1 Publication number:

004 455

12

EUROPEAN PATENT APPLICATION

(2) Application number: 79300444.1

(5) Int. Cl.²: **A 47 H 23/00**, B 31 D 3/02

② Date of filing: 21.03.79

② Priority: 21.03.78 FI 780877 21.03.78 FI 780878 13.09.78 US 942087 Applicant: Suominen, Heikki S., Petsamonk 14, Tampere (FI)

Date of publication of application: 03.10.79 Bulletin 79/20

(72) Inventor: Suominen, Heikki S., Petsamonk 14, Tampere (FI)

Designated Contracting States: BE CH DE FR GB IT LU

Representative: Rushton, Ronald et al, 89 St. Peters Street, St. Albans Hertfordshire AL1 3EN (GB)

54 Tubular insulating curtain and method of manufacture.

(57) A selectively collapsible and expandable insulating curtain and the method of making same, the curtain having a plurality of collapsible tubes, preferably of plastic material, extending longitudinally for its width and superimposed one on top of the other in a row in the direction of curtain height. Each tube has an upper wall and a lower wall secured together by bands of adhering contact on opposite sides of the tubular cavity. Additional bands of adhering contact secure superimposed tubes to each other longitudinally along midsections of the upper and lower walls. The side bands of contact define fold lines allowing collapse and expansion of the tubes as the curtain is raised and lowered, respectively, in the manner of a venetian blind. The curtain may include additional rows of superimposed tubes one adjacent to the other in the direction of curtain thickness. In making the curtain, a plurality of thinfilm strips are wound about the periphery of a forming member with bands of adhering material interlaminated between adjacent strips, the width of the midsection bands corresponding to the desired width of the expanded tubes and bands between successive adjoining layers being in a staggered relationship. After winding is complete, the superimposed strips are cut transversely, removed from the forming member and straightened to form the curtain. The number of spaced bands may be such that the strips

may also be cut longitudinally to provide a plurality of curtains. After straightening, means may be secured to the tubular structure for hanging and selectively collapsing and expanding the curtain.

This invention relates to collapsible and expandable tubular structures, and more particularly to a curtain comprised of flexible strips made into tubular units by bands of adhering contact. The tubular structure can be used as an insulating curtain over openings such as doors, windows and the like. The invention also relates to the method of producing such curtains from continuous strips of thin-film material.

10

Flexible insulating curtains having tubular units, along with methods of making such structures, are known in the prior art. One such curtain is found in U. S. Patent No. 4,019,554 and a method for making that curtain is found in U. S. Patent No. 3,963,549. However, such prior art curtains require relatively narrow tubular foils of 2 to 3 inches in diameter and use a single band of adhesive between adjacent foils. As winding speed is limited by the rate at which adhesive can be applied to the foil, the prior art method is quite slow. Furthermore, the curtain produced has only one tubular thickness.

20

A beehive like wall structure with multiple cells for insulating purposes is illustrated in Finnish Patent No. 23939 dated May 31, 1950. The structure is made by gluing thin plates of paper to each other and to outside surface boards at areas of contact on alternating sides of the plates. Although the cellulated structure can be pressed together for transporting and expanded for installation, the insulation board has relatively few cells in each row and those cells could be compressed and

expanded only a few times without deterioration of the wall material. According to this patent, the area of glued contact between adjacent plates must be limited to a maximum of 1/3 of the width of the air cell, presumably to minimize the severe distortion that would occur in the walls of the partial cells adjacent to each surface board. Since the width of the glued area is transverse to the direction in which insulation is desired, the air cells must be fully expanded for effective insulation.

10

Such disadvantages and limitations of the prior art are overcome by the tubular structure of the present invention which may have a plurality of insulating cavities both in the direction of curtain height and in the direction of curtain thickness. While the insulating properties of one tubular unit are significant, much better insulation can be provided by a plurality of tubular units across the curtain thickness. The insulating characteristics of those units are further enhanced by aligning the bands of adhering contact in the direction to be insulated. The insulating effectiveness of the tubular cavities is thereby maximized and does not change significantly with the degree of expansion.

20

The novel method disclosed for producing insulating curtains is much simpler and faster and more economical than heretofore known. A plurality of curtains are simultaneously produced from strips of relatively inexpensive material. The individual strips may be of any thin flexible material, and are preferably of thin film plastic. Although narrow relative to length, the strips

may be many feet in width, the width being limited only by practical considerations of winding sheet material.

