(1) Veroffentlichungsnummer:

0 002 466

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 78101480.8

(5) Int. Cl.²: **C 06 D 5/06** C 06 B 45/20

(2) Anmeldetag: 30.11.78

(30) Priorität: 09.12.77 DE 2754855

(43) Veröffentlichungstag der Anmeldung: 27.06.79 Patentblatt 79/13

(a) Benannte Vertragsstaaten: BE DE FR GB NL SE

(71) Anmelder: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Patentstelle für die deutsche Forschung Romanstrasse 22

72 Erfinder: Pfeil, Achim, Dr. Veilchenstrasse 1

D-8000 München 19(DE)

D-7507 Pfinztal(DE)

(72) Erfinder: Engel, Walter, Dr. Frühlingstrasse 21 D-7507 Pfinztal(DE)

(72) Erfinder: Eisenreich, Norbert, Dipl.-Phys. Amseistrasse 16 D-7507 Pfinztal(DE)

(72) Erfinder: Bucerius, Klaus-Martin, Dr. Finkelschlagweg 2 D-7500 Karisruhe(DE)

🚳 Verfahren zur Verbesserung der Druckabhängigkeit des Abbrandverhaltens von Festtreib- oder Rohrwaffentreibmitteln und ihre Verwendung als Festtreibstoff- oder Rohrwaffentreibmittelkomponenten.

57 Das Verfahren zur Verbesserung der Druckabhängigkeit des Abbrandverhaltens von Festtreib- oder Rohrwaffentreibmitteln, die Nitrocellulose oder andere feste Nitro- oder Nitratverbindungen sowie andere Zusätze und Metalle bzw. Metallverbindungen enthalten zeichnet sich durch die chemische oder physikalische Ausfällung der Metalle oder Metallverbindungen auf der Nitrocellulose bzw. den Nitro- oder Nitratverbindungen aus.

Hierdurch sind die die Abbrandgeschwindigkeit beeinflussenden Verbindungen in engem Kontakt mit den Verbindungen die sie beeinflussen sollen.

Die so gebildeten Verbindungen eignen sich für die Verwendung als Rohrwaffen- und Treibstoffkomponenten.

Verfahren zur Verbesserung der Druckabhängigkeit des Abbrandverhaltens von Festtreib- oder Rohrwaffentreibmittel und ihre Verwendung als Festtreibstoff- oder Ehrwaffentreibmittelkomponenten

Gegenstand der Erfindung ist ein Verfahren gemäß dem Oberbegriff des Anspruchs 1, wobei Abbrandmodifikatoren wirkungsvoller eingesetzt werden sollen, als dem gegenwärtigen Stand der Technik entspricht, und die Verwendung dieser als abbrandgeschwindigkeitsregulierender Bestandteil von gaserzeugenden Systemen insbesondere für Festtreibstoffe (FTS) und pyrotechnische Sätze. Solche FTS-Komponenten können feste monomere oder polymere Nitro- oder Nitratverbindungen sein, wie z.B. Polyvinylnitrat oder vorzugsweise Nitrocellulose (NC).

NC ist ein Hauptbestandteil vieler Raketenfesttreibstoffe, Rohrwaffentreibmittel, Gasgenerator-Festtreibstoffe und pyrotechnischer Sätze. In doppelbasigen Festtreibstoffen (DB-FTS) sind Nitroglyzerin, Weichmacher und Stabilisatoren weitere Bestandteile. Dazu kommen bei Composit-Doublebase-Festtreibstoffen (CDB-FTS) noch Binderanteile wie z.B. Polyurethane oder Polybutadiene und anorganische bzw. organische Oxidatoren wie z.B. Ammoniumperchlorat bzw. 20 Hexogen. In CDB-FTS ist NC häufig in Form von Fluidballs oder Basegrain Powder eingearbeitet. Gasgeneratoren, Rohrwaffentreibmittel und pyrotechnische Sätze haben oft analoge Zusammensetzungen.

Unter "fluid balls" versteht man kugelförmiges Granulat kleiner Korngröße und "base grain powder" ist ein zylinderförmiges Granulat.

Die Abbrandgeschwindigkeit solcher Systeme steigt mit zunehmendem Druck monoton an. Die Verringerung (Plateaueffekt) bzw. die Unterbrechung (Messaeffekt) dieses monotonen Anstiegs ist aus innenballistischen und sicherheitstechnischen Gründen wünschenswert.

10

Plateau- bzw. Mesaeffekt kann durch die Verwendung von Abbrandmodifikatoren mit einem Gewichtsanteil bis zu etwa 5 % erzielt werden. Bisher wird dies für DB-FTS und Systeme entsprechender Zusammensetzung zwar erreicht, indem die Komponenten einschließlich Abbrandmodifikatoren geknetet und nach den bekannten Verfahren zu Treibstoffen weiterverarbeitet werden; jedoch gelingt dies nur mit aufwendigen Verfahren, die aber die erforderliche Reproduzierbarkeit nicht gewährleisten können.

