(19)
(11) EP 3 780 191 A1

(12) EUROPEAN PATENT APPLICATION
published in accordance with Art. 153(4) EPC

(43) Date of publication:
17.02.2021 Bulletin 2021/07

(21) Application number: 19777392.2

(22) Date of filing: 19.03.2019
(51) International Patent Classification (IPC): 
H01M 4/66(2006.01)
H01G 11/68(2013.01)
H01M 4/13(2010.01)
H01G 11/28(2013.01)
H01M 4/64(2006.01)
(86) International application number:
PCT/JP2019/011369
(87) International publication number:
WO 2019/188559 (03.10.2019 Gazette 2019/40)
(84) Designated Contracting States:
AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR
Designated Extension States:
BA ME
Designated Validation States:
KH MA MD TN

(30) Priority: 29.03.2018 JP 2018064108

(71) Applicant: Nissan Chemical Corporation
Tokyo 103-6119 (JP)

(72) Inventors:
  • HATANAKA Tatsuya
    Funabashi-shi, Chiba 274-0052 (JP)
  • SAKAIDA Yasushi
    Funabashi-shi, Chiba 274-0052 (JP)

(74) Representative: Mewburn Ellis LLP 
Aurora Building Counterslip
Bristol BS1 6BX
Bristol BS1 6BX (GB)

   


(54) UNDERCOAT FOIL FOR ENERGY STORAGE DEVICE ELECTRODE


(57) Provided is an undercoat foil for an energy storage device electrode provided with a current collector, and an undercoat layer which includes a conductive carbon material and a dispersant, and which is formed on at least one surface of said current collector, wherein the current collector does not include elements contained in the undercoat layer, and the proportion of elements constituting the current collector is 2 atom% or less, the proportion being obtainable when measuring the undercoat layer-formed surface of the undercoat foil by means of X-ray photoelectron spectroscopy (XPS).


Description

TECHNICAL FIELD



[0001] The present invention relates to an undercoat foil for an energy storage device electrode.

BACKGROUND ART



[0002] With the growing use of energy storage devices such as lithium-ion secondary batteries and electrical double-layer capacitors in recent years, there exists a need for a lower internal resistance in such devices. This need has been addressed by placing a conductive carbon material-containing undercoat layer between the electrode mixture layer and the current collector, in this way lowering the resistance at the contact interface therebetween and also increasing the bond strength between the electrode mixture layer and the current collector and thus checking degradation due to interfacial separation (see, for example, Patent Documents 1 and 2).

[0003] Carbon materials in the form of particles, such as graphite and carbon black, are commonly used as the conductive material. Because these carbon materials generally have a large particle size of at least several hundred nanometers, in order to have the carbon material be densely present on the surface, it has been necessary to set the undercoat layer thickness to at least 1 µm. However, the resulting undercoat layer occupies a larger proportion of the cell volume, which ends up lowering the cell capacity.

[0004] In addition, there is a desire for a longer cell life. To this end, it is regarded as essential to suppress the rise in resistance and the degradation in capacity associated with charge-discharge cycling.

PRIOR ART DOCUMENTS


PATENT DOCUMENTS



[0005] 

Patent Document 1: JP-A 2010-170965

Patent Document 2: WO 2014/042080


SUMMARY OF INVENTION


TECHNICAL PROBLEM



[0006] The present invention was arrived at in light of the above circumstances. An object of the invention is to provide an undercoat foil for an energy storage device electrode, which undercoat foil makes it possible to achieve an energy storage device in which the rise in resistance associated with charge-discharge cycling is suppressed.

SOLUTION TO PROBLEM



[0007] The inventors have conducted extensive investigations aimed at achieving the above object. As a result, they have found that degradation of the cell capacity and a rise in cell resistance can be suppressed by using an electrode provided with an undercoat foil in which the level of the element making up the current collector, as obtained by x-ray photoelectron spectroscopic (XPS) measurement of the undercoat layer-formed surface of the undercoat foil, is 2 atomic percent or less. This discovery ultimately led to the present invention.

[0008] Accordingly, the invention provides the following undercoat foil for an energy storage device electrode:
  1. 1. An undercoat foil for an energy storage device electrode, which undercoat foil includes a current collector made of a metallic material and an undercoat layer that contains a conductive carbon material and a dispersant and is formed on at least one side of the current collector,
    wherein the undercoat layer is free of the metallic element included in the current collector, and
    the level of the metallic element making up the current collector, as obtained by x-ray photoelectron spectroscopic (XPS) measurement of the undercoat layer-formed surface of the undercoat foil, is 2 atomic percent or less.
  2. 2. The undercoat foil for an energy storage device electrode of 1 above, wherein the level of the metallic element making up the current collector is 1 atomic percent or less.
  3. 3. The undercoat foil for an energy storage device electrode of 1 or 2 above, wherein the level of carbon, as obtained by XPS measurement of the undercoat layer-formed surface of the undercoat foil, is 77 atomic percent or more.
  4. 4. The undercoat foil for an energy storage device electrode of any of 1 to 3 above, wherein the conductive carbon material includes carbon nanotubes.
  5. 5. The undercoat foil for an energy storage device electrode of any of 1 to 4 above, wherein the dispersant includes a vinyl polymer having pendant oxazoline groups or a triarylamine-based highly branched polymer.
  6. 6. The undercoat foil for an energy storage device electrode of any of 1 to 5 above, wherein the current collector is aluminum foil or copper foil.
  7. 7. An energy storage device electrode which includes the undercoat foil for an energy storage device electrode of any of 1 to 6 above and an electrode mixture layer formed on the undercoat layer of the undercoat foil.
  8. 8. An energy storage device which includes the energy storage device electrode of 7 above.

ADVANTAGEOUS EFFECTS OF INVENTION



[0009] By using the inventive undercoat foil for an energy storage device electrode, energy storage devices in which capacity degradation and a rise in resistance are suppressed and the cell life is enhanced can be obtained. This is thought to be attributable to the existence of, aside from a resistance-lowering mechanism due to the presence at the interfaces with the electrode mixture layer and the current collector of the conductive carbon material in the undercoat layer, an electrolyte redox decomposition reaction-suppressing mechanism from coating the surface of the current collector.

BRIEF DESCRIPTION OF DRAWINGS



[0010] [FIG. 1] FIG. 1 is a schematic cross-sectional diagram of a carbon nanotube having constricted areas, such as may be used in this invention.

DESCRIPTION OF EMBODIMENTS


[Undercoat Foil for Energy Storage Device Electrode]



[0011] The inventive undercoat foil for an energy storage device electrode includes a current collector and an undercoat layer that contains a conductive carbon material and a dispersant and is formed on at least one side of the current collector.

[Current Collector]



[0012] The current collector is made of a metallic material. The metallic material should be suitably selected from metallic materials that have hitherto been used in current collectors for energy storage device electrodes. For example, metals such as copper, aluminum, titanium, stainless steel, nickel, gold and silver, as well as alloys and metal oxides of these, may be used. In cases where the electrode structure is fabricated by the application of welding such as ultrasonic welding, the use of metal foil made of copper, aluminum, titanium, stainless steel, nickel, gold, silver or an alloy thereof is preferred. The thickness of the current collector is not particularly limited, although a thickness of from 1 to 100 µm is preferred in this invention.

[Undercoat Layer]



[0013] The undercoat layer includes, as an electrically conductive material, a conductive carbon material. The conductive carbon material which is used may be one that is suitably selected from among known carbon materials such as carbon black, ketjen black, acetylene black, carbon whiskers, carbon nanotubes (CNTs), carbon fibers, natural graphite and synthetic graphite. In this invention, the use in particular of a conductive carbon material containing CNTs and/or carbon black is preferred, and the use of a conductive carbon material consisting solely of CNTs is more preferred. Also, the undercoat layer is free of metallic elements included in the current collector.

[0014] Carbon nanotubes are generally produced by an arc discharge process, chemical vapor deposition (CVD), laser ablation or the like. The CNTs used in this invention may be obtained by any of these methods. CNTs are categorized as single-walled CNTs (SWCNTs) consisting of a single cylindrically rolled graphene sheet, double-walled CNTs (DWCNTs) consisting of two concentrically rolled graphene sheets, and multi-walled CNTs (MWCNTs) consisting of a plurality of concentrically rolled graphene sheets. SWCNTs, DWCNTs or MWCNTs may be used alone in the invention, or a plurality of these types of CNTs may be used in combination. From the standpoint of cost, multi-walled CNTs having a diameter of at least 2 nm in particular are preferred; from the standpoint of the ability to form a thinner film, multi-walled CNTs having a diameter of not more than 500 nm in particular are preferred, multi-walled CNTs having a diameter of not more than 100 nm are more preferred, multi-walled CNTs have a diameter of not more than 50 nm are even more preferred, and multi-walled CNT's having a diameter of not more than 30 nm are most preferred. The diameter of the CNTs can be measured by using a transmission electron microscope to examine a thin film obtained by drying a dispersion of the CNTs dispersed in a solvent.

[0015] When SWCNTs, DWCNTs or MWCNTs are produced by the above methods, catalyst metals such as nickel, iron, cobalt and yttrium may remain in the product, and so purification to remove these impurities is sometimes necessary. Acid treatment with nitric acid, sulfuric acid or the like together with sonication is effective for removing impurities. However, in acid treatment with nitric acid, sulfuric acid or the like, there is a possibility of the π-conjugated system making up the CNTs being destroyed and properties inherent to the CNTs being lost. Hence, it is desirable for the CNTs to be purified and used under suitable conditions.