In practicing the method, two or more strips are pulled simultaneously from multiple sources and each passed through a station at which adhesive is applied to one surface in multiple transversely spaced bands. The bands are applied in a staggered relationship and the strips arranged adjacent to each other with an adhesive surface opposing a non-adhesive surface. The bands are preferably of a substantially uniform width and spaced transversely from each other at substantially the same distance. The width of each band corresponds to the desired width of the corresponding tubular unit in its expanded state. Accordingly, the sum of the width dimensions of all bands spaced transversely across two adjacent strips will equal approximately the overall thickness of the curtain when fully expanded.

10

20

After application of the adhesive bands, the strips are interleaved and wound in superimposed layers about the periphery of a forming member so as to interlaminate adjacent strips and the bands of adhesive therebetween. The staggered bands between successive strips produce tubular units formed with a lower wall from one layer and an upper wall from the next superimposed layer. The upper and lower walls are adheringly secured together by bands of contact on opposite sides of the tubular cavity and each tube thus formed is adheringly secured to the next superimposed tube by a band of contact across a midsection of the upper tube wall. The side bands and

the mid band all extend longitudinally along each tube and define non-adhering sidewalls therebetween. Tubular units so arranged will expand or open when stretched in a direction transverse to the plane of the strips.

As used in this specification, a row refers to tubular units aligned with curtain height and not to successive units in the direction of curtain thickness. For a single row of tubes, the minimum number of transverse bands is 3, additional bands being spaced transversely depending upon the number of adjoining tube rows desired. The number of layers wound upon the forming member is chosen to yield the desired number of tubes in each row, which in turn determines curtain height. The interlamination of only two strips is also possible and will produce tubular units adjoined by bands of contact across the width of the strips. Thus, the curtain may have successive tubular units adjoining in the direction of curtain height or in the direction of curtain thickness or in both directions, the latter being preferred.

20

10

After winding is complete, the resulting stack of superimposed tubes is cut transversely, removed from the forming member, and straightened into a linear stack.

Where the length of the tubes is a multiple of the desired curtain width, a corresponding number of transverse cuts are made to produce multiple curtains. Where there are 3 or more adjoining rows of tubes, a plurality of curtains can also be produced by one or more longitudinal cuts down the tube length.

After straightening, the strips at the top and

bottom of the stack may be pulled apart to expand the tubes. The curtain is extended to its full height when the tubes are fully expanded. The end strips may then be moved together to collapse one or more tubes. The tubes collapse in accordion fashion along fold lines formed by the side bands of contact. When flattened, the height of the tube stack approximates the total thickness of the superimposed layers of film material. To facilitate manipulation of the curtain, one end may be secured to a mounting slat and the other to a second slat movable relative to the first. Pull cords and other conventional hardware may be added to the slats to mount the curtain and selectively collapse and expand the tubular units in a manner similar to venetian blinds.

10

20

The invention has many additional objects, some of which are set forth here. The tubular structure can be readily mounted, with or without supporting slats along the end strips, in a number of different positions for a wide variety of uses. It has wide utility as a thermal insulating curtain and when extended vertically can serve as a substitute for storm windows, storm doors and the like. The curtain can be extended horizontally and pulled taut to serve as insulation beneath a floor or above a ceiling. The individual tubes can be collapsed and expanded numerous times and provide a curtain having a long usable life. In its collapsed state, either as mounted or as removed for storage, the curtain folds into a stack of thin flat strips neatly aligned in a column.

Curtains of varying height can be made depending upon the number of strips superimposed upon the forming member. Multiple curtains of less height than originally formed can also be made by cutting the linear stack of tubes longitudinally in a direction transverse to curtain height.

The composition of the strip material may be selected to yield light admitting tubes (transparent or translucent), light absorbing tubes (black or other dark colors), or light reflecting tubes. A pigment material may also be added to the adhesive used so that the bands of contact have similar light controlling characteristics. With light controlling bands, the degree of light admitted, absorbed or reflected can be controlled by tilting the upper and lower most strips by means of attached slats which will in turn produce a corresponding tilt of the longitudinally extending bands in a manner similar to the louvers or slats of a venetian blind. Similar light controlling characteristics can be obtained by applying appropriate coatings to one or more sections of each tube wall.

The tubular structure has many other applications, such as structural members for greenhouses and other buildings requiring the admission of large amounts of light and for modular structures utilizing flexible sheet material. The tubular units may be reinforced internally and positioned on end as self-supporting walls, folding doors and other structural components. The tubes may also be sealed and pressurized internally with air as

10

structural members for air supported domes and the like.

