt has an abnormally large value, it may be determined that a failure has occurred in the sensor 270.

[0159] Although the defrosting operation is performed when the logic temperature ΔHt is less than a reference value, it may be determined that the air passage of the refrigerator has been clogged when the logic temperature ΔHt is still kept low.

[0160] In this case, the clogging of the air passage may mean that at least one of the cool air inflow hole 221, the cool air discharge hole 211, the blowing fan 70, and the bypass passage 230 is clogged. In this case, it is difficult to solve the clogging of the air passage. That is, when the clogging of the air passage occurs, it is difficult to remove frost formed in the cool air inflow hole 221, the cool air discharge hole 211, the blowing fan 70, and the bypass passage 230 even though the defrosting operation is performed. Accordingly, when it is determined that the air passage is clogged, it may be immediately notified to the user so that the clogging of the air passage may be resolved.

[0161] FIG. 12 is a flowchart showing a detailed method for detecting clogging of an air passage of a refrigerator according to an embodiment of the present disclosure.

[0162] Referring to FIG. 12, in step S51, a logic temperature ΔHt may be updated. Here, updating the logic temperature ΔHt means may that steps S21 to S28 of FIG. 9 described above are performed again.

[0163] Alternatively, update of the logic temperature may means may that steps S21 to S28 of FIG. 9 described above are performed initially.

[0164] Next, in step S52, the controller 40 may determine whether the updated logic temperature ΔHt is less than the second reference temperature value. In this case, the second reference temperature value may be greater than the first reference temperature value. As an example, the second reference temperature value may be 50 degrees, but is not limited thereto.

[0165] Here, the reason to determine whether the updated logic temperature ΔHt is less than the second reference temperature value is to determine whether the updated logic temperature ΔHt is within a normal range. That is, when the updated logic temperature ΔHt is not within the normal range, that is, when the updated logic temperature ΔHt has an abnormally large value, it may be determined that a failure has occurred in the sensor 270.

[0166] For example, the cause of the failure of the sensor 270 may include a case where a wire of the heat generating element 273 is short-circuited, a case where a wire of the sensing element 274 is short-circuited, or a case where the heat generating element 273 is frozen. In this case, the sensor 270 may need to be repaired or replaced.

[0167] Therefore, when the updated logic temperature ΔHt exceeds the second reference temperature value, in step S53, the controller 40 may display a failure of the sensor 270.

[0168] In step S54, the controller 40 may performs defrosting operation. That is, when a failure occurs in the sensor 270, the defrosting operation may be normally performed.

[0169] When the updated logic temperature ΔHt is less than the second reference temperature value, in step S55, the controller 40 may determine whether the updated logic temperature ΔHt is less than a third reference temperature value. In this case, the third reference temperature value may be a value less than the second reference temperature value. As an example, the third reference temperature value may be 45 degrees, but is not limited thereto.

[0170] The reason to determine whether the logic temperature ΔHt is less than the third reference temperature value may be to detect clogging of an air passage of the evaporator 1.

[0171] In the present disclosure, when one or more of the air passage of the refrigerator 1, that is, the cool air inflow hole 221, the cool air discharge hole 211, the blowing fan 70, and the bypass passage 230 are clogged, the flow rate or flow speed of air may be rapidly reduced, and as a result, the flow rate of air flowing into the bypass passage 230 may be rapidly decreased. Accordingly, since the flow rate of the air flowing into the bypass passage 230 is reduced, the temperature of the heat generating element 273 detected while the heat generating element 273 is turned on may increase rapidly.

[0172] According to the above-described principle, the fact that the updated logic temperature ΔHt is measured as being very high may mean that at least one or more of the cool air inflow hole 221, the cool air discharge hole 211, the blower fan 70, and the bypass passage 230 are clogged.

[0173] When the updated logic temperature ΔHt exceeds the third reference temperature value, it may be determined in steps S56 and S57 whether the updated logic temperature ΔHt exceeds the third reference temperature value for the first time. When the updated logic temperature ΔHt exceeds the third reference temperature value for the first time, in step S54, the controller 40 may performs defrosting operation.

[0174] Alternatively, in steps S56 and S57, when the updated logic temperature ΔHt does not exceed the third reference temperature value for the first time, that is, when it is determined that clogging of the air passage has still occurred, in step S58, the controller 40 may display the clogging of the air passage and then perform defrosting operation.

[0175] According to this configuration, it may be possible to inform a user of the clogging of the air passage when the clogging of the air passage continuously occurs, so that accurate diagnosis is possible and maintenance and management are easy.