[0016] In order to exhibit a battery resistance-lowering effect when the dispersion is applied as a film and formed into an undercoat layer, it is preferable for the CNTs to be ones that easily disperse within the dispersion. Such CNTs are preferably ones having numerous crystal discontinuities that readily break under a small energy. From this standpoint, the CNTs used in the inventive composition are preferably ones having constricted areas. As used herein, a "CNT having constricted areas" refers to a carbon nanotube having constricted areas where the diameter of the tube is 90% or less of the tube diameter across parallel areas of the CNT. Because such a constricted area is a site created when the CNT direction of growth changes, it has a crystalline discontinuity and is a breakable place that can be easily cut with a small mechanical energy.

[0017] FIG. 1 shows a schematic cross-sectional diagram of a CNT having parallel areas 1 and constricted areas 3. A parallel area 1, as shown in FIG. 1, is a portion where the walls can be recognized as two parallel straight lines or two parallel curved lines. At this parallel area 1, the distance between the outer walls of the tube in the direction normal to the parallel lines is the tube outer diameter 2 for the parallel area 1. A constricted area 3 is a portion which is continuous at both ends with parallel areas 1 and where the distance between the walls is closer than in the parallel area 1. More specifically, it is an area having a tube outer diameter 4 which is 90% or less of the tube outer diameter 2 at parallel areas 1. The tube outer diameter 4 at a constricted area 3 is the distance between the outer walls of the tube at the place where the outer walls are closest together. As shown in FIG. 1, places where the crystal is discontinuous exist at most of the constricted areas 3.

[0018] The wall shape and tube outer diameter of the CNTs can be observed with a transmission electron microscope or the like. Specifically, the constricted areas can be confirmed from the image obtained by preparing a 0.5% dispersion of the CNTs, placing the dispersion on a microscope stage and drying it, and then photographing the dried dispersion at a magnification of 50,000× with a transmission electron microscope.

[0019] When a 0.1% dispersion of the CNTs is prepared, the dispersion is placed on a microscope stage and dried, an image of the dried dispersion captured at 20,000× with a transmission electron microscope is divided into 100 nm square sections and 300 of the sections in which the CNTs occupy from 10 to 80% of the 100 nm square section are selected, and the proportion of all such sections which have breakable places (proportion having breakable places present) is determined as the proportion of the 300 sections which have at least one constricted area present within the section. In cases where the surface area occupied by the CNTs in a section is 10% or less, measurement is difficult because the amount of CNTs present is too low. On the other hand, when the surface area occupied by the CNTs in a section is 80% or more, the CNTs are numerous and end up overlapping, as a result of which it is difficult to distinguish between parallel areas and constricted areas, making precise measurement a challenge.

[0020] In the CNTs used in this invention, the proportion having breakable places present is 60% or more. When the proportion having breakable places present is lower than 60%, the CNTs are difficult to disperse; applying excessive mechanical energy to effect dispersion leads to destruction of the crystalline structure of the graphite-net plane, lowering the properties such as electrical conductivity that are characteristic of CNTs. To obtain a higher dispersibility, the proportion having breakable places present is preferably 70% or more.

[0021] Specific examples of CNTs that may be used in this invention include the following CNTs having a constricted structure that are disclosed in WO 2016/076393 and JP-A 2017-206413: the TC series such as TC-2010, TC-2020, TC-3210L and TC-1210LN (Toda Kogyo Corporation), CNTs synthesized by the super growth method (available from the New Energy and Industrial Technology Development Organization (NEDO) in the National Research and Development Agency), eDIPS-CNTs (available from NEDO in the National Research and Development Agency), the SWNT series (available under this trade name from Meijo Nano Carbon), the VGCF series (available under this trade name from Showa Denko KK), the FloTube series (available under this trade name from CNano Technology), AMC (available under this trade name from Ube Industries, Ltd.), the NANOCYL NC7000 series (available under this trade name from Nanocyl S.A.), Baytubes (available under this trade name from Bayer), GRAPHISTRENGTH (available under this trade name from Arkema), MWNT7 (available under this trade name from Hodogaya Chemical Co., Ltd.) and Hyperion CNT (available under this trade name from Hyperion Catalysis International).

[0022] The undercoat layer is preferably created using an undercoat composition (conductive carbon material dispersion) which includes the above-described conductive carbon material, a dispersant and a solvent.

[0023] The dispersant, although not particularly limited, may be suitably selected from among known dispersants. Illustrative examples include carboxymethyl cellulose (CMC), polyvinylpyrrolidone (PVP), acrylic resin emulsions, water-soluble acrylic polymers, styrene emulsions, silicone emulsions, acrylic silicone emulsions, fluoropolymer emulsions, EVA emulsions, vinyl acetate emulsions, vinyl chloride emulsions, urethane resin emulsions, the triarylamine-based highly branched polymers mentioned in WO 2014/04280 and the pendant oxazoline group-containing vinyl polymers mentioned in WO 2015/029949. In this invention, the use of dispersants containing the pendant oxazoline group-containing polymers mentioned in WO 2015/029949 or dispersants containing the triarylamine-based highly branched polymers mentioned in WO 2014/04280 is preferred.

[0024] The pendant oxazoline group-containing polymers (also referred to below as "oxazoline polymers") are preferably pendant oxazoline group-containing vinyl polymers which can be obtained by the radical polymerization of an oxazoline monomer of formula (1) having a polymerizable carbon-carbon double bond-containing group at the 2 position and which have recurring units that are bonded, at the 2 position of the oxazoline ring, to the polymer backbone or to spacer groups.



[0025] In formula (1), X is a polymerizable carbon-carbon double bond-containing group, and R1 to R4 are each independently a hydrogen atom, a halogen atom, an alkyl group of 1 to 5 carbon atoms, an aryl group of 6 to 20 carbon atoms, or an aralkyl group of 7 to 20 carbon atoms.

[0026] The polymerizable carbon-carbon double bond-containing group on the oxazoline monomer is not particularly limited, so long as it includes a polymerizable carbon-carbon double bond. However, an acyclic hydrocarbon group containing a polymerizable carbon-carbon double bond is preferred. For example, alkenyl groups having from 2 to 8 carbon atoms, such as vinyl, allyl and isopropenyl groups, are preferred.

[0027] Here, examples of the halogen atom include fluorine, chlorine, bromine and iodine atoms.

[0028] The alkyl groups of 1 to 5 carbon atoms may be ones having a linear, branched or cyclic structure. Illustrative examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, n-pentyl and cyclohexyl groups.

[0029] Illustrative examples of aryl groups of 6 to 20 carbon atoms include phenyl, xylyl, tolyl, biphenyl and naphthyl groups.

[0030] Illustrative examples of aralkyl groups of 7 to 20 carbon atoms include benzyl, phenyl ethyl and phenylcyclohexyl groups.

[0031] Illustrative examples of the oxazoline monomer having a polymerizable carbon-carbon double bond-containing group at the 2 position shown in formula (1) include 2-vinyl-2-oxazoline, 2-vinyl-4-methyl-2-oxazoline, 2-vinyl-4-ethyl-2-oxazoline, 2-vinyl-4-propyl-2-oxazoline, 2-vinyl-4-butyl-2-oxazoline, 2-vinyl-5-methyl-2-oxazoline, 2-vinyl-5-ethyl-2-oxazoline, 2-vinyl-5-propyl-2-oxazoline, 2-vinyl-5-butyl-2-oxazoline, 2-isopropenyl-2-oxazoline, 2-isopropenyl-4-methyl-2-oxazoline, 2-isopropenyl-4-ethyl-2-oxazoline, 2-isopropenyl-4-propyl-2-oxazoline, 2-isopropenyl-4-butyl-2-oxazoline, 2-isopropenyl-5-methyl-2-oxazoline, 2-isopropenyl-5-ethyl-2-oxazoline, 2-isopropenyl-5-propyl-2-oxazoline and 2-isopropenyl-5-butyl-2-oxazoline. In terms of availability and other considerations, 2-isopropenyl-2-oxazoline is preferred.

[0032] Also, taking into account the fact that the composition is prepared using an aqueous solvent, it is preferable for the oxazoline polymer as well to be water-soluble. Such a water-soluble oxazoline polymer may be a homopolymer of the oxazoline monomer of formula (1) above. However, to further increase the solubility in water, the polymer is preferably one obtained by the radical polymerization of at least two types of monomer: the above oxazoline monomer and a hydrophilic functional group-containing (meth)acrylic ester monomer.

[0033] Illustrative examples of hydrophilic functional group-containing (meth)acrylic monomers include (meth)acrylic acid, 2-hydroxyethyl acrylate, methoxy polyethylene glycol acrylate, monoesters of acrylic acid with polyethylene glycol, 2-aminoethyl acrylate and salts thereof, 2-hydroxyethyl methacrylate, methoxy polyethylene glycol methacrylate, monoesters of methacrylic acid with polyethylene glycol, 2-aminoethyl methacrylate and salts thereof, sodium (meth)acrylate, ammonium (meth)acrylate, (meth)acrylonitrile, (meth)acrylamide, N-methylol (meth)acrylamide, N-(2-hydroxyethyl) (meth)acrylamide and sodium styrene sulfonate. One of these may be used alone or two or more may be used in combination. Of these, methoxy polyethylene glycol (meth)acrylate and monoesters of (meth)acrylic acid with polyethylene glycol are preferred.

