11 Publication number:

0 000 096

A1

(12)

EUROPEAN PATENT APPLICATION

21 Application number: 78300026.8

(f) Int. Cl.2: C 08 G 12/02

22 Date of filing: 08.06.78

30 Priority: 11.06.77 GB 24458/77

43 Date of publication of application: ' 20.12.78 B illetin 78/1

Designated Contracting States:
BE CH DE FR GB NL SE

 Applicant: BRITISH INDUSTRIAL PLASTICS LIMITED, 20 St. Mary's Parsonage, Manchester M3 2NL (GB)

(2) Inventor: Inverarity, Georges, 20 Summercourt Drive, Kingswinford, West Midlands (GB)

Inventor: Ogden, Dennis Henry, 167 Goldthorne Hill, Penn, Wolverhampton Staffordshire (GB)

Representative: Wetters, Basil David Peter et al, 20 St. Mary's Parsonage, Manchester M3 2NL (GB)

Method for the manufacture of amino-formaldehyde resins and resins obtained by this method.

(5) A method for the manufacture of an aminoformaldehyde resin. An amino compound is reacted with formaldehyde or paraformaldehyde in the liquid phase, the latter being ensured by the presence of a reactive modifier in the reaction mixture.

The reactive modifier comprises an aminoformaldehyde resin which is capable of reaction with further monomers and capable of rendering the mixture of reactants liquid at least at the temperature at which the reaction is to be carried out.

An amino-formaldehyde resin obtained by this method.

EP 0 000 096 A1

TECHNICAL FIELD

This invention relates to the manufacture of resins, and in particular the manufacture of aminoformaldehyde resins

5 Amino-formaldehyde resins are manufactured on a large scale and used in moulding powders, foams for cavity wall insulation etc, for adhesives and in textile finishing. The most commonly used amino compounds are urea and melamine and their derivatives.

BACKCTOUND ART

10

The usual commercial method for the manufacture of aminoformaldehyde resins such as urea-formaldehyde or melamine-formaldehyde resins is to react the amino compound and formaldehyde in an aqueous system at 15 a temperature of 60 to 90°C.

The product in such cases will inevitably contain a large amount of water which for many uses has to be removed.

Thus the manufacture of moulding powders from such 20 resins requires a lengthy process in which a large volume of water has to be removed.

We have also found that in the production of foam from urea-formaldehyde resin, as used, for example, for insulation purposes, foams of superior resilience 25 may be produced from resins of low water content as described in our UK Patent Application No.51269/77.

It has been disclosed (US Patent No.1,985,937) that polyhydric alcohols can be reacted with methylol ureas, methyl ethers thereof, or dimethyl thiourea to give a clear viscous solution.

5 It has been disclosed (US Patent No.1,986,067) that urea can be reacted with a glycol and the product condensed with formaldehyde to give a resinous product.

Finally it has been disclosed (UK Patent 1,107,245) that a polyetherurea can be obtained by reacting

10 formaldehyde with glycol to produce a hemiformal, and then reacting the hemiformal with urea or thiourea.

However, in each of these three prior art disclosures the end product is a material containing a high proportion of glycol which has totally unsatisfactory properties

15 when considered as replacement for modern urea-formaldehyde or melamine-formaldehyde resins.

It has been proposed (UK Patent No. 1,390,370) to make amino-formaldehyde resins by reaction, in the absence of solvent, of urea or thiourea, paraformaldehyde,

- 20 and hexamethylene tetramine in a molar ratio in the range from 1:1.1:0.01 to 1:25:0.2. This proposal, however, suffers from the difficulty that in the solid phase, reaction control is virtually impossible and a consistently satisfactory end product is not obtained.
- 25 The present invention is thus concerned with the problem of providing a process for the preparation of aminoformaldehyde resins of lower water content than by the conventional aqueous system, yet avoiding the difficulties of solid phase reaction.
- 30 We propose a solution to this problem in the specification of our co-pending UK Patent Application No 21751/77 in which we describe a method for the manufacture of an amino-formaldehyde resin which comprises reacting an amino compound with formaldehyde or paraformaldehyde 35 at a temperature above 60°C in the liquid phase, the

3277

liquid phase being ensured by the presence of a minor proportion of a reactive modifier being a compound capable of taking part in said reaction and also capable of modifying the mixture of reactarts to be liquid at the temperature at which the reaction is to be carried out. Examples are given in that specification of the production of low-water content resins using various different compounds as reactive modifiers. The products so made are useful resins, but the reactive modifiers described are compounds which not only modify the reaction system to the liquid phase at the reaction temperature, but also modify the properties of the resulting resin from those of a simple urea-or melamine-formaldehyde resin.