[0176] On the other hand, when the updated logic temperature ΔHt is less than the third reference temperature value, in step S59, the controller 40 may determine whether the updated logic temperature ΔHt is less than a fourth reference temperature value. In this case, the fourth reference temperature value may be a value less than the third reference temperature value. For example, the fourth reference temperature value may be 35 degrees, but is not limited thereto.

[0177] When the updated logic temperature ΔHt exceeds the fourth reference temperature value, that is, when the updated logic temperature ΔHt is less than the third reference temperature value and is greater than or equal to the fourth reference temperature value, the controller 40 may return to step S51 without performing the defrosting operation.

[0178] That is, when the updated logic temperature ΔHt is less than the third reference temperature value and is greater than or equal to the fourth reference temperature value, it means a state in which clogging of the air passage occurs.

[0179] Conversely, when the updated logic temperature ΔHt is less than the fourth reference temperature value, in steps S60 and S61, the controller 40 may determine whether the updated logic temperature ΔHt exceeds the fourth reference temperature value for the first time. When the updated logic temperature ΔHt exceeds the fourth reference temperature value for the first time, in step S62, the controller 40 may determine whether the updated logic temperature ΔHt is less than the first reference temperature value.

[0180] When the updated logic temperature ΔHt is less than the first reference temperature value, in step S54, the controller 40 may determines that the amount of frost on the evaporator 30 is large, and perform defrosting operation.

[0181] When the updated logic temperature ΔHt exceeds the first reference temperature value, the controller 40 may determine that the air passage has not been clogged, and may return to step S51 without performing the defrosting operation.

[0182] When the updated logic temperature ΔHt does not exceed the fourth reference temperature value for the first time in step S60 and step S61, in step S63, the controller 40 may determine whether the updated logic temperature ΔHt has increased by "A" degrees or more from the previously updated logic temperature.

[0183] Here, the reason to determine whether the updated logic temperature ΔHt has increased by "A" degrees or more from the previously updated logic temperature is for determining whether the air passage is being progressively clogged. That is, even when the air passage is not clogged completely, frost growth in the air passage may be prevented fundamentally.

[0184] For example, the case where the updated logic temperature ΔHt is significantly higher than the previously updated logic temperature may mean that the air passage is progressively clogged, and the amount of cooling of air flowing through the bypass passage 230 is significantly reduced. That is, when clogging of the air passage is continuously made, the air passage is completely clogged, causing a problem in that air is not circulated.

[0185] Therefore, when it is determined that the updated logic temperature ΔHt has been increased by "A" degrees or more from the previously updated logic temperature, in step S54, the controller 40 may perform a defrosting operation to prevent the air passage from being clogged.

[0186] When it is determined that the updated logic temperature ΔHt has not been increased by "A" degrees or more from the previously updated logic temperature, the controller 40 may proceed to step S62.

[0187] Although it has been descried in the present embodiment that the first detection temperature Ht1 may be a temperature detected by a sensing element of the sensor immediately after the heat generating element is turned on, and the second detection temperature Ht2 may be a temperature detected by a sensing element of the sensor immediately after the heat generating element is turned off, the present embodiment is not limited thereto.

[0188] According to another embodiment, the first detection temperature Ht1 and the second detection temperature Ht2 may be temperature values detected while the heat generating element is turned on. For example, the first detection temperature (Ht1) may be a lowest temperature value during a period of time when the heat generating element is turned on and the second detection temperature (Ht2) is a highest temperature value during the period of time when the heat generating element is turned on.


Claims

1. A control method of a refrigerator, comprising:

operating a heat generating element of a sensor disposed in a bypass passage for a predetermined period of time, the bypass passage allowing air flow to bypass an evaporator disposed in a heat-exchange space;

detecting a temperature of the heat generating element in a state in which the heat generating element is turned on or off; and

detecting clogging of an air passage in the heat-exchange space based on a temperature difference between a first detection temperature (Ht1) that is a lowest value and a second detection temperature (Ht2) that is a highest value among detection temperatures of the heat generating element.


 
2. The control method of claim 1, wherein the first detection temperature (Ht1) is a temperature detected by a sensing element of the sensor immediately after the heat generating element is turned on.
 
3. The control method of claim 1, wherein the second detection temperature (Ht2) is a temperature detected by a sensing element of the sensor immediately after the heat generating element is turned off.
 
4. The control method of claim 1, wherein the first detection temperature (Ht1) is a lowest temperature value during a period of time when the heat generating element is turned on.
 
5. The control method of claim 1, wherein the second detection temperature (Ht2) is a highest temperature value during a period of time when the heat generating element is turned on.
 