Numerous other objects and advantages of the invention will be apparent to those skilled in the art from this specification and the attached drawings.

Brief Description of the Drawings

The invention, both as to its structure and method of manufacture, may be further understood by reference to the detailed description below taken in conjunction with the accompanying drawings in which:

10

Figure 1 is a fragmentary perspective view of the curtain of the invention having a single row of superimposed tubes.

Figure 2 is a perspective view of a modification of the invention wherein the curtain has a plurality of tube rows in the direction of curtain thickness.

Figure 3 is a perspective view of the curtain of Figure 2 showing a portion collapsed into a stack of superimposed tubes and illustrating means for mounting and selectively collapsing and expanding the curtain.

20

Figure 4 is a perspective view of an apparatus for making the tubular curtain according to the method of the invention.

Figure 5 is an end view of the tubular curtain as removed from the apparatus of Figure 4 and straightened into a linear stack of fully collapsed tubular units.

Figure 6 is an end view of the tubular curtain of Figure 1 as cut from the stack of Figure 5 along cut line Y' and partially expanded.

Figure 7 is an end view showing the curtain of

Figure 6 in its fully expanded state.

Figure 8 is an end view of the tubular curtain of Figure 2 as cut from the stack of Figure 5 along cut line Y and partially expanded.

Figure 9 is an end view showing the curtain of Figure 8 in its fully expanded state.

Detailed Description of the Invention

10

20

One embodiment of the tubular curtain of the present invention, generally designated 10, is shown in Figure 1 of the drawings. The curtain is comprised of a row of tubes Cl which are superimposed one atop the other in the direction of curtain height as best illustrated in Figures 1 and 7. Each tube has the same structure as tube 12 which will be described in detail. The tube 12 has an upper wall 14 and a lower wall 15, each wall having two longitudinally extending edges. The edges of one wall abut the corresponding edges of the other wall along bands of contact 16 and 17 on opposite sides of the tubular cavity. The portions of each wall within the bands of contact 16 and 17 are adheringly secured together by appropriate means compatible with the wall material, preferably an adhesive. With reference to Figure 7, upper wall 14 has two side sections 14a and 14c and a mid section 14b, and lower wall 15 has two side sections 15a and 15c and a mid section 15b. Tube 12 is superimposed atop an underlying tube 18 and adheringly secured thereto along a band of contact coextensive with lower mid section 15b. An overlying tube 19 is superimposed atop tube 12 and adheringly secured thereto along a band of contact

coextensive with upper mid section 14b.

10

20

Although curtain C1 can be hung directly by attachment of uppermost strip 21 to an overhead structure, it is preferably provided with a mounting slat 23 and a movable slat 24 of a much more rigid material, such as wood or metal. The slats may be adjusted relative to each other for collapsing and expanding the curtain by means of a drawstring or pull cord 25 which passes through a series of apertures 26 in the slats and intervening tubes of the curtain. The end of cord 25 is knotted or otherwise secured at 27 to slat 24 so that the latter can be selectively adjusted by manipulation of the cord. Upper slat 23 can be used for mounting the curtain and pull cord 25 arranged for manipulation in the manner described below for the embodiment of Figure 3.

In the preferred embodiment, the length of the slats corresponds substantially to the width of the curtain and the width of the slats corresponds substantially to the width of the thin-film strips from which the curtain is made. The full length and width of the strips are thereby sandwiched between the slats when the tubes are collapsed. Accordingly, when fully expanded, the transverse width of the tubes is substantially less than the width of the slat. In the embodiment of Figure 1, the side sections of each tube have a width of about one-half the width of mid sections such that the width of slats 23 and 24 is about twice that of the mid sections. For purposes of illustrating the effect of changing those dimensions, different relative dimensions of the corres-

ponding parts are shown in Figure 7. Here the side sections are approximately equal to the mid sections. Corresponding slats should therefore have a width about three times the width of the mid sections (if 14a = 14c = 14b = 1", then 14a + 14b + 14c = 3").

With further reference to Figure 7, the row Cl as formed has loose upper ends 21a and 21c and loose lower ends may be cut off or used to secure the top and bottom of the curtain to slats 23 and 24, respectively.