[0034] Concomitant use may be made of monomers other than the above oxazoline monomers and hydrophilic functional group-containing (meth)acrylic monomers, within a range that does not adversely affect the ability of the oxazoline polymer to disperse the conductive carbon material. Illustrative examples of such other monomers include (meth)acrylic acid ester monomers such as methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, stearyl (meth)acrylate, perfluoroethyl (meth)acrylate and phenyl (meth)acrylate; α-olefin monomers such as ethylene, propylene, butene and pentene; haloolefin monomers such as vinyl chloride, vinylidene chloride and vinyl fluoride; styrene monomers such as styrene and α-methyl styrene; vinyl carboxylate monomers such as vinyl acetate and vinyl propionate; and vinyl ether monomers such as methyl vinyl ether and ethyl vinyl ether. These may each be used singly, or two or more may be used in combination.

[0035] To further increase the conductive carbon material-dispersing ability of the oxazoline polymer employed in the invention, the content of oxazoline monomer in the monomer ingredients used to prepare the oxazoline polymer is preferably at least 10 wt%, more preferably at least 20 wt%, and even more preferably at least 30 wt%. The upper limit in the content of the oxazoline monomer in the monomer ingredients is 100 wt%, in which case a homopolymer of the oxazoline monomer is obtained. To further increase the water solubility of the resulting oxazoline polymer, the content of the hydrophilic functional group-containing (meth)acrylic monomer in the monomer ingredients is preferably at least 10 wt%, more preferably at least 20 wt%, and even more preferably at least 30 wt%. As mentioned above, the content of other monomers in the monomer ingredients is in a range that does not affect the ability of the resulting oxazoline polymer to disperse the conductive carbon material. This content differs according to the type of monomer and thus cannot be strictly specified, but may be suitably set in the range of 5 to 95 wt%, and preferably 10 to 90 wt%.

[0036] The average molecular weight of the oxazoline polymer is not particularly limited, although the weight-average molecular weight is preferably from 1,000 to 2,000,000, and more preferably from 2,000 to 1,000,000. The weight-average molecular weight is a polystyrene-equivalent value obtained by gel permeation chromatography.

[0037] The oxazoline polymers that may be used in this invention can be synthesized by a known radical polymerization of the above monomers or may be acquired as commercial products. Illustrative examples of such commercial products include Epocros® WS-300 (from Nippon Shokubai Co., Ltd.; solids concentration, 10 wt%; aqueous solution), Epocros® WS-700 (Nippon Shokubai Co., Ltd.; solids concentration, 25 wt%; aqueous solution), Epocros® WS-500 (Nippon Shokubai Co., Ltd.; solids concentration, 39 wt%; water/1-methoxy-2-propanol solution), Poly(2-ethyl-2-oxazoline) (Aldrich), Poly(2-ethyl-2-oxazoline) (Alfa Aesar) and Poly(2-ethyl-2-oxazoline) (VWR International, LLC). When the oxazoline polymer is commercially available as a solution, the solution may be used directly as is or may be used after replacing the solvent with a target solvent.

[0038] Suitable use can also be made of the highly branched polymers shown in formulas (2) and (3) below that are obtained by the condensation polymerization of a triarylamine with an aldehyde and/or a ketone under acidic conditions.



[0039] In formulas (2) and (3), Ar1 to Ar3 are each independently a divalent organic group of any one of formulas (4) to (8), with a substituted or unsubstituted phenylene group of formula (4) being especially preferred.



[0040] In formulas (2) and (3), Z1 and Z2 are each independently a hydrogen atom, an alkyl group of 1 to 5 carbon atoms which may have a branched structure, or a monovalent organic group of any one of formulas (9) to (12) (provided that Z1 and Z2 are not both alkyl groups), with Z1 and Z2 preferably being each independently a hydrogen atom, a 2- or 3-thienyl group or a group of formula (9). It is especially preferable for one of Z1 and Z2 to be a hydrogen atom and for the other to be a hydrogen atom, a 2- or 3-thienyl group, or a group of formula (9), especially one in which R141 is a phenyl group or one in which R141 is a methoxy group. In cases where R141 is a phenyl group, when the technique of inserting an acidic group following polymer production is used in the subsequently described acidic group insertion method, the acidic group is sometimes inserted onto this phenyl group. The alkyl groups of 1 to 5 carbon atoms which may have a branched structure are exemplified in the same way as those mentioned above.



[0041] In formulas (3) to (8), R101 to R138 are each independently a hydrogen atom, a halogen atom, an alkyl group of 1 to 5 carbon atoms which may have a branched structure, an alkoxy group of 1 to 5 carbon atoms which may have a branched structure, or a carboxyl group, sulfo group, phosphoric acid group, phosphonic acid group or salt thereof.

[0042] Here, examples of the halogen atom include fluorine, chlorine, bromine and iodine atoms.

[0043] Illustrative examples of alkyl groups of 1 to 5 carbon atoms which may have a branched structure include methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, tert-butyl and n-pentyl groups.

[0044] Illustrative examples of alkoxy groups of 1 to 5 carbon atoms which may have a branched structure include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy and n-pentoxy groups.

[0045] Exemplary salts of carboxyl groups, sulfo groups, phosphoric acid groups and phosphonic acid groups include sodium, potassium and other alkali metal salts; magnesium, calcium and other Group 2 metal salts; ammonium salts; propylamine, dimethylamine, triethylamine, ethylenediamine and other aliphatic amine salts; imidazoline, piperazine, morpholine and other alicyclic amine salts; aniline, diphenylamine and other aromatic amine salts; and pyridinium salts.

[0046] In formulas (9) to (12) above, R139 to R162 are each independently a hydrogen atom, a halogen atom, an alkyl group of 1 to 5 carbon atoms which may have a branched structure, a haloalkyl group of 1 to 5 carbon atoms which may have a branched structure, a phenyl group, -OR163, -COR163, -NR163R164, -COOR165 (wherein R163 and R164 are each independently a hydrogen atom, an alkyl group of 1 to 5 carbon atoms which may have a branched structure, a haloalkyl group of 1 to 5 carbon atoms which may have a branched structure, or a phenyl group; and R165 is an alkyl group of 1 to 5 carbon atoms which may have a branched structure, a haloalkyl group of 1 to 5 carbon atoms which may have a branched structure, or a phenyl group), or a carboxyl group, sulfo group, phosphoric acid group, phosphonic acid group or salt thereof.

[0047] Here, illustrative examples of the haloalkyl group of 1 to 5 carbon atoms which may have a branched structure include difluoromethyl, trifluoromethyl, bromodifluoromethyl, 2-chloroethyl, 2-bromoethyl, 1,1-difluoroethyl, 2,2,2-trifluoroethyl, 1,1,2,2-tetrafluoroethyl, 2-chloro-1,1,2-trifluoroethyl, pentafluoroethyl, 3-bromopropyl, 2,2,3,3-tetrafluoropropyl, 1,1,2,3,3,3-hexafluoropropyl, 1,1,1,3,3,3-hexafluoropropan-2-yl, 3-bromo-2-methylpropyl, 4-bromobutyl and perfluoropentyl groups.

[0048] The halogen atoms and the alkyl groups of 1 to 5 carbon atoms which may have a branched structure are exemplified in the same way as the groups represented by above formulas (3) to (8).

[0049] In particular, to further increase adherence to the current collector, the highly branched polymer is preferably one having, on at least one aromatic ring in the recurring units of formula (2) or (3), at least one type of acidic group selected from among carboxyl, sulfo, phosphoric acid and phosphonic acid groups, as well as salts thereof, and more preferably one having a sulfo group or a salt thereof.

[0050] Illustrative examples of aldehyde compounds that may be used to prepare the highly branched polymer include saturated aliphatic aldehydes such as formaldehyde, p-formaldehyde, acetaldehyde, propylaldehyde, butyraldehyde, isobutyraldehyde, valeraldehyde, capronaldehyde, 2-methylbutyraldehyde, hexylaldehyde, undecylaldehyde, 7-methoxy-3,7-dimethyloctylaldehyde, cyclohexanecarboxyaldehyde, 3-methyl-2-butyraldehyde, glyoxal, malonaldehyde, succinaldehyde, glutaraldehyde and adipinaldehyde; unsaturated aliphatic aldehydes such as acrolein and methacrolein; heterocyclic aldehydes such as furfural, pyridinealdehyde and thiophenaldehyde; aromatic aldehydes such as benzaldehyde, tolylaldehyde, trifluoromethylbenzaldehyde, phenylbenzaldehyde, salicylaldehyde, anisaldehyde, acetoxybenzaldehyde, terephthalaldehyde, acetylbenzaldehyde, formylbenzoic acid, methyl formylbenzoate, aminobenzaldehyde, N,N-dimethylaminobenzaldehyde, N,N-diphenylaminobenzaldehyde, naphthaldehyde, anthraldehyde and phenanthraldehyde; and aralkylaldehydes such as phenylacetaldehyde and 3-phenylpropionaldehyde. Of these, the use of aromatic aldehydes is preferred.