6. The control method of claim 1, further comprising:
performing a defrosting operation of the evaporator when a temperature difference value between the first detection temperature (Ht1) and the second detection temperature (Ht2) is less than a first reference value.
 
7. The control method of claim 1, further comprising:

updating a temperature difference value between the first detection temperature (Ht1) and the second detection temperature (Ht2) after the defrosting operation is completed,

wherein failure of the sensor is displayed when the updated temperature difference value exceeds a second reference value greater than the second reference value.


 
8. The control method of claim 7, further comprising:

determining whether the updated temperature difference value is less than a third reference value less than the second reference value when the updated temperature difference value is less than the second reference value, and

displaying the clogging of the air passage in the heat-exchange space when the updated temperature difference value exceeds the third reference value.


 
9. The control method of claim 8, wherein the display of the clogging of the air passage is at least one display of clogging of a cool air inflow hole of a cool air duck defining the heat-exchange space, clogging of a cool air discharge hole of the cool air duck, clogging of a blowing fan provided in the cool air duct or clogging of the bypass passage.
 
10. The method of claim 8, further comprising:

determining whether the updated temperature difference value is less than a fourth reference value less than the third reference value when the updated temperature difference value is less than the third reference value, and

again performing the defrosting operation of the evaporator when the updated temperature difference value is less than the fourth reference value.


 
11. The control method of claim 10, further comprising:

determining whether the updated temperature difference value is increased by a predetermined value or more compared to the temperature difference value before the temperature difference value has been updated when the updated temperature difference value is less than the fourth reference value, and

again performing the defrosting operation of the evaporator when the updated temperature difference value is increased by a predetermined value or more compared to the temperature difference value before the temperature difference value has been updated.


 
12. The control method of claim 10, further comprising:
again performing the defrosting operation of the evaporator according to whether the updated temperature difference value is less than the first reference value when the updated temperature difference value is not increased by a predetermined value or more compared to the temperature difference value before the temperature difference value has been updated.
 
13. A refrigerator comprising:

an inner case configured to define a storage space;

a cooling duct configured to guide flow of air in the storage space and define a heat exchange space with the inner case;

an evaporator disposed in the heat exchange space;

a bypass passage configured to allow air flow to bypass the evaporator;

a sensor including a heat generating element disposed in the bypass passage and a sensing element configured to detect a temperature of the heat generating element; and

a controller configured to detect clogging of an air passage in the heat-exchange space based on a temperature difference between a first detection temperature (Ht1) that is a lowest value and a second detection temperature (Ht2) that is a highest value among detection temperatures of the heat generating element.


 
14. The refrigerator of claim 13, wherein the first detection temperature (Ht1) is a temperature detected by a sensing element immediately after the heat generating element is turned on, and
wherein the second detection temperature (Ht2) is a temperature detected by a sensing element immediately after the heat generating element is turned off.
 
15. The refrigerator of claim 13, wherein the first detection temperature (Ht1) is a lowest temperature value during a period of time when the heat generating element is turned on,
wherein the second detection temperature (Ht2) is a highest temperature value during a period of time when the heat generating element is turned on.
 
16. The refrigerator of claim 13, wherein the controller is configured to perform a defrosting operation of the evaporator, when the temperature difference value between the first sensing temperature (Ht1) and the second sensing temperature (Ht2) is less than a first reference value,
 
17. The refrigerator of claim 16, wherein the controller is configured to update a temperature difference value between the first detection temperature (Ht1) and the second detection temperature (Ht2) after the defrosting operation is completed,
wherein failure of the sensor is displayed when the updated temperature difference value exceeds a second reference value greater than the second reference value.
 
18. The refrigerator of claim 17, wherein the controller is configured to:

determine whether the updated temperature difference value is less than a third reference value less than the second reference value when the updated temperature difference value is less than the second reference value, and

display the clogging of the air passage in the heat-exchange space when the updated temperature difference value exceeds the third reference value.


 
19. The refrigerator of claim 18, wherein the display of the clogging of the air passage is at least one display of clogging of a cool air inflow hole of a cool air duck defining the heat-exchange space, clogging of a cool air discharge hole of the cool air duck, clogging of a blowing fan provided in the cool air duct or clogging of the bypass passage.
 
20. The refrigerator of claim 18, wherein the controller is configured to:

determine whether the updated temperature difference value is less than a third reference value less than the third reference value when the updated temperature difference value is less than the third reference value, and

again perform the defrosting operation of the evaporator when the updated temperature difference value is less than the fourth reference value.


 




Drawing








































Search report










Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description