20

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zu finden, das eine noch wirkungsvollere Modifizierung von nitrocellulosehaltigen Festtreibstoffen und ähnlichen Systemen bei gleichzeitiger Erzielung der notwendigen Reproduzierbarkeit gewährleistet.

Beschreibung des Verfahrens

Die Aufgabe, eine noch wirkungsvollere Modifizierung von 30 nitrocellulosehaltigen Festtreibstoffen und ähnlichen Systemen bei gleichzeitiger Erzielung der erforderlichen Reproduzierbarkeit zu gewährleisten, wird erfindungsgemäß dadurch erreicht, daß die Metalle oder Metallverbindungen durch chemische oder physikalische Ausfällung auf der Nitrocellulose bzw. den anderen festen monomeren oder polymeren Nitro- oder Nitratverbindungen niedergeschlagen

werden. Der dadurch erzielte Fortschritt besteht darin, daß die Abbrandmodifikatoren nicht zufällig in der Treibstoffmatrix verteilt werden, sondern direkt zu den Komponenten in engen Kontakt gebracht werden, mit welchen zu-5 sammen sie den gewünschten Effekt hervorbringen. Zur Niederschlagserzeugung kommen grundsätzlich verschiedene chemische Verbindungen, welche das abbrandmcdifizierende Metall enthalten, in Frage. Hat man die Wahl, ist die chemische Verbindung, welche das kleinere Löglichkeitsprodukt aufweist, im allgemeinen zu bevorzugen, weil dadurch erfahrungsgemäß die Feinteiligkeit des Niederschlags erhöht werden kann; wie dies z.B. bei der Fällung von Barium als Bariumsulfat allgemein bekannt ist, obgleich sie da für analytische Zwecke unerwünscht ist. Erfindungs-15 gemäß können auch abbrandregelnde Metalle auf die polymeren, stickstoffhaltigen Komponenten niedergeschlagen werden. Aus kolloidalen Lösungen von abbrandregelnden Metallen. wie z.B. Kupfer oder Zinn, lassen sich die entsprechenden Metalle elementar auf den Nitro- bzw. Nitratkomponenten 20 nach dem beanspruchten Verfahren feinteilig niederschlagen.

Eine weitere Möglichkeit, die Feinteiligkeit der Abbrandmodifikatoren zu erhöhen, besteht darin, daß man Verbindungen des abbrandmodifizierenden Metalls auswählt, deren
25 Eigenart es ist, besonders voluminöse Niederschläge zu
bilden. Diese voluminösen Niederschläge eignen sich dank
ihres großen Volumens sehr gut für eine gleichmäßige und
feine Verteilung auf der Faser.

30 Sodann wird diese Verbindung unter Ausnutzung des kleinen Löslichkeitsprodukts aus einer Lösung auf der zu modifizierenden Treibstoffkomponente in statu nascendi unter geeigneten Fällungsbedingungen möglichst feinteilig niedergeschlagen.

Eine andere Variante des Verfahrens, die Abbrandmodifikatoren in möglichst feinteiliger Form auf NC bzw. anderen FTS-Komponenten zu verteilen, besteht in der Möglichkeit der physikalischen Ausfällung. Dies ist die 5 Methode der Wahl im Falle von Abbrandmodifikatorverbindungen, welche in Wasser oder anderen üblichen Lösungsmitteln gut löslich sind. In diesem Fall wird die FTS-Komponente, auf der die Abbrandmodifikatorverbindungen niedergeschlagen werden soll, in ungelöstem Zustand in 10 Wasser oder einem anderen Medium mit niedriger Verdampfungswärme durch kräftige Rührung fein verteilt und die Abbrandmodifikatorverbindung darin gelöst. Der feinteilige Niederschlag des Abbrandmodifikators auf der FTS-Komponente wird sodann dadurch erreicht, daß das Lö-15 sungsmittel zur Verdampfung oder Verdunstung, gegebenenfalls unter Vakuum, gebracht wird.

Eine weitere Verfahrensvariante wäre die Erzielung eines feinteiligen Niederschlags der Abbrandmodifikatoren durch 20 Ausfällung aus kolloidalen Lösungen oder Emulsionen der Modifikatoren. Als andere monomere oder polymere Nitrooder Nitratverbindungen können erfindungsgemäß Hexogen, Octogen, Polynitroäthylen Polyvinylnitrat usw. verwendet werden. Ob ein und derselbe Stoff Treibstoff- oder Sprengstoffeigenschaft aufweist, ist in erster Linie von der Art der Zündung abhängig. Als bekanntestes Beispiel sei in diesem Zusammenhang ein Nitroglycerin-Nitrocellulose-Gemisch erwähnt, das, angezündet, sich wie ein Doublebase-Festtreibstoff oder, mit einer Spreng-kapsel gezündet, wie Sprenggelatine verhält. Nitropenta wäre ein weiteres Beispiel.