[0051] Ketone compounds that may be used to prepare the highly branched polymer are exemplified by alkyl aryl ketones and diaryl ketones. Illustrative examples include acetophenone, propiophenone, diphenyl ketone, phenyl naphthyl ketone, dinaphthyl ketone, phenyl tolyl ketone and ditolyl ketone.

[0052] The highly branched polymer that may be used in the invention is obtained, as shown in Scheme 1 below, by the condensation polymerization of a triarylamine compound, such as one of formula (A) below, that is capable of furnishing the aforementioned triarylamine skeleton, with an aldehyde compound and/or a ketone compound, such as one of formula (B) below, in the presence of an acid catalyst. In cases where a difunctional compound (C) such as a phthalaldehyde (e.g., terephthalaldehyde) is used as the aldehyde compound, not only does the reaction shown in Scheme 1 arise, the reaction shown in Scheme 2 below also arises, giving a highly branched polymer having a crosslinked structure in which the two functional groups both contribute to the condensation reaction.

In these formulas, Ar1 to Ar3 and both Z1 and Z2 are the same as defined above.

In these formulas, Ar1 to Ar3 and R101 to R104 are the same as defined above.

[0053] In the condensation polymerization reaction, the aldehyde compound and/or ketone compound may be used in a ratio of from 0.1 to 10 equivalents per equivalent of aryl groups on the triarylamine compound.

[0054] The acid catalyst used may be, for example, a mineral acid such as sulfuric acid, phosphoric acid or perchloric acid; an organic sulfonic acid such as p-toluenesulfonic acid or p-toluenesulfonic acid monohydrate; or a carboxylic acid such as formic acid or oxalic acid. The amount of acid catalyst used, although variously selected according to the type thereof, is generally from 0.001 to 10,000 parts by weight, preferably from 0.01 to 1,000 parts by weight, and more preferably from 0.1 to 100 parts by weight, per 100 parts by weight of the triarylamine.

[0055] The condensation reaction may be carried out in the absence of a solvent, although it is generally carried out using a solvent. Any solvent that does not hinder the reaction may be used for this purpose. Illustrative examples include cyclic ethers such as tetrahydrofuran and 1,4-dioxane; amides such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc) and N-methyl-2-pyrrolidone (NMP); ketones such as methyl isobutyl ketone and cyclohexanone; halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane and chlorobenzene; and aromatic hydrocarbons such as benzene, toluene and xylene. Cyclic ethers are especially preferred. One of these solvents may be used alone or two or more may be used in admixture. If the acid catalyst used is a liquid compound such as formic acid, in addition to serving as an acid catalyst, it may also fulfill the role of a solvent.

[0056] The reaction temperature during condensation is generally between 40°C and 200°C. The reaction time may be variously selected according to the reaction temperature, but is generally from about 30 minutes to about 50 hours.

[0057] When acidic groups are introduced onto the highly branched polymer, this may be done by a method that involves first introducing the acidic groups onto aromatic rings of the above triarylamine compound, aldehyde compound and ketone compound serving as the polymer starting materials, then using this to synthesize the highly branched polymer; or by a method that involves treating the highly branched polymer following synthesis with a reagent that is capable of introducing acidic groups onto the aromatic rings. In terms of the ease and simplicity of production, use of the latter approach is preferred. In the latter approach, the technique used to introduce acidic groups onto the aromatic rings is not particularly limited, and may be suitably selected from among various known methods according to the type of acidic group. For example, in cases where sulfo groups are introduced, use may be made of a method that involves sulfonation using an excess amount of sulfuric acid.

[0058] The average molecular weight of the highly branched polymer is not particularly limited, although the weight-average molecular weight is preferably from 1,000 to 2,000,000, and more preferably from 2,000 to 1,000,000.

[0059] Specific examples of the highly branched polymer include, but are not limited to, those having the following formulas.



[0060] In the undercoat composition, the mixing ratio between the conductive carbon material and the dispersant, expressed as a weight ratio, is preferably from about 1,000:1 to about 1:100.

[0061] The concentration of dispersant is not particularly limited, provided that it is a concentration which enables the conductive carbon material to disperse in the solvent. However, the concentration in the composition is preferably set to from about 0.001 wt% to about 30 wt%, and more preferably to from about 0.002 wt% to about 20 wt%.

[0062] The concentration of conductive carbon material varies according to the coating weight of the target undercoat layer and the required mechanical, electrical and thermal characteristics, and may be any concentration at which at least a portion of the conductive carbon material individually disperses and an undercoat layer can be produced at a practical coating weight. The concentration of conductive carbon material in the composition is preferably set to from about 0.0001 wt% to about 30 wt%, more preferably from about 0.001 wt% to about 20 wt%, and even more preferably from about 0.001 wt% to about 10 wt%.

[0063] The solvent is not particularly limited, so long as it is one that has hitherto been used in preparing conductive compositions. Illustrative examples include water and the following organic solvents: ethers such as tetrahydrofuran (THF), diethyl ether and 1,2-dimethoxyethane (DME); halogenated hydrocarbons such as methylene chloride, chloroform and 1,2-dichloroethane; amides such as N,N-dimethylformamide (DMF), N,N-dimethylacetamide (DMAc) and N-methyl-2-pyrrolidone (NMP); ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone; alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol and tert-butanol; aliphatic hydrocarbons such as n-heptane, n-hexane and cyclohexane; aromatic hydrocarbons such as benzene, toluene, xylene and ethylbenzene; glycol ethers such as ethylene glycol monoethyl ether, ethylene glycol monobutyl ether and propylene glycol monomethyl ether; and glycols such as ethylene glycol and propylene glycol. One of these solvents may be used alone, or two or more may be used in admixture. In particular, to be able to increase the proportion of CNTs that are individually dispersed, it is preferable to include water, NMP, DMF, THF, methanol, ethanol, n-propanol, isopropanol, n-butanol and tert-butanol. To be able to improve the coating properties, it is preferable to include methanol, ethanol, n-propanol, isopropanol, n-butanol or tert-butanol. To be able to lower the costs, it is preferable to include water. These solvents may be used alone or two or more may be used in admixture for the purpose of increasing the proportion of CNTs that are individually dispersed, enhancing the coating properties and lowering the costs. When a mixed solvent of water and an alcohol is used, the mixing ratio is not particularly limited, although it is preferable for the weight ratio (water : alcohol) to be from about 1:1 to about 10:1.

[0064] The undercoat composition may optionally include a matrix polymer. Illustrative examples of matrix polymers include the following thermoplastic resins: fluoropolymers such as polyvinylidene fluoride (PVDF), polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymers, vinylidene fluoride-hexafluoropropylene copolymers (P(VDF-HFP)) and vinylidene fluoride-chlorotrifluoroethylene copolymers (P(VDF-CTFE)); polyolefin resins such as polyvinylpyrrolidone, ethylene-propylene-diene ternary copolymers, polyethylene (PE), polypropylene (PP), ethylene-vinyl acetate copolymers (EVA) and ethylene-ethyl acrylate copolymers (EEA); polystyrene resins such as polystyrene (PS), high-impact polystyrene (HIPS), acrylonitrile-styrene copolymers (AS), acrylonitrile-butadiene-styrene copolymers (ABS), methyl methacrylate-styrene copolymers (MS) and styrene-butadiene rubbers; polycarbonate resins, vinyl chloride resins, polyamide resins, polyimide resins, (meth)acrylic resins such as sodium polyacrylate and polymethyl methacrylate (PMMA); polyester resins such as polyethylene terephthalate (PET), polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polylactic acid (PLA), poly-3-hydroxybutyric acid, polycaprolactone, polybutylene succinate and polyethylene succinate/adipate; polyphenylene ether resins, modified polyphenylene ether resins, polyacetal resins, polysulfone resins, polyphenylene sulfide resins, polyvinyl alcohol resins, polyglycolic acids, modified starches, cellulose acetate, carboxymethylcellulose, cellulose triacetate; chitin, chitosan and lignin; the following electrically conductive polymers: polyaniline and emeraldine base (the semi-oxidized form of polyaniline), polythiophene, polypyrrole, polyphenylene vinylene, polyphenylene and polyacetylene; and the following thermoset or photocurable resins: epoxy resins, urethane acrylate, phenolic resins, melamine resins, urea resins and alkyd resins. Because it is desirable to use water as the solvent in the undercoat composition, the matrix polymer is preferably a water-soluble polymer such as sodium polyacrylate, carboxymethylcellulose sodium, water-soluble cellulose ether, sodium alginate, polyvinyl alcohol, polystyrene sulfonic acid or polyethylene glycol. Sodium polyacrylate, carboxymethylcellulose sodium and the like are especially preferred.