The present invention has as its primary objective the preparation of amino-formaldehyde resin of lower water content than those obtained by the conventional aqueous system, whilst avoiding the need to use compounds which will modify the properties of the resin produced.

DESCRIPTION OF THE INVENTION

20

25

.30

According to the present invention a method for the manufacture of an aminoformaldehyde resin comprises reacting an amino compound with formaldehyde or paraformaldehyd in the liquid phase characterized in that said compounds are reacted in the presence of a reactive modifier to ensure said liquid phase, said modifier comprising an aminoformaldehyde resin capable of reaction with further monomers, and which is capable of rendering the mixture of reactants liquid at least at the temperature at which the reaction is to be carried out.

The reaction is preferably carried out at a temperature above 60° C and more preferably in the range 70° C to 115° C.

In carrying out the method of this invention water may be omitted, or if added, the amount of water present in the reaction mixture (excluding water formed in the condensation reaction) is preferably less than 6% by weight of the total mixture.

Although these low water contents in the initial reaction mixture are preferred, low molecular weight liquid resins of low water content are not freely available to use as starting materials at the present time. Thus, we find that a high solids content agreeue solution of

- 5 find that a high solids content aqueous solution of a reactant resin (i.e. one capable of reacting with further monomers) can be used successfully as a reactive modifier. The end product when using such a modifier is of lower water content than the products of the usual
- 10 method of producing such resins. Clearly if desired these products could be used as reactive modifiers in turn, with a correspondingly lower water content in the reaction mixture.

The reactive modifier, i.e. the initial aminoformaldehyde 15 resin; will, when the reaction is completed, form part of the resin produced. The function of the reactive modifier in the method of this invention is to render the reactant mixture a liquid at the temperature of reaction so that the reaction can be carried out in 20 a liquid phase.

The aminoformaldehyde resin used as reactive modifier may be a resin containing the same monomers in the same ratio as the resin being manufactured. However, this need not necessarily be the case and the reactive modifier

25 resin may contain different proportions of monomers, and/or additional or different monomers as desired, provided that it remains capable of carrying out its function as reactive modifier.

Thus the present invention provides a method for manufacturing 30 mixed resins, as well as a means of making aminoformaldehyde resins of low water content.

For example, a urea formaldehyde resin may be produced, using a melamine-formaldehyde resin as the reactive solvent, or vice-versa.

35 The proportion of the resin used as reactive modifier in the reaction mixture will depend upon the proportion desired, particularly when making a mixed resin, but

of liquifying the reaction system. For instance if the reactive modifier is a liquid resin in which the other reactants are highly soluble it need be used

5 in a proportion lower than would be the case if the other reactants were less soluble in it.

10

In general, however the molar proportion of the resinused as reactive modifier to the total reactants will not be greater than 40% and will preferably be substantially less.

The formaldehyde, e.g. paraformaldehyde and the amino compound are generally added to the reactive modifier separately, whilst warming the mixture, to form the reaction mixture in the desired liquid phase. ThepH

- of the system during this stage is alkaline. When the three reactants are in the liquid phase the final condensation may be accelerated by acidifying the reaction mixture if this is desirable, but in many cases, particularly when melamine is the amino compound, there is no need to accelerate the reaction in this way.
 - If the reaction mixture is acidified, the final product is subsequently neutralized or made alkaline before storage.
- Other ingredients may be added to the reaction mixture
 in the normal manner, a particularly useful ingredient
 when making a urea/formaldehyde resin to be foamed being
 low molecular weight, partly reacted
 melamine/formaldehyde resin which improves the filmforming properties of the resin produced.
- 30 The invention may be used in conjunction with the method for manufacturing an aminoformal dehyde resin described in our co-pending UK Patent Application No. 21751/77.

EMBODIMENTS OF THE INVENTION

35 The invention will now be particularly described by means of the following Examples.

Example 1

This example illustrates the preparation of a resin from urea, paraformaldehyde and urea-formaldehyde resin.