10

The tubular cavities defined by the upper and lower tube walls contain essentially still or dead air since those walls prevent any transverse movement of air. Accordingly, where a high degree of thermal insulation is desired, the tubes should be made of an impermeable material of low heat conductivity. The tube material should also be sufficiently flexible for the tubes to fully expand under their own weight and the weight of lower slat 24 and of a durability allowing repeated flexure without cracking or other deterioration. A good grade of thin polyethylene or equivalent plastic sheeting will satisfy these requirements.

20

Each side of the tubular cavity is a composite of two side sections, one from the upper and the other from the lower tube wall. The side bands joining those two sections form fold lines along each side of the tubular units making up the curtain. The double wall thickness and the adhering material at the sideband juncture provide reinforcement of the tube structure at the point of greatest stress and wall flexure.

Another embodiment of the invention is illustrated in Figures 2, 3 and 9, the overall structure being generally designated 30 and the curtain portion thereof C2. Curtain C2 is comprised of a plurality of tube rows 31, 32, 33, 34 and 35, one adjoining the other in the direction of curtain thickness. Each row is comprised of a plurality of superimposed tubes having the same structure as the tubes in row C1 of Figure 1.

The bands of adhering contact between superimposed strips have been assigned a designation corresponding to the bands of adhesive applied when making the curtain as described later with reference to Figure 4. Referring now to Figures 2 and 9, the superimposed tubes of row 31 are joined together by bands of contact Al, the tubes of row 32 by bands B2, the tubes of row 33 by bands A2, the tubes of row 34 by bands B3, and the tubes of row 35 by bands A3. These bands form the mid sections of the corresponding tubes. The upper and lower side sections of tubes 31 are joined together on opposite sides of each tubular cavity by bands of contact Bl and B2, the side sections of tubes 32 by bands Al and Λ^2 , the side sections of tubes 33 by bands B2 and B3, the side sections of tubes 34 by bands A2 and A3, and the side sections of tubes 35 by bands B3 and B4. As evident from the foregoing, those bands intervening between the outer vertical walls 40 and 41 of curtain C2 serve both as a band of contact joining the side sections of the tubes in an adjacent row. Bands inside of outer tube rows 31 and 35 join the side sections of two adjacent rows, one at each edge of the

20

adjoining band. For example, band B2 adheringly secures superimposed tubes 32 one atop the other in the direction of curtain height and also adheringly secures the upper and lower side sections on one side of tubes 33. As explained with reference to curtain Cl, the bands adjoining the side sections of each tube define fold lines for the collapse and expansion of that tube and the curtain as a The tubes therefore collapse into a symmetrical stack S when compressed together as illustrated in Figure In Figure 3, there is shown a pair of pull cords 50 and 60 and corresponding pulley mechanisms 51 and 61 for manipulating the multirow tubular curtain C2. Pull cord 50 passes over a pulley 54 and down through a series of apertures 52 in a support slat 42, a movable slat 44 and the intervening tubes of center tube row 33. end of pull cord 50 is secured to the movable slat 44 by a knot 53 or other fastening means as seen in Figure 2. Pulley 54 is rotatably mounted upon a shaft 55 supported by a pair of brackets 56-56 which may be secured to mounting slat 42 by screws 57 or the like. In a similar manner, pull cord 60 passes over a pulley 64 and through apertures 62 and is secured to movable slat 44 by knot 63. Fulley 64 is rotatably mounted upon shaft 65 supported by a pair of brackets 66-66 which are secured to slat 42 by screws 67 or the like.

10

20

The slat 42 may be mounted in a window, doorway or other opening by means of eyebolts 68 or other mounting brackets which may be positioned at each corner of the mounting slat as illustrated in Figure 3. Mounting

eyebolts 68 cooperate with hooks or other cooperating fastners (not shown) as can be mounted along the top of a frame around the opening or on adjacent structure, such as a ceiling.

10

20

The manner in which curtain C2 is attached to end slats 42 and 44 will now be described. With reference to Figure 9, curtain C2 is preferably made without any adhering material on the upper surface of uppermost strip 38 or on the lowermost surface of lowermost strip 39. leaves a series of unadhered upper sections 38a, 38b, 38c and 38d and unadhered lower sections 39a, 39b, 39c and 39d. These may be left along or cut as illustrated by the cut line K through the lower sections. Although the end strips can be secured to the slats in the shape shown in Figure 9, it is preferable to attach those strips in a flattened state so that a neatly folded stack S will be produced when the curtain is collapsed. Before attachment, the side sections 38a and 38d and 39a and 39d are pulled transversely apart in the direction of curtain thickness causing the uppermost and lowermost tubes of rows 32 and 34 and some adjacent tubes to flatten as seen in areas D and D' of Figure 2. The flattened upper and lower surfaces are then secured to the corresponding slats by an appropriate means of attachment, such as a layer of adhesive. Staples, nails and similar means of physical attachment can also be employed. When the curtain is so secured, the distortion in areas D and D' is relatively minor and dampens out within a few tubes of the end of each row so that the major intervening portion of the curtain

expands into a symmetrical undistorted shape of attractive appearance.