[0065] The matrix polymer may be acquired as a commercial product. Illustrative examples include Aron A-10H (polyacrylic acid, from Toagosei Co., Ltd.; an aqueous solution having a solids concentration of 26 wt%), Aron A-30 (ammonium polyacrylate, from Toagosei Co., Ltd.; an aqueous solution having a solids concentration of 32 wt%), sodium polyacrylate (Wako Pure Chemical Industries Co., Ltd.; degree of polymerization, 2,700 to 7,500), carboxymethylcellulose sodium (Wako Pure Chemical Industries, Ltd.), sodium alginate (Kanto Chemical Co., Ltd.; extra pure reagent), the Metolose® SH Series (hydroxypropylmethyl cellulose, from Shin-Etsu Chemical Co., Ltd.), the Metolose® SE Series (hydroxyethylmethyl cellulose, from Shin-Etsu Chemical Co., Ltd.), JC-25 (a fully saponified polyvinyl alcohol, from Japan Vam & Poval Co., Ltd.), JM-17 (an intermediately saponified polyvinyl alcohol, from Japan Vam & Poval Co., Ltd.), JP-03 (a partially saponified polyvinyl alcohol, from Japan Vam & Poval Co., Ltd.) and polystyrenesulfonic acid (from Aldrich Co.; solids concentration, 18 wt%; aqueous solution).

[0066] The matrix polymer content, although not particularly limited, is preferably set to from about 0.0001 wt% to about 99 wt%, and more preferably from about 0.001 wt% to about 90 wt%, of the composition.

[0067] The undercoat composition may include a crosslinking agent that gives rise to a crosslinking reaction with the dispersant used, or a crosslinking agent that is self-crosslinking. These crosslinking agents preferably dissolve in the solvent that is used.

[0068] Crosslinking agents for oxazoline polymers are not particularly limited, provided that they are compounds having two or more functional groups which react with oxazoline groups, such as carboxyl groups, hydroxyl groups, thiol groups, amino groups, sulfinic acid groups and epoxy groups. Compounds having two or more carboxyl groups are preferred. Compounds which have functional groups that, under heating during thin-film formation or in the presence of an acid catalyst, generate the above functional groups and give rise to crosslinking reactions, such as the sodium, potassium, lithium or ammonium salts of carboxylic acids, may also be used as the crosslinking agent.

[0069] Examples of compounds which give rise to crosslinking reactions with oxazoline groups include the metal salts of synthetic polymers such as polyacrylic acid and copolymers thereof or of natural polymers such as carboxymethylcellulose or alginic acid which exhibit crosslink reactivity in the presence of an acid catalyst, and ammonium salts of these same synthetic polymers and natural polymers which exhibit crosslink reactivity under heating. In particular, sodium polyacrylate, lithium polyacrylate, ammonium polyacrylate, carboxymethylcellulose sodium, carboxymethylcellulose lithium and carboxymethylcellulose ammonium, all of which exhibit crosslink reactivity in the presence of an acid catalyst or under heating conditions, are preferred.

[0070] These compounds that give rise to crosslinking reactions with oxazoline groups may be acquired as commercial products. Examples of such commercial products include sodium polyacrylate (Wako Pure Chemical Industries, Ltd.; degree of polymerization, 2,700 to 7,500), carboxymethylcellulose sodium (Wako Pure Chemical Industries, Ltd.), sodium alginate (Kanto Chemical Co., Ltd.; extra pure reagent), Aron A-30 (ammonium polyacrylate, from Toagosei Co., Ltd.; an aqueous solution having a solids concentration of 32 wt%), DN-800H (carboxymethylcellulose ammonium, from Daicel FineChem, Ltd.) and ammonium alginate (Kimica Corporation).

[0071] Crosslinking agents for triarylamine-based highly branched polymers are exemplified by melamine crosslinking agents, substituted urea crosslinking agents, and crosslinking agents which are polymers thereof. One of these crosslinking agents may be used alone or two or more may be used in admixture. A crosslinking agent having at least two crosslink-forming substituents is preferred. Illustrative examples of such crosslinking agents include compounds such as CYMEL®, methoxymethylated glycoluril, butoxymethylated glycoluril, methylolated glycoluril, methoxymethylated melamine, butoxymethylated melamine, methylolated melamine, methoxymethylated benzoguanamine, butoxymethylated benzoguanamine, methylolated benzoguanamine, methoxymethylated urea, butoxymethylated urea, methylolated urea, methoxymethylated thiourea, methoxymethylated thiourea and methylolated thiourea, as well as condensates of these compounds.

[0072] Examples of crosslinking agents that are self-crosslinking include compounds having, on the same molecule, crosslinkable functional groups which react with one another, such as a hydroxyl group with an aldehyde, epoxy, vinyl, isocyanate or alkoxy group; a carboxyl group with an aldehyde, amino, isocyanate or epoxy group; or an amino group with an isocyanate or aldehyde group; and compounds having like crosslinkable functional groups which react with one another, such as hydroxyl groups (dehydration condensation), mercapto groups (disulfide bonding), ester groups (Claisen condensation), silanol groups (dehydration condensation), vinyl groups and acrylic groups. Specific examples of crosslinking agents that are self-crosslinking include any of the following which exhibit crosslink reactivity in the presence of an acid catalyst: polyfunctional acrylates, tetraalkoxysilanes, and block copolymers of a blocked isocyanate group-containing monomer and a monomer having at least one hydroxyl, carboxyl or amino group.

[0073] Such crosslinking agents which are self-crosslinking may be acquired as commercial products. Examples of commercial products include polyfunctional acrylates such as A-9300 (ethoxylated isocyanuric acid triacrylate, from Shin-Nakamura Chemical Co., Ltd.), A-GLY-9E (ethoxylated glycerine triacrylate (EO 9 mol), from Shin-Nakamura Chemical Co., Ltd.) and A-TMMT (pentaerythritol tetraacrylate, from Shin-Nakamura Chemical Co., Ltd.); tetraalkoxysilanes such as tetramethoxysilane (Tokyo Chemical Industry Co., Ltd.) and tetraethoxysilane (Toyoko Kagaku Co., Ltd.); and blocked isocyanate group-containing polymers such as the Elastron® Series E-37, H-3, H38, BAP, NEW BAP-15, C-52, F-29, W-11P, MF-9 and MF-25K (DKS Co., Ltd.).

[0074] The amount in which these crosslinking agents is added varies according to, for example, the solvent used, the substrate used, the viscosity required and the film shape required, but is generally from 0.001 to 80 wt%, preferably from 0.01 to 50 wt%, and more preferably from 0.05 to 40 wt%, based on the dispersant. These crosslinking agents, although they sometimes give rise to crosslinking reactions due to self-condensation, induce crosslinking reactions with the dispersant. In cases where crosslinkable substituents are present in the dispersant, crosslinking reactions are promoted by these crosslinkable substituents.

[0075] In the present invention, the following may be added as catalysts for promoting the crosslinking reaction: acidic compounds such as p-toluenesulfonic acid, trifluoromethanesulfonic acid, pyridinium p-toluenesulfonic acid, salicylic acid, sulfosalicylic acid, citric acid, benzoic acid, hydroxybenzoic acid and naphthalenecarboxylic acid; and/or thermal acid generators such as 2,4,4,6-tetrabromocyclohexadienone, benzoin tosylate, 2-nitrobenzyl tosylate and alkyl esters of organic sulfonic acids.

[0076] The amount of catalyst added with respect to the undercoat composition is preferably from 0.0001 to 20 wt%, more preferably from 0.0005 to 10 wt%, and even more preferably from 0.001 to 3 wt%.

[0077] The method of preparing the undercoat composition is not particularly limited. For example, preparation may be carried out by mixing together in any order the conductive carbon material and the solvent, and also the dispersant, matrix polymer and crosslinking agent which may be used if necessary.

[0078] The mixture is preferably dispersion treated at this time. Such treatment enables the proportion of the conductive carbon material that is dispersed to be further increased. Examples of dispersion treatment include mechanical treatment in the form of wet treatment using, for example, a ball mill, bead mill or jet mill, or in the form of sonication using a bath-type or probe-type sonicator. Of these, wet treatment using a jet mill and sonication are preferred.

[0079] The dispersion treatment may be carried out for any length of time, although a period of from about 1 minute to about 10 hours is preferred, and a period of from about 5 minutes to about 5 hours is even more preferred. If necessary, heat treatment may be carried out at this time. When a crosslinking agent and/or a matrix polymer are used, these may be added after preparing a mixture of the dispersant, the conductive carbon material and the solvent.

[0080] An undercoat foil (composite current collector) can be produced by applying the undercoat composition to at least one side of the current collector, and then drying the applied composition in air or under heating to form an undercoat layer.

[0081] The undercoat layer has a thickness which, in order to reduce the internal resistance of the resulting device, is preferably from 1 nm to 10 µm, more preferably from 1 nm to 1 µm, and even more preferably from 1 to 500 nm. The thickness of the undercoat layer can be determined by, for example, cutting out a test specimen of a suitable size from the undercoat foil, exposing the foil cross-section by such means as tearing the specimen by hand, and using a scanning electron microscope (SEM) or the like to microscopically examine the cross-sectional region where the undercoat layer lies exposed.

[0082] The coating weight of the undercoat layer per side of the current collector is not particularly limited, so long as the above-indicated film thickness is satisfied, but is preferably 1,000 mg/m2 or less, more preferably 500 mg/m2 or less, even more preferably 300 mg/m2 or less, and still more preferably 200 mg/m2 or less. To ensure the intended functions of the undercoat layer and to reproducibly obtain batteries having excellent characteristics, the coating weight of the undercoat layer per side of the current collector is set to preferably 1 mg/m2 or more, more preferably 5 mg/m2 or more, even more preferably 10 mg/m2 or more, and still more preferably 15 mg/m2 or more.