The reagent quantities used are detailed in Table 1.

5 TABLE 1

		Reagent
	Reagent ·	quantity (g)
	UF resin	
	(BU700)	840
10	Urea	1338
	(prilled)	
	91%	923 (includes 83g
	paraform	of H ₂ 0)

15 This formulation gives a theoretical solids content of 93.0% and an overall urea:formaldehyde molar ratio of 1:1.33.

The preparation of the resin was carried out in a 5 litre split reactor fitted with a stainless steel agitator, a thermometer pocket a reflux condenser and a heating mantle.

The procedure followed in preparing the resin is expressed below in tabular form in Table II.

TABLE II

20

25	Time (Mins)	Temperature inside reaction vessel (°C)	<u>Notes</u>
30	0	R.T.	liquid UF resin charged to reaction vessel. Heating commenced.
	40	68	Paraformaldehyde addition begin.
	50	88	pH 8 approx. 1/3 of paraform

* ≩ 5.2	Time (Mins)	Temperature inside reaction vessel (OC)	<u>Notes</u>
5	60	86	pH 8 approx 2/3 of paraform addition completed.
10	70	84	pH 7.5 addition of paraform complete. Reaction mix is low viscosity, almost clear, solution with small particles of solid material suspended in it.
		•	pH adjusted to 9 with 40% NaOH solution.
15	100	88	Addition of urea commenced, pH 7.5, heating discontinued.
	110	. 87	1/3 of the urea had been added, the pH was 7 and adjusted to pH8.5 using 40% NaOH.
2 10	120	77	2/3 of the urea had been added, the pH was 8, and adjusted to pH 9. Heating was recommenced.
	135	70	Urea addition complete, pH was 7.5 and was adjusted to 8.5
25	145	78	Heating was discontinued and the pH of the mixture was maintained at 8 to 8.5 as exothermic reaction continued.
	150	87	-
30	160	83	-
	180	76	-
	240	58	-
•	280	49	The resin was cooled to ambient temperature and a medium viscosity
35			cloudy resin was obtained.

The resin was soluble in water, yielding a cloudy solution.

After standing for 8 days an ambient temperature the resin had set to a firm white paste. This could be dispersed in cold water to yield a milky dispersion of pH 9. It was almost completely soluble in holidical

5 of pH 9. It was almost completely soluble in boilding water yielding a faintly opalescent solution containing traces of a gelatinous suspension.

Example 2

This example illustrates the preparation of a resin 10 from urea, paraformaldehyde, urea-formaldehyde resin and melamine formaldehyde resin.

In this case the melamine-formaldehyde resin, paraformaldehyde and urea are dissolved in turn in the U.F. resin under alkaline conditions and then allowed to react under 15 acid conditions.

The reagent quantities used are detailed below in Table III.

Table III

D -	_			٠.
Re	Я	OB.	n	т.

	Quantity	Reagent	Notes
20	1200 g	U.F. resin in water (76% reactive solids)	The ratio of Urea to formaldehyde in the resin is 1:1.6.
25	402 g	Melamine- formaldehyde resin BL 35	10% w/w based on other reagents.
	1320 g 1500 g	Paraform (91%) Urea	40 moles F) U/F ratio 25 moles U) = 1:1.6

The U.F. resin was charged to a reaction vessel provided 30 with a heating/cooling jacket and fitted with a stirrer, thermometer and reflux condenser. The pH of the resin was adjusted to 10 with 40% NaOH and heating and stirring commenced.

When the temperature in the vessel had reached 35°C gradual addition of the BL35 M.F. resin was commenced, the total addition taking 15 minutes and the temperature rising to 56°C during that period. The temperature 5 was then increased gradually to 78°C when gradual addition of the paraformaldehyde was commenced. During addition of the paraform, which took 55 minutes, the pH was maintained above 8 by addition of 40% NaOH as necessary (2ml NaOH added together) and the temperature was held at 85 to 10 90°C.

Gradual addition of urea was then commenced with the heating off, the temperature and pH being held as for the paraform addition, heating and adding 40% NaOH as necessary.

- 15 When the urea addition was complete the pH of the mixture was allowed to fall to 6 and 2 ml of Ammonium Sulphamate added, the reaction being continued over the following 45 minutes. During the reaction the temperature was held in the range 85° to 90°C and the pH in the range
- 20 5½ to 7 by periodic additions of Ammonium Sulphamate.