Beispiel 1

35 NC, gleichviel welchen N-Gehalts, jedoch mit möglichst großer spezifischer Oberfläche wird durch kräftige Rührung in viel Wasser gleichmäßig verteilt und so viel

Kupferacetat darin aufgelöst, daß durch langsame Zugabe von verdünnter Natronlauge bei gleichzeitiger Rührung soviel Kupferhydroxid feinteilig allmählich auf der NC-Faser niedergeschlagen wird, daß nach Trocknung der erwünschte Kupfergehalt erreicht wird. Hierbei ist es von besonderer Wichtigkeit, daß kein Überschuß an Natronlauge angewandt und die so behandelte NC gut ausgewaschen wird, da überschüssige Natronlauge zur Bildung löslicher Cuprate führen könnte.

10

Beispiel 2

Wie Beispiel 1, jedoch unter Verwendung von Blei(II)-acetat.

15

Beispiel 3

Wie Beispiel 1, nur daß der Modifikator in Form von Kupfer (I)- und Kupfer(II)-Sulfid durch Einleiten von Schwe20 felwasserstoff aus neutraler wässriger Lösung kolloidal
ausgefällt wird. Durch Kochen werden die kolloidal gelösten Kupfersulfide in feinstmöglicher Form auf der NC
niedergeschlagen.

25 Beispiel 4

Wie Beispiel 3, jedoch unter Verwendung von Blei(II)-acetat.

30 Beispiel 5

Wie Beispiel 1, nur daß die Niederschlagsbildung von fein verteilten basischen Kupferacetaten auf NC durch Verdampfen des Lösungsmittels Wasser unter Vakuum bei Temperaturen bis zu 50°C erreicht wird.

j

DB-FTS, die mit erfindungsgemäß behandelter NC hergestellt wurden, zeigten eindeutig den beabsichtigten Effekt einer modifizierten Abhängigkeit der Abbrandgeschwindigkeit von Druck in einem Ausmaß, wie sie bei herkömmlichem Zusatz feingemahlener Modifikatorsalze nicht erreichbar war. Darüberhinaus konnte ein signifikanter Anstieg der Explosionswärme gegenüber DB-FTS verzeichnet werden, in welche feingemahlene Modifikatorsalze gleichen Prozentsatzes in koventioneller Weise durch Kneten und Walzen eingearbeitet wurde. Weiter Eigenschaften, wie chemische Stabilität und mechanische Festigkeit, bewegten sich in einem für DB-FTS üblichen Rahmen.

÷

Patentansprüche

5

- 1. Verfahren zur Verbesserung der Druckabhängigkeit des Abbrandverhaltens von Festtreib- oder Rohrwaffentreibmittel, die Nitrocellulose bzw. andere feste monomere oder polymere Nitro- oder Nitratverbindungen sowie Stabilisatoren und andere Zusätze sowie Metall- bzw. Metallverbindung als abbrandbeeinflussende Komponenten enthalten,
- dadurch gekennzeichnet,
 daß die Metalle oder Metallverbindungen durch chemische oder physikalische Ausfällung auf der Nitrocellulose bzw. den anderen festen monomeren oder polymeren Nitro- oder Nitratverbindungen niedergeschlagen werden.
- Verfahren nach Anspruch 1,
 dadurch gekennzeichnet,
 daß die Feinteiligkeit des Niederschlags durch Wahl
 von Metallverbindungen mit extrem niedrigem Löslich keitsprodukt gesteigert wird.
- Verwendung der nach dem Verfahren von Anspruch 1 gewonnenen Festtreibstoff- oder Rohrwaffentreibmittel-Komponenten zur Herstellung von kugelförmigem 1- oder mehrbasigen NC-Granulat kleiner Korngröße (fluid balls) oder von zylinderförmigem oder auch andersförmigen 1- oder mehrbasigen NC-Granulat (base grain powder).

4. Verwendung der nach dem Verfahren von Anspruch 2 gewonnenen Festtreibstoff- oder Rohrwaffentreibmittel-Komponenten zur Herstellung von kugelförmigem 1- oder mehrbasigen NC-Granulat kleiner Korngröße (fluid balls) oder von zylinderförmigem oder auch andersförmigen 1- oder mehrbasigen NC-Granulat (base grain powder).

5

- 5. Verwendung der nach dem Verfahren von Anspruch 1
 gewonnenen Festtreibstoff- oder Rohrwaffentreibmittel-Komponenten in Raketen, Festtreibstoffen, Rohrwaffentreibmitteln, Gasgenerator-Festtreibstoffoder pyrotechnischen Sätzen.
- 15 6. Verwendung der nach dem Verfahren von Anspruch 2 gewonnenen Festtreibstoff- oder Rohrwaffentreibmittel-Komponenten in Raketen, Festtreibstoffen, Rohrwaffentreibmitteln, Gasgenerator- Festtreibstoff- oder pyrotechnischen Sätzen.