[0083] The coating weight of the undercoat layer in this invention is the ratio of the undercoat layer weight (mg) to the undercoat layer surface area (m2). In cases where the undercoat layer is formed into a pattern, this surface area is the surface area of the undercoat layer alone and does not include the surface area of exposed current collector between the undercoat layer that has been formed into a pattern.

[0084] The weight of the undercoat layer can be determined by, for example, cutting out a test specimen of a suitable size from the undercoat foil and measuring its weight W0, stripping the undercoat layer from the undercoat foil and measuring the weight W1 after the undercoat layer has been stripped off, and calculating the difference therebetween (W0 - W1). Alternatively, the weight of the undercoat layer can be determined by first measuring the weight W2 of the current collector, subsequently measuring the weight W3 of the undercoat foil on which the undercoat layer has been formed, and calculating the difference therebetween (W3 - W2).

[0085] The method used to strip off the undercoat layer may involve, for example, immersing the undercoat layer in a solvent which dissolves the undercoat layer or causes it to swell, and then wiping off the undercoat layer with a cloth or the like.

[0086] The coating weight can be adjusted by a known method. For example, in cases where the undercoat layer is formed by coating, the coating weight can be adjusted by varying the solids concentration of the undercoat layer-forming coating liquid (undercoat composition), the number of coating passes or the clearance of the coating liquid delivery opening in the coater. When one wishes to increase the coating weight, this is done by making the solids concentration higher, increasing the number of coating passes or making the clearance larger. When one wishes to lower the coating weight, this is done by making the solids concentration lower, reducing the number of coating passes or making the clearance smaller.

[0087] Coating methods for the undercoat composition include spin coating, dip coating, flow coating, inkjet coating, casting, spray coating, bar coating, gravure coating, slit coating, roll coating, flexographic printing, transfer printing, brush coating, blade coating and air knife coating. Of these, from the standpoint of work efficiency and other considerations, inkjet coating, casting, dip coating, bar coating, blade coating, roll coating, gravure coating, flexographic printing and spray coating are preferred.

[0088] The temperature when drying under applied heat, although not particularly limited, is preferably from about 50°C to about 200°C, and more preferably from about 80°C to about 150°C.

[XPS]



[0089] The undercoat foil of the invention is characterized in that the level of the element making up the current collector, as obtained by x-ray photoelectron spectroscopic (XPS) measurement of the undercoat layer-formed surface of the undercoat foil, is 2 atomic percent or less. The level of elements making up the current collector, as obtained by XPS measurement, is preferably 1 atomic percent or less, more preferably 0.5 atomic percent or less, and even more preferably 0.2 atomic percent or less. A level of 0 atomic percent is still more preferred.

[0090] The carbon level, as obtained by XPS measurement of the undercoat layer-formed surface of the undercoat foil of the invention, is preferably at least 77 atomic percent, more preferably at least 80 atomic percent, even more preferably at least 81 atomic percent, and still more preferably at least 82 atomic percent. The upper limit, although not strictly specified, is generally about 99.9 atomic percent.

[0091] In addition, when aluminum foil is used as the current collector and a vinyl polymer having pendant oxazoline groups is used as the dispersant, the undercoat foil of the invention has an oxygen level, as obtained by XPS measurement of the undercoat layer-formed surface thereof, which is preferably 20 atomic percent or less, more preferably 19 atomic percent or more, and even more preferably 18 atomic percent or more. The lower limit, although not strictly specified, is generally about 0.1 atomic percent.

[Energy Storage Device Electrode]



[0092] The energy storage device electrode of the invention is provided with an electrode mixture layer on the undercoat layer of the undercoat foil.

[0093] The electrode mixture layer can be formed by applying onto the undercoat layer an electrode slurry containing an active material, a binder polymer and, optionally, a solvent, and then drying the applied slurry in air or under heating.

[0094] Any of the various types of active materials that have hitherto been used in energy storage device electrodes may be used as the active material. For example, in the case of lithium secondary batteries and lithium-ion secondary batteries, chalcogen compounds capable of adsorbing and releasing lithium ions, lithium ion-containing chalcogen compounds, polyanion compounds, elemental sulfur and sulfur compounds may be used as the positive electrode active material.

[0095] Illustrative examples of such chalcogen compounds capable of adsorbing and releasing lithium ions include FeS2, TiS2, MoS2, V2O6, V6O13 and MnO2.

[0096] Illustrative examples of lithium ion-containing chalcogen compounds include LiCoO2, LiMnO2, LiMn2O4, LiMo2O4, LiV3O8, LiNiO2 and LixNiyM1-yO2 (wherein M is one or more metal element selected from cobalt, manganese, titanium, chromium, vanadium, aluminum, tin, lead and zinc; and the conditions 0.05 ≤ x ≤ 1.10 and 0.5 ≤ y ≤ 1.0 are satisfied).

[0097] An example of a polyanion compound is lithium iron phosphate (LiFePO4). Illustrative examples of sulfur compounds include Li2S and rubeanic acid.

[0098] The following may be used as the active material in the negative electrode: alkali metals, alkali metal alloys, at least one elemental substance selected from Group 4 to 15 elements of the periodic table which intercalate and deintercalate lithium ions, as well as oxides, sulfides and nitrides thereof, and carbon materials which are capable of reversibly intercalating and deintercalating lithium ions.

[0099] Illustrative examples of the alkali metals include lithium, sodium and potassium. Illustrative examples of the alkali metal alloys include Li-Al, Li-Mg, Li-Al-Ni, Na-Hg and Na-Zn.

[0100] Illustrative examples of the at least one elemental substance selected from Group 4 to 15 elements of the periodic table which intercalate and deintercalate lithium ions include silicon, tin, aluminum, zinc and arsenic. Illustrative examples of the oxides include tin silicon oxide (SnSiO3), lithium bismuth oxide (Li3BiO4), lithium zinc oxide (Li2ZnO2), lithium titanium oxide (Li4Ti5O12) and titanium oxide. Illustrative examples of the sulfides include lithium iron sulfides (LixFeS2 (0 ≤ x ≤ 3)) and lithium copper sulfides (LixCuS (0 ≤ x ≤ 3)). Exemplary nitrides include lithium-containing transition metal nitrides, illustrative examples of which include LixMyN (wherein M is cobalt, nickel or copper; 0 ≤ x ≤ 3, and 0 ≤ y ≤ 0.5) and lithium iron nitride (Li3FeN4).

[0101] Examples of carbon materials which are capable of reversibly intercalating and deintercalating lithium ions include graphite, carbon black, coke, glassy carbon, carbon fibers, carbon nanotubes, and sintered compacts of these.

[0102] In the case of electrical double-layer capacitors, a carbonaceous material may be used as the active material. The carbonaceous material is exemplified by activated carbon, such as activated carbon obtained by carbonizing a phenolic resin and then subjecting the carbonized resin to activation treatment.

[0103] A known material may be suitably selected and used as the binder polymer. Illustrative examples include electrically conductive polymers such as PVDF, polyvinylpyrrolidone, polytetrafluoroethylene, tetrafluoroethylene-hexafluoropropylene copolymers, P(VDF-HFP), P(VDF-CTFE), polyvinyl alcohols, polyimides, ethylene-propylene-diene ternary copolymers, styrene-butadiene rubbers, CMC, polyacrylic acid (PAA) and polyaniline.

[0104] The amount of binder polymer added per 100 parts by weight of the active material is preferably from 0.1 to 20 parts by weight, and more preferably from 1 to 10 parts by weight.

[0105] The solvent is exemplified by the solvents mentioned above in connection with the solvent for the undercoat composition. The solvent may be suitably selected from among these according to the type of binder, although NMP is preferred in the case of water-insoluble binders such as PVDF, and water is preferred in the case of water-soluble binders such as PAA.

[0106] The electrode slurry may also contain a conductive material. Illustrative examples of the conductive material include carbon black, ketjen black, acetylene black, carbon whiskers, carbon fibers, natural graphite, synthetic graphite, titanium oxide, ruthenium oxide, aluminum and nickel.

[0107] The method of applying the electrode slurry is exemplified by methods similar to those for applying the undercoat composition. The temperature when drying the applied electrode slurry under applied heat, although not particularly limited, is preferably from about 50°C to about 400°C, and more preferably from about 80°C to about 150°C.

[0108] The region where the electrode mixture layer is formed should be suitably set according to such considerations as the cell configuration of the device used and may be either the entire surface of the undercoat layer or a portion thereof. For example, for use in a laminate cell as an electrode assembly in which metal tabs and electrodes are bonded together by welding such as ultrasonic welding, it is preferable to form the electrode mixture layer by applying the electrode slurry to part of the undercoat layer surface in order to leave a welding region. In laminate cell applications in particular, it is preferable to form the electrode mixture layer by applying the electrode slurry to areas of the undercoat layer other than the periphery thereof.

[0109] The thickness of the electrode mixture layer, taking into account the balance between battery capacity and resistance, is preferably from 10 to 500 µm, more preferably from 10 to 300 µm, and even more preferably form 20 to 100 µm.