 After the 45 minutes the pH was raised to 8½ by adding 3 ml of NaOH and forced cooling of the reaction vessel was begun.

A hazy resin solution was obtained having a viscosity 25 of 13,360 poise at $24\frac{1}{2}^{O}$ C and a low water content.

Example 3

This example illustrates the use of an aqueous solution of a melamine-formaldehyde resin as reactive modifier in the preparation of a melamine formaldehyde resin.

30 The reagents used are tabulated below in Table IV.

TABLE IV

Reagent	Quantity (g)	Moles
Distilled Water	300		•
M.F. Resin (BL 34)	* 300		
Paraform (91%)	660	•	20
Melamine	840		6 2/3rds

* BL 34 resin is a spray-dried Melamine-Formaldehyde resin of M:F ratio 1:2.0, containing 2% free moisture and an SRY solids content of 93%.

ear

5 (Its usual use is in impregnation of print and overlay papers in laminating)

This formulation gives a total water content of 17% by weight in the reaction mixture.

The procedure followed in preparing the resin is expressed 10 in tabular form below in Table V.

TABLE V

15	Time (Mins)	Temperature inside reaction vessel (°C)	рH	Notes
	0	24	•	Water charged and heated
	15	40		BL 34 resin addition begun
	20	42	9	BL 34 addition complete, some undissolved lumps
20	30	52	9	Paraform addition begun
	40	42	81/2	Paraform addition complete, Stirrable slurry, temperature increasing
25	50	85	6	5 ml 70 TW NaOH added raising pH to 9. Clear solution obtained. Melamine addition begun, dissolving readily with exotherm.
30	100	. 80	9	Melamine addition complete later additions not yet dissolved, solution opaque, further 6 ml 70 TW NaOH has been required to keep pH above 8
35	110	84	10	Opaque solution clearing, temperature increased
	120	90	91	Clear resin, some undissolved lumps (insoluble)
ii te	125	89	9	Resin run off into bottles
40				and cooled

The resin produced had a viscosity of 22,560 poise at 24°C and an SRY solids content of 77.7%.

Example 4

This example illustrates the preparation of a mixed resin using a Uron resin as reactive modifier and urea and paraform as the other reactants. The reagents used are detailed in Table VI.

TABLE VI

	Reagent	Quantity	Moles
10	Bis(methoxymethyl) uron	•	
	resin	600 g	
	91% Paraform	330 g	= 20 moles
			formaldehyde
	Urea	300 g	10

15 The bis (methoxymethyl) uron resin is a liquid with a solids content of 95% to 100%.

charged to a reaction vessel, stirred and heated. The pH of the resin was 8.5. When the temperature reached 62°C paraform addition was commenced, the temperature being kept in the range 60 to 65°C and the pH at 8.5. The paraform addition was complete after 30 mins, and the mix was maintain at 62 to 64°C for a further 75 mins. The paraform was not completely dissolved. Urea addition was then begun.

The procedure followed was as follows. The uron resin was

25 maintaining the same temperature and pH, and was completed in 60 mins during which time the solids were dissolving giving a white opaque resin. After a further 28 mins the solids were totally dissolved, the pH was 7½ and the resin was opaque. Heating was stopped and the liquid resin gradual cleared.

When cold the resin slowly became a white paste.

Example 5

35

This example illustrates the preparation of a mixed resin usi a methylated melamine-formaldehyde resin as reactive modifier and urea and paraform as the other reactants.

The reagents used are detailed below in Table 0000006

TABLE VII

	Reagent	Quantity (g)	Moles
	Methylated Melamine		
5	formaldehyde resin	•	•
	BC309*(90% solids)	800	
	Paraform (91%)	440	= 131/3rd moles
*	•		formaldehyde
	Urea .	400	6 2/3rd moles

*BC 309 is a liquid resin commercially available from British Industrial Plastics Limited and has a solids content of 90% (SRY solids content 80%).

The procedure followed is given below in tabular form in Table VIII.

