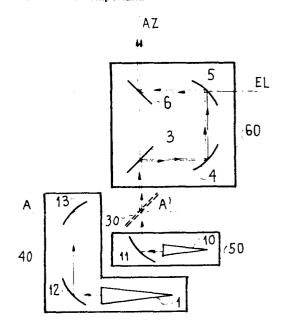
11) Numéro de publication:

0 006 391 A1

(12)

DEMANDE DE BREVET EUROPEEN


1 Numéro de dépôt: 79400411.9

(5) Int. Cl.³: H 01 Q 19/18

- 2 Date de dépôt: 20.06.79
- 30 Priorité: 20.06.78 FR 7818408

- ① Demandeur: "THOMSON-CSF", 173, boulevard Haussmann, F-75360 Paris Cedex 08 (FR)
- (3) Date de publication de la demande: 09.01.80 Bultetin 80/1
- (2) Inventeur: Aubry, Claude, "THOMSON-CSF" -SCPI 173, bld Haussmann, F-75360 Paris Cedex 08 (FR) inventeur: Renaud, Daniel, "THOMSON-CSF" -SCPI 173, bld Haussmann, F-75360 Paris Cedex 08 (FR)
- Etats contractants désignés: DE GB IT NL SE
- Mandataire: Eisenbeth, Jacques Pierre et al,
 "THOMSON-CSF" SCPI 173, bld Haussmann, F-75360
 Paris Cedex 08 (FR)
- Système d'alimentation périscopique pour antenne bi-gamme et antenne le comportant.
- Système d'alimentation périscopique permettant d'utiliser simultanément et séparemment deux gammes de fréquence sur une antenne.

Le système comporte un périscope (60) à quatre miroirs, mobiles autour de l'axe azimut, un dispositif séparateur (30) des deux gammes de fréquence, et deux dispositifs d'excitation des gammes de fréquence basse et haute (40-50), qui conservent chacun une position fixe quels que soient les mouvements du périscope autour de l'axe azimut.

900 39·

1

SYSTEME D'ALIMENTATION PERISCOPIQUE POUR ANTENNE BI-GAMME ET ANTENNE LE COMPORTANT

La présente invention a trait à un système d'alimentation périscopique pour antenne bi-gamme.

Une application privilégiée se trouve dans l'utilisation de deux gammes de fréquences sur une 5 antenne à réutilisation de fréquence par polarisations orthogonales.

On sait, d'une part, que les antennes à réutilisation de fréquence par polarisations orthogonales sont
des antennes opérant simultanément et indépendamment
10 avec deux polarisations orthogonales. Elles comprennent
un système de réflecteurs, de type Cassegrain par
exemple, un dispositif d'alimentation comportant une
source primaire et un périscope assurant la transmission du faisceau d'onde de la source aux réflecteurs
15 et comportant quatre miroirs dont les courbures déterminent la réutilisation de fréquence. On appelle
système d'alimentation périscopique l'ensemble du
dispositif d'alimentation et du périscope.

Le système de réflecteurs est mobile suivant 20 deux axes perpendiculaires. On se sert dans la suite de cette description des axes élévation et azimut, repérés sur la figure 1, qui représente le cas classique d'une antenne mono-gamme, respectivement par les lettres EL et AZ.

Dans l'exemple représenté figure l, le dispositif d'alimentation comprend une source primaire l
fixe du type cornet corrugué, placée sur l'axe AZ. Le
périscope comporte un bâti 2, mobile autour de cet axe
AZ, et quatre miroirs (3, 4, 5, 6), les miroirs 3 et 6

30 ou 4 et 6 étant plans et les miroirs 4 et 5 ou 3 et 5
étant focalisants (paraboloïde ou ellipsoïde). Le faisceau d'ondes hyperfréquence se réfléchit successivement sur les miroirs 3, 4, 5 et 6 qu'on appelle respec-

tivement premier, deuxième, troisième et quatrième miroir du périscope.

La disposition de ces miroirs dans le périscope est bien connue pour les antennes à réutilisation de 5 fréquence. On rappelle néanmoins que le premier miroir 3 est centré sur l'axe azimut, que les miroirs 3, 4, 5 sont solidaires du bâti 2 et donc mobiles autour de l'axe azimut, tandis que le quatrième miroir 6 est solidaire du système de réflecteurs, comportant un 10 réflecteur principal 7 et un réflecteur secondaire 8, et donc mobile autour de l'axe azimut mais aussi autour de l'axe élévation. Ce quatrième miroir 6 est centré sur l'intersection des axes azimut et élévation.

On sait, d'autre part, que dans le domaine des 15 télécommunications spatiales, il est intéressant d'utiliser une même antenne à réutilisation de fréquence pour deux gammes de fréquence et non plus pour une seule. En particulier il est intéressant d'adjoindre une seconde gamme de fréquences plus 20 élevées à l'antenne mono-gamme décrite plus haut. Cette seconde gamme est appelée gamme haute par opposition à la gamme de fréquence du fonctionnement initial, appelée gamme basse. Dans un exemple de réalisation, la gamme basse est de 4 à 6 GHz et la gamme haute de 11 à 25 14 GHz. On recherche donc un minimum de transformation de l'antenne mono-gamme décrite plus haut qui permette le double fonctionnement.

Pour ce faire, il est nécessaire, dans tous les cas, d'adjoindre à l'antenne un second dispositif
30 d'alimentation qui émette les ondes de la gamme haute.
Or il est impossible de placer deux cornets sur l'axe azimut de l'antenne, comme c'est le cas pour le cornet l de la figure l, l'un faisant forcément écran pour l'autre. Un autre positionnement respectif des deux
35 dispositifs d'alimentation et du périscope doit donc

être adopté.

Selon une réalisation de l'art antérieur, schématisée sur la figure 2, le périscope 60 reste inchangé à l'exception du premier miroir plan 3 qu'on remplace 5 par un miroir dichroïque