[0110] If necessary, the electrode may be pressed. The pressing force at this time is preferably at least 1 kN/cm. A commonly employed method may be used as the pressing method, although a die pressing method or a roll pressing method is especially preferred. The pressing force, although not particularly limited, is preferably at least 2 kN/cm, and more preferably at least 3 kN/cm. The pressing force upper limit is preferably about 40 kN/cm, and more preferably about 30 kN/cm.

[Energy Storage Device]



[0111] The energy storage device of the invention includes therein the above-described energy storage device electrode. More specifically, it is constructed of at least a pair of positive and negative electrodes, a separator interposed between these electrodes, and an electrolyte, with at least the positive electrode or the negative electrode being composed of the above-described energy storage device electrode.

[0112] The energy storage device of the invention is exemplified by various types of energy storage devices, including lithium-ion secondary batteries, hybrid capacitors, lithium secondary batteries, nickel-hydrogen batteries and lead storage batteries.

[0113] This energy storage device is characterized by the use, as an electrode therein, of the above-described energy storage device electrode. Accordingly, other constituent members of the device such as the separator and the electrolyte may be suitably selected from known materials.

[0114] Illustrative examples of the separator include cellulose-based separators and polyolefin-based separators. The electrolyte may be either a liquid or a solid, and moreover may be either aqueous or non-aqueous. The energy storage device electrode of the invention is capable of exhibiting a performance sufficient for practical purposes even when employed in devices that use a non-aqueous electrolyte.

[0115] The non-aqueous electrolyte is exemplified by non-aqueous electrolyte solutions obtained by dissolving an electrolyte salt in a non-aqueous organic solvent. Examples of the electrolyte salt include lithium salts such as lithium tetrafluoroborate, lithium hexafluorophosphate, lithium perchlorate and lithium trifluoromethanesulfonate; quaternary ammonium salts such as tetramethylammonium hexafluorophosphate, tetraethylammonium hexafluorophosphate, tetrapropylammonium hexafluorophosphate, methyltriethylammonium hexafluorophosphate, tetraethylammonium tetrafluoroborate and tetraethylammonium perchlorate; and lithium imides such as lithium bis(trifluoromethanesulfonyl)imide and lithium bis(fluorosulfonyl)imide.

[0116] Examples of the non-aqueous organic solvent include alkylene carbonates such as propylene carbonate, ethylene carbonate and butylene carbonate; dialkyl carbonates such as dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate; nitriles such as acetonitrile; and amides such as dimethylformamide.

[0117] The configuration of the energy storage device is not particularly limited. Cells of various known configurations, such as cylindrical cells, flat wound prismatic cells, stacked prismatic cells, coin cells, flat wound laminate cells and stacked laminate cells, may be used.

[0118] When used in a coil cell, the above-described energy storage device electrode of the invention may be die-cut in a specific disk shape and used. For example, a lithium-ion secondary battery may be produced by setting a given number of pieces of lithium foil die-cut to a given shape on a coin cell cap to which a washer and a spacer have been welded, laying an electrolyte solution-impregnated separator of the same shape on top thereof, stacking the energy storage device electrode of the invention on top of the separator with the electrode mixture layer facing down, placing the coin cell case and a gasket thereon and sealing the cell with a coin cell crimper.

[0119] In a stacked laminate cell, use may be made of an electrode assembly obtained by welding a metal tab to, in an electrode where an electrode mixture layer has been formed on part or all of the undercoat layer surface, a region of the electrode where the undercoat layer has been formed and the electrode mixture layer has not been formed (welding region). In this case, the electrodes making up the electrode assembly may each be composed of a single plate or a plurality of plates, although a plurality of plates are generally used in both the positive and negative electrodes. The plurality of electrode plates used to form the positive electrode are preferably stacked in alternation one plate at a time with the plurality of electrode plates used to form the negative electrode. It is preferable at this time to interpose the above-described separator between the positive electrode and the negative electrode. In cases where welding is carried out at a region where an undercoat layer is formed and an electrode mixture layer is not formed, the coating weight of the undercoat layer per side of the current collector is set to preferably 100 mg/m2 or less, more preferably 90 mg/m2 or less, and even more preferably 50 mg/m2 or less.

[0120] A metal tab may be welded at a welding region on the outermost electrode plate of the plurality of electrode plates, or a metal tab may be sandwiched and welded between the welding regions on any two adjoining electrode plates of the plurality of electrode plates. The metal tab material is not particularly limited, provided it is one that is commonly used in energy storage devices. Examples include metals such as nickel, aluminum, titanium and copper; and alloys such as stainless steel, nickel alloys, aluminum alloys, titanium alloys and copper alloys. Of these, from the standpoint of the welding efficiency, it is preferable for the tab material to include at least one metal selected from aluminum, copper and nickel. The metal tab is preferably in the form of a foil and has a thickness that is preferably from about 0.05 mm to about 1 mm.

[0121] Known methods for welding together metals may be used as the welding method. Examples include TIG welding, spot welding, laser welding and ultrasonic welding. Joining together the electrode and the metal tab by ultrasonic welding is preferred.

[0122] Ultrasonic welding methods are exemplified by a technique in which a plurality of electrode plates are placed between an anvil and a horn, the metal tab is placed at the welding region, and welding is carried out collectively by the application of ultrasonic energy; and a technique in which the electrode plates are first welded together, following which the metal tab is welded.

[0123] In this invention, with either of these methods, not only are the metal tab and the electrodes welded together at the welding region, the plurality of electrode plates are ultrasonically welded to one another. The pressure, frequency, output power, treatment time, etc. during welding are not particularly limited, and may be suitably set while taking into account, for example, the material used and the coating weight of the undercoat layer.

[0124] A laminate cell can be obtained by placing the electrode assembly produced as described above within a laminate pack, injecting the electrolyte solution described above, and subsequently heat sealing.

EXAMPLES



[0125] Preparation Examples, Examples and Comparative Examples are given below to more fully illustrate the invention, although the invention is not limited by these Examples. The apparatuses used were as follows.
• Probe-type ultrasonicator: UIP1000, from Hielscher Ultrasonics GmbH
• Wire bar coater: PM-9050MC, from SMT Co., Ltd.
• Homogenizing disperser: T.K. Robomix (Homogenizing Disperser model 2.5 (32 mm dia.)), from Primix Corporation
• Thin-film spin-type high-speed mixer: Filmix model 40, from Primix Corporation
• Planetary centrifugal mixer: Thinky Mixer ARE-310, from Thinky
• Roll press: SA-602, from Takumi Giken
• Charge/discharge measurement system: TOSCAT 3100, from Toyo System Co., Ltd.
• XPS measurement system: PHI 5000 VersaProbe II, from Ulvac-Phi Inc.

[1] Preparation of Undercoat Composition


[Preparation Example 1]



[0126] The following were mixed together: 5.0 g of the oxazoline polymer-containing aqueous solution Epocros® WS-300 (Nippon Shokubai Co., Ltd.; solids concentration, 10 wt%; weight-average molecular weight, 1.2×105; amount of oxazoline groups, 7.7 mmol/g), 37.15 g of pure water and 7.35 g of 2-propanol (guaranteed reagent, from Junsei Chemical Co., Ltd.), in addition to which 0.5 g of CNTs (TC-2010, from Toda Kogyo Corporation) was mixed therein as a conductive carbon material. The resulting mixture was sonicated for 30 minutes using a probe-type sonicator, thereby preparing a dispersion in which the CNTs were uniformly dispersed. Next, 1.2 g of the ammonium polyacrylate-containing aqueous solution Aron A-30 (Toagosei Co., Ltd.; solids concentration, 31.6 wt%), 41.35 g of pure water and 7.44 g of 2-propanol (guaranteed reagent, from Junsei Chemical Co., Ltd.) were mixed into the dispersion, thereby preparing Undercoat Composition A.

[2] Production of Undercoat Foil


[Comparative Example 1]



[0127] Undercoat Composition A was uniformly spread onto aluminum foil (thickness, 15 µm) as the current collector with a wiper coater (OSP-2; wet film thickness, 2 µm) and then dried at 150°C for 30 minutes so as to form an undercoat layer, thereby producing Undercoat Foil A. The coating weight was measured and found to be 35 mg/m2.

[Example 1-1]



[0128] Undercoat Composition A was uniformly spread onto aluminum foil (thickness, 15 µm) as the current collector with a wiper coater (OSP-4; wet film thickness, 4 µm) and then dried at 150°C for 30 minutes so as to form an undercoat layer, thereby producing Undercoat Foil B. The coating weight was measured and found to be 58 mg/m2.

[Example 1-2]



[0129] Undercoat Composition A was uniformly spread onto aluminum foil (thickness, 15 µm) as the current collector with a wiper coater (OSP-6; wet film thickness, 6 µm) and then dried at 150°C for 30 minutes so as to form an undercoat layer, thereby producing Undercoat Foil C. The coating weight was measured and found to be 79 mg/m2.

[Example 1-3]



[0130] Undercoat Composition A was uniformly spread onto aluminum foil (thickness, 15 µm) as the current collector with a wiper coater (OSP-10; wet film thickness, 10 µm) and then dried at 150°C for 30 minutes so as to form an undercoat layer, thereby producing Undercoat Foil D. The coating weight was measured and found to be 112 mg/m2.

[Example 1-4]



[0131] Undercoat Composition A was uniformly spread onto aluminum foil (thickness, 15 µm) as the current collector with a wiper coater (OSP-13; wet film thickness, 13 µm) and then dried at 150°C for 30 minutes so as to form an undercoat layer, thereby producing Undercoat Foil E. The coating weight was measured and found to be 141 mg/m2.