15 TABLE VIII

	Time (Mins)	Temperature inside reaction vessel (°C)	рн	<u>Notes</u>
20	0	22		BC 309 Resin charged, heating and stirring begun
	20	62	9	Paraform addition begun Temperature kept at 60 to 65°C
25	80	63	9	Paraform addition complete not dissolved but mix easily stirrable
30	130	60	8.5	Paraform still undissolved urea addition begun, keeping the temperature at 60 to 65°C.
	170	62	8.5	urea addition complete, solids dissolving, white opaque liquid. Increase
35				temperature -

	Time (Mins)	Temperature inside reaction vessel (°C)	рH	<u>Notes</u>
5	195	81	8.5	Solids dissolved, temperature held at 80 to 85°C
	205	82		heating stopped, cooling resin
10	216	77	8.5	Clear resin with dispersed air bubbles. Sample taken for solids determination.
	305	38		Resin bottled.

The resin produced was a pasty solid when cold, and had an SRY solids content of 79.8%

- 15 It should be noted that the SRY solids content quoted in the above Examples were measured by heating weighed samples of the resins for 3 hours, at 120°C to drive off water of reaction, the residue being regarded as the solids content of the resin. These values should
- therefore not be confused with the frequently quoted value of resin solids in aqueous solution, in which the non-aqueous content is all taken to be solids, and therefore is generally a very much higher percentage figure.

WHAT WE CLAIM IS

20

25

- 1. A method for the manufacture of an amino-formaldehyde resin which comprises reacting an amino compound with formaldehyde or paraformaldehyde in the liquid phase characterised in that said compounds are reacted in the presence of a reactive modifier to ensure said liquid phase, said modifier comprise an amino-formaldehyde resin capable of reaction with further monomers and capable of rendering the mixture of reactants liquid at least at the temperature at which the reaction is to be carried out.
 - 2. A method according to Claim 1 in which the reaction is carried out at a temperature above 60°C.
- 15 3. A method according to Claim 2 in which the reaction is carried out between 70°C and 115°C.
 - 4. A method according to Claim 1, or 2 or 3 in which the reactive modifier is a low molecular weight liquid amino-formaldehyde resin having a water content of less than 10% by weight.
 - 5. A method according to Claim 1, 2 or 3 in which the reactive modifier is an aminoformal dehyde resin capable of reacting with further monomers and in solution in water, the solution having a solids content of at least 50% by weight.
 - 6. A method according to any one of the preceding claims in which the reactive modifier is a resin containing the same monomers in the same ratio as the resin being manufactured.
- 30 7. A method according to any one of the preceding claims in which the amino compound to be reacted with formaldehyde or paraformaldehyde is melamine or urea.

- 8. A method according to any one of the preceding claims in which the reactive modifier is selected from urea formaldehyde resins, melamine formaldehyde resins and methylated melamine formaldehyde resins.
- 9. A method according to any one of the preceding claims in which the amount of water present in the reaction mixture is less than 6% by weight of the total mixture.
- 10. A method for the manufacture of an amino-formaldehyde resin substantially as described herein in example 1 or 2.
 - 11. A method for the manufacture of an amino-formaldehyde resin substantially as described herein in example 3. 4 or 5.
- 15 12. An amino-formaldehyde resin manufactured by a method as claimed in any one of the preceding claims.

EUROPEAN SEARCH REPORT 0000096

Application number EP 78 30 0026

	DOCUMENTS CONSIDERED TO BE RELEVANT	CLASSIFICATION OF THE APPLICATION (Int. Ci.')	
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
X	<u>US - A - 3 308 098</u> (J.J.NEMES) * Claims; column 3, lines 57-69; examples *	1-12	C 08 G 12/02
X	<u>FR - A - 1 484 507</u> (MONTECATINI) * Abstract *	1-12	
x	GB - A - 1 317 774 (B.I.P.) * Claims; page 2, lines 10-56 *	1-12	TECHNICAL FIELDS
x	US - A - 2 329 172 (L.SMIDTH) * Claims; page 3, left-hand column, lines 21-60 *	1–12	C 08 G 12/00 C 08 G 12/02 C 08 G 12/04 C 08 G 12/12 C 08 G 12/32
A	FR - A - 2 062 186 (STAMICARBON) * Claims *	1	
	-		·
•			CATEGORY OF CITED DOCUMENTS X: particularly relevant A: technological background O: non-written disclosure P: intermediate document T: theory or principle underlying the invention E: conflicting application D: document cited in the application L: citation for other reasons
·	The present search report has been drawn up for all claims		d: member of the same patent family, corresponding document