The width of the side sections and mid sections of each tube will again determine the width of the slats to be used with the curtain. The slat width is, of course, also a function of the number of tube rows making up the curtain. Preferably, the number of rows and the section widths are chosen so that the collapsed thickness does not exceed twice the fully expanded thickness of the curtain. Where the curtain consists of five tube rows as shown, the width of each side section should be about 1/2 the mid band width. Thus if the mid band width is 1" and the side section width is 1/2", the thickness of the fully expanded curtain will be about 5" and the slat width should be about 8" (5 mid bands = 5", 6 side sections = 3" and 5" + 3" = 8"). These relative dimensions approximate those illustrated in Figures 2 and 3. For purposes of illustrating the effect of those dimensions, the side sections shown in Figure 9 have a width about equal to that of the mid bands. If the outermost bands Bl and B4 are to be included between the slats, the slat width should be increased by those increments.

10

20

The method of making the tubular curtain of the present invention will now be described. With reference to Figure 4, a first supply roll 80 and a second supply roll 90 provide continuous strips 82 and 92 of thin-film material, preferably thin sheets of plastic. Strip 82 passes through an upper adhesive station A comprised of a guide roller 83 for tensioning and directing the strip

over a series of applicator wheels M1, M2, M3 and M4 mounted for rotation upon a shaft 85. The applicator wheels M contact the underside of strip 82 and underlying those wheels is a pick-up roller 86 mounted for rotation partially submerged in an adhesive contained in a trough 88.

Strip 92 passes through a lower adhesive station B comprised of a guide roller 93 for tensioning and directing the strip over a series of applicator wheels N1, N2, N3, N4 and N5 mounted for rotation upon a shaft The applicator wheels N contact the underside of strip 92 and underlying those wheels is a pick-up roller 96 mounted for rotation partially submerged in an adhesive contained in a trough 98. After passing through the adhesive stations, strip 92 is interleaved beneath strip 82 and the two strips wound simultaneously upon a forming member, generally designed F. It is to be understood that the supply rolls, the rollers and wheels of the adhesive stations, and the forming member are suitably mounted for rotation relative to each other, and that the forming member is driven by conventional machinery to wind the continuous guide strips 82 and 92 thereon in interleaved fashion. Guide rollers 83 and 93 maintain sufficient tension on the strips to produce a flat even stack of superimposed strips around the periphery of the forming member.

10

20

The forming member is shown as a cylindrical drum 100 for purposes of illustration. The forming member may take other shapes capable of providing a continuous

winding surface about their periphery. For example, the member may be comprised of an endless belt supported upon two or more drums or rollers as shown in U. S. Patent No. 3,963,549.

The manufacturing process is initiated by detachably fastening the end of strip 92 to the periphery of the forming member F by means of clamping devices (not shown) so that movement of the periphery in the direction of arrow Q will pull the strip from the supply roll and through adhesive station B. Strip 92 is attached to the forming member approximately at location T. The end of strip 92 is pulled around once and then the end of strip 82 is attached at approximately the same location by means of a second clamping device (not shown). Adhesive stations A and B are then placed in position for application of the adhesive to each strip. As strip 82 is pulled through station A, roller 86 picks up adhesive from trough 88 and supplies it to the set of applicator wheels M which in turn apply the adhesive to the underside of the strip in a plurality of narrow transversely spaced bands extending longitudinally along the strip length, bands A1, A2, A3 and A4 being applied by applicator wheels M1, M2, M3 and M4, respectively.