[Example 1-5]



[0132] Undercoat Composition A was uniformly spread onto aluminum foil (thickness, 15 µm) as the current collector with a wiper coater (OSP-20; wet film thickness, 20 µm) and then dried at 150°C for 30 minutes so as to form an undercoat layer, thereby producing Undercoat Foil F. The coating weight was measured and found to be 222 mg/m2.

[Example 1-6]



[0133] Undercoat Composition A was uniformly spread onto aluminum foil (thickness, 15 µm) as the current collector with a wiper coater (OSP-30; wet film thickness, 30 µm) and then dried at 150°C for 30 minutes so as to form an undercoat layer, thereby producing Undercoat Foil G. The coating weight was measured and found to be 282 mg/m2.

[3] XPS Measurement



[0134] The undercoat layer-formed surfaces of Undercoat Foils A to G were subjected to XPS measurement under the conditions shown below, and the aluminum, carbon and oxygen levels (atomic percent) were determined.
• Measurement condition: narrow spectrum
• X-ray source: monochromatized Al Kα
• X-ray beam diameter: 100 µm (25 W, 15 kV)
• Pass energy: 58.70 eV
• Charge neutralization: yes
• Measurement area: 1 mm × 1 mm
• N = 2 measurements  


[0135] Table 1 shows the levels of each element.
[Table 1]
  Undercoat foil Carbon (atomic percent) Oxygen (atomic percent) Aluminum (atomic percent)
Comparative Example 1 A 76.6 20.7 2.8
Example 1-1 B 79.2 19.4 1.4
Example 1-2 C 81.8 18.0 0.3
Example 1-3 D 82.0 17.9 0.1
Example 1-4 E 82.1 17.8 0.1
Example 1-5 F 82.7 17.3 0.0
Example 1-6 G 83.5 16.5 0.0

[4] Production of Electrode and Lithium-Ion Secondary Battery


[Comparative Example 2]



[0136] The following were mixed together in a homogenizing disperser at 8,000 rpm for 1 minute: 31.84 g of lithium iron phosphate (LFP, from Aleees) as the active material, 13.05 g of an NMP solution of polyvinylidene fluoride (PVDF) (12 wt%; KF Polymer L#1120, from Kureha Corporation) as the binder, 1.39 g of Denka Black as the conductive material and 13.72 g of NMP. Next, using a thin-film spin-type high-speed mixer, mixing treatment was carried out for 60 seconds at a peripheral speed of 20 m/s, in addition to which deaeration was carried out for 30 seconds at 2,200 rpm in a planetary centrifugal mixer, thereby producing an electrode slurry (solids concentration, 58 wt %; LFP : PVDF : Denka Black = 91.5 : 4.5 : 4 (weight ratio)). The resulting electrode slurry was uniformly spread (wet film thickness, 100 µm) onto Undercoat Foil A, following which the slurry was dried at 80°C for 30 minutes and then at 120°C for 30 minutes, thereby forming an electrode mixture layer on the undercoat layer. Compression-bonding was then carried out by pressing with a roll press, thereby producing an electrode.

[0137] Four disk-shaped electrodes having a diameter of 10 mm were die-cut from the resulting electrode, vacuum dried at 120°C for 15 hours and then transferred to a glovebox filled with argon. A stack of six pieces of lithium foil (Honjo Chemical Corporation; thickness, 0.17 mm) that had been die-cut to a diameter of 14 mm was set on a 2032 coin cell (Hohsen Corporation) cap to which a washer and a spacer had been welded, and one piece of separator (Celgard #2400, from Celgard KK) die-cut to a diameter of 16 mm that had been impregnated for at least 24 hours with an electrolyte solution (Kishida Chemical Co., Ltd.; an ethylene carbonate : diethyl carbonate = 1:1 (volume ratio) solution containing 1 mol/L of lithium hexafluorophosphate as the electrolyte) was laid on the foil. An electrode was then placed on top with the active material-coated side facing down. A single drop of electrolyte solution was deposited thereon, after which the coin cell case and gasket were placed on top and sealing was carried out with a coin cell crimper. The cell was then left at rest for 24 hours. In this way, four Lithium-Ion Secondary Batteries for Testing A were produced.

[Example 2-1]



[0138] Aside from using Undercoat Foil B instead of Undercoat Foil A, four Lithium-Ion Secondary Batteries for Testing B were produced in the same way as in Comparative Example 2.

[Example 2-2]



[0139] Aside from using Undercoat Foil C instead of Undercoat Foil A, four Lithium-Ion Secondary Batteries for Testing C were produced in the same way as in Comparative Example 2.

[Example 2-3]



[0140] Aside from using Undercoat Foil D instead of Undercoat Foil A, four Lithium-Ion Secondary Batteries for Testing D were produced in the same way as in Comparative Example 2.

[Example 2-4]



[0141] Aside from using Undercoat Foil E instead of Undercoat Foil A, four Lithium-Ion Secondary Batteries for Testing E were produced in the same way as in Comparative Example 2.

[Example 2-5]



[0142] Aside from using Undercoat Foil F instead of Undercoat Foil A, four Lithium-Ion Secondary Batteries for Testing F were produced in the same way as in Comparative Example 2.

[Example 2-6]



[0143] Aside from using Undercoat Foil G instead of Undercoat Foil A, four Lithium-Ion Secondary Batteries for Testing G were produced in the same way as in Comparative Example 2.

[5] Evaluation of Battery Rate Characteristics



[0144] To evaluate the influence that the undercoat foil exerts on the battery, charge/discharge tests were carried out under the conditions shown below using the charge-discharge measurement system. The results are shown in Table 3.
[Table 2]
Step 1 2 3 4
  Aging Evaluation of rate characteristics (DCR measurement) Cycle test Evaluation of rate characteristics (DCR measurement)
Charging conditions (C) 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
Discharging conditions (C) 0.5 0.5 3 5 10 0.5 5 0.5 0.5 3 5 10
Number of samples 5 2 2 2 2 2 90 5 2 2 2 2
• Cut-off voltage: 4.50 V - 2.00 V
• Number of test batteries: four
• Temperature: room temperature
• Discharge voltage: The discharge voltage was the voltage when the actual discharge capacity under the respective discharging conditions in Steps 2 and 4 was set to 100% and the battery was 10% discharged.
• Measurement of direct-current resistance (DCR): In Steps 2 and 4, the DCR was calculated from the current value and the discharge voltage under each of the discharging conditions, and the average value for the four test batteries was determined.
[Table 3]
  Lithium-ion secondary battery Undercoat foil DCR in Step 2 (Ω) DCR in Step 4 (Ω)
Comparative Example 2 A A 31.53 40.19
Example 2-1 B B 28.11 30.24
Example 2-2 C C 26.02 27.30
Example 2-3 D D 24.37 24.65
Example 2-4 E E 23.94 22.39
Example 2-5 F F 22.68 22.57
Example 2-6 G G 25.86 24.68


[0145] The results shown in Table 3 demonstrate that, by using the inventive undercoat foil for an energy storage device electrode, an energy storage device which suppresses the rise in resistance associated with charge-discharge cycling can be obtained.

REFERENCE SIGNS LIST



[0146] 
1
Parallel area
2
Tube outer diameter at parallel area
3
Constricted area
4
Tube outer diameter at constricted area



Claims

1. An undercoat foil for an energy storage device electrode, comprising a current collector made of a metallic material and an undercoat layer that contains a conductive carbon material and a dispersant and is formed on at least one side of the current collector,
wherein the undercoat layer is free of the metallic element included in the current collector, and
the level of the metallic element making up the current collector, as obtained by x-ray photoelectron spectroscopic (XPS) measurement of the undercoat layer-formed surface of the undercoat foil, is 2 atomic percent or less.
 
2. The undercoat foil for an energy storage device electrode of claim 1, wherein the level of the metallic element making up the current collector is 1 atomic percent or less.
 
3. The undercoat foil for an energy storage device electrode of claim 1 or 2, wherein the level of carbon, as obtained by XPS measurement of the undercoat layer-formed surface of the undercoat foil, is 77 atomic percent or more.
 
4. The undercoat foil for an energy storage device electrode of any one of claims 1 to 3, wherein the conductive carbon material includes carbon nanotubes.
 
5. The undercoat foil for an energy storage device electrode of any one of claims 1 to 4, wherein the dispersant includes a vinyl polymer having pendant oxazoline groups or a triarylamine-based highly branched polymer.
 
6. The undercoat foil for an energy storage device electrode of any one of claims 1 to 5, wherein the current collector is aluminum foil or copper foil.
 
7. An energy storage device electrode comprising the undercoat foil for an energy storage device electrode of any one of claims 1 to 6 and an electrode mixture layer formed on the undercoat layer of the undercoat foil.
 
8. An energy storage device comprising the energy storage device electrode of claim 7.
 




Drawing







Search report










Cited references

REFERENCES CITED IN THE DESCRIPTION



This list of references cited by the applicant is for the reader's convenience only. It does not form part of the European patent document. Even though great care has been taken in compiling the references, errors or omissions cannot be excluded and the EPO disclaims all liability in this regard.

Patent documents cited in the description