10

20

30 ;

As strip 92 is pulled through station B, roller 96 picks up adhesive from trough 98 and supplies it to the set of applicator wheels N which in turn apply the adhesive to the underside of the strip in a plurality of narrow transversely spaced bands extending longitudinally along the strip length, bands B1, B2, B3, B4 and B5 being applied by applicator wheels N1, N2, N3, N4 and N5, respectively.

are wound in interleaved fashion around the periphery of the forming member to produce bands of contact adheringly securing each strip to the next superimposed strip. The upper set of adhesive bands A is offset transversely relative to the lower set of adhesive bands B as viewed from left to right in Figures 4 and 5. This offset between adhesive bands A relative to adhesive bands B staggers the bands of adhering contact between successive strips. Thus, the transverse distance between adjacent bands on opposite sides of the same strip substantially defines the width of the unadhered side section of each tube wall. It is this staggered relationship that produces the expanded curtain structures shown in Figures 6 through 9.

This distance around the periphery of the forming member is preferably equal to or a multiple of the width of the curtains to be made. When the number of windings on the forming member will produce the desired height of the curtain in its expanded state, the winding operation is stopped and the wound stack of tubes cut transversely along a line X-X' shown in Figure 4. A single cut produces a curtain width equal to the circumferential distance. Multiple cuts corresponding to the number of curtain width multiples making up the circumferential distance will produce the corresponding number of curtains. The first cut line X-X' is preferably over the location at which adhesive was first applied to the first layer of strip The distance between that location and the point of attachment T is determined by the distance between the

20

adhesive stations and the point of attachment, that being the distance the adhesive must travel before interlamination occurs.

After severing the strips along line X-X', the winding is removed. Since no adhesive was placed on the underside of the first strip of material, there is no adhering contact between that strip and the underlying supporting surface and the winding is easily pulled away from the forming member after cutting. Upon removal, the strips are straightened into a linear stack. With reference to Figure 5, a plurality of adjoining tube rows 31, 32, 33, 34, 35, 36 and 37, each comprised of a plurality of tubes superimposed one atop the other, are thereby produced.

10

20

The number of tube rows produced is such that a plurality of curtains of the same height and width but having differing numbers of adjacent rows can be made simultaneously as illustrated by the cut lines Y and Y' of Figure 5. Two cut lines are employed to minimize the width of resulting side bands B4 and B4'. Longitudinal cuts are preferably made through the adhering bands of contact to maintain the integrity of tube walls on both sides of the cut line. The two resulting segments form the curtain C1 of Figure 6 which has a single row of tubes and the curtain C2 of Figure 8 which has five rows of tubes, one adjoining the other in the direction of curtain thickness.

The segment of Figure 6 is shown fully expanded in Figure 7. The segment of Figure 8 is shown fully expanded in Figure 9. As previously indicated, there is no adhesive material on the upper surface of strip segments 21 and 38 or

the thickness of the applicator wheels in each set. Similarly, an applicator wheel of varying thickness about its circumference will produce a band of varying thickness with non-parallel sides. Where the bands of contact include an adhesive coating, the coating may contain pigments causing it to either absorb or reflect heat and light. Similarly, while the strips are preferably of a transparent or translucent material, they may include light absorbing or light reflective material.

10

The interlaminated stack of strips is rapidly produced on the forming member through the use of multiple strip sources. Although multiple adhesive stations are shown in Figure 4, it is to be understood that a single adhesive station may apply bands to each side of a single strip with the bands on one side being spaced transversely in staggered relation to the bands on the opposite side. Where adhesive bands are applied on opposite sides of the same strip, a strip without adhesive is interleaved between each adhesive strip to produce the staggered tubular structure illustrated in the drawings. As another modification, a single strip can be wound with bands applied alternately to opposite sides in the staggered relationship required, each set of bands extending for one revolution of the forming member.

20

The uppermost and lowermost strips of the curtain may be of a sheet material thicker than the intervening strips forming the body of the curtain. Similarly, the outer edges of each strip may be thicker than the central portion. Such increases in thickness would provide

reinforcement for those parts of the curtain subject to greatest stress and the most wear and tear.

A number of other modifications usable with the present invention appear in U. S. Patent Nos. 3,963,549 and 4,019,554 and those patents are incorporated herein by reference as if set forth verbatim.

CLAIMS.

1. A method for manufacturing a selectively collapsible and expandable curtain having a predetermined width and a predetermined height in its expanded state and comprising a plurality of collapsible tubes extending along the width of the curtain and having an upper wall section and a lower wall section, at least two of said tubes being superimposed one atop the other in the direction of curtain height, said method comprising the steps of:

5

10

15

20

- a. winding about a forming member a plurality of superimposed strips of a flexible thin-film material, the forming member being chosen to have a peripheral length substantailly equal to said predetermined curtain width or a multiple thereof,
- b. adheringly securing each said strip to the adjacent contacting strip on the forming member along a plurality of spaced bands each extending in the longitudinal direction of said strips, each said band having a width corresponding to the desired width of the respective collapsible tube formed in part thereby, said bands on successive adjoining layers of said thin-film material on said forming member being in staggered relationship, each said band on any one said strip being spaced transversely from the next band on the next adjacent strip by an amount corresponding substantially to the desired height of each section of said tube wall as measured along the curtain height,
- c. continuing said winding step until the number of said strips wound on the periphery of said forming member

provides said predetermined curtain height,

30

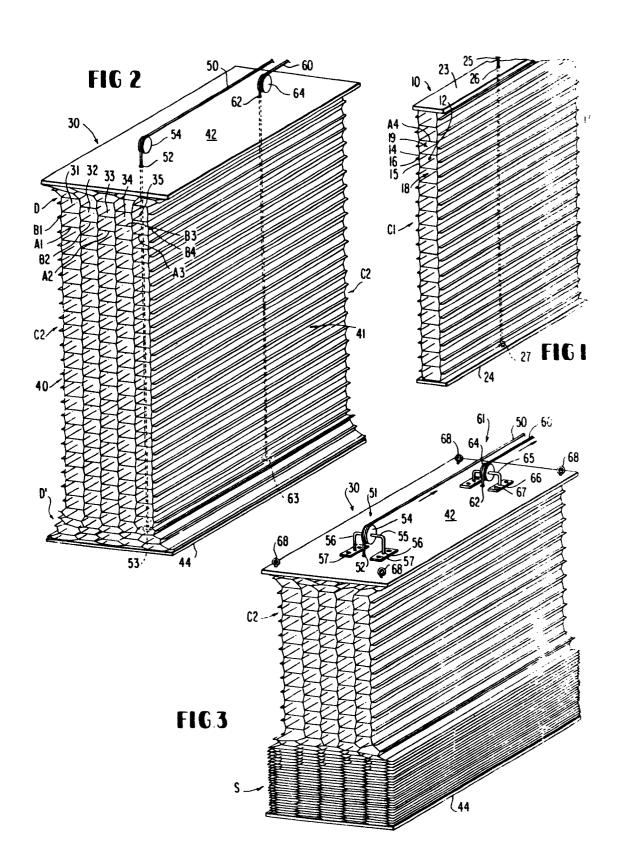
- d. cutting said superimposed strips of said thin-film material transverse to the length of the strips, and removing and straightening said superimposed strips to form said curtain.
- 2. The method of claim 1 in which said transversely spaced bands are substantially parallel to each other.
- 3. The method of claim 1 in which the width of said strips and the number of said bands is so selected as to provide a plurality of said tubes lying one adjacent to the other in the direction of curtain thickness.
- 4. The method of claim 3 which includes the further step of cutting the curtain as formed along at least one cut line extending in the longitudinal direction of said strips to provide a plurality of said curtains, the number of said tubes across the thickness of each curtain being determined by the location of said longitudinal cut lines.
- 5. The method of claim 1 in which a plurality of said strips are wound onto said forming member simultaneously and in an interleaved manner from a plurality of sources of strip material.
- 6. The method of claim 1 in which said bands are of equal width and equally spaced across the width of

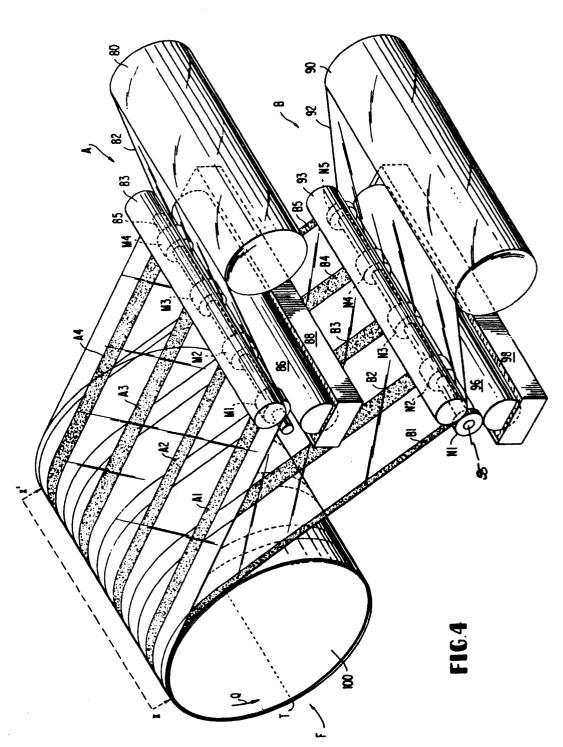
said strips to provide tubes of uniform height and uniform width.

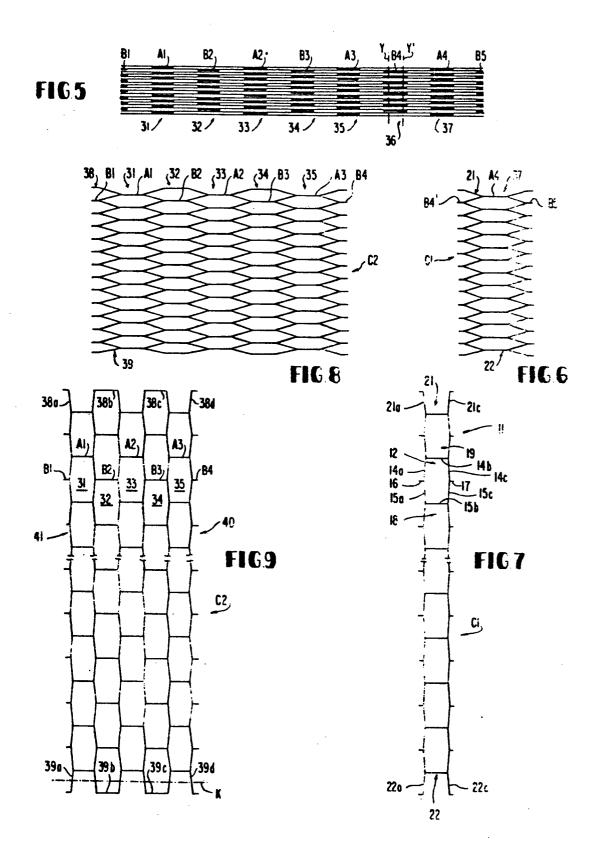
- 7. The method of claim 1 in which said bands are unequally spaced across the width of said strips to provide tubes having side sections of varying height.
- 8. The method of claim 1 in which said bands are of unequal width across the width of said strips to provide tubes having midsections of varying width.
- 9. A thermal insulating curtain made in accordance with the method of claim 1.
- 10. A selectively collapsible and expandable curtain having thermal insulating characteristics in its expanded state, said curtain having a predetermined width and a predetermined height in its fully expanded state and comprising, a plurality of collapsible first tubes extending along the width of the curtain and being superimposed one atop the other in the direction of the curtain height, and at least one collapsible tube adjoining at least one of said first tubes in the direction of curtain thickness.

5

11. The curtain of claim 10 in which, when said curtain is in its expanded state, said adjoining tubes in the direction of curtain thickness are in staggered relationship to said first tubes.


- 12. The curtain of claim 10 which includes means for mounting said curtain and for selectively expanding and collapsing said tubes.
- collapsing and expanding means includes a slat of relatively rigid material secured to the upper end of said curtain, a second slat of relatively rigid material secured to the lower end of said curtain, and means extending between said slats for moving one relative to the other in the direction of curtain height so as to regulate the expanded state of said superimposed tubes.


5


- 14. The curtain of claim 10 in which said tubes are of an impermeable material.
- 15. The curtain of claim 14 wherein said impermeable material is plastic.
- has an upper wall and a lower wall secured together by bands of adhering contact between said upper and lower walls on opposite sides of the tubular cavity, and each of said first tubes is secured to the next superimposed tube by a band of adhering contact between said upper wall and the lower wall of said next tube.
- 17. The curtain of claim 16 wherein said bands of adhering contact are comprised of an adhesive inter-

laminated between said adjoining walls.

- 18. The curtain of claim 16 which includes means for controlling the passage of light through the curtain.
- 19. The curtain of claim 16 wherein said bands of contact extend along the length of said tubes.
- 20. The curtain of claim 19 wherein said bands of contact are parallel to each other.
- 21. The curtain of claim 10 wherein a plurality of collapsible second tubes adjoin said collapsible first tubes in the direction of curtain thickness and said first and second tubes are parallel to each other.
- 22. The curtain of claim 21 wherein a plurality of said second tubes are joined one to the other in the direction of curtain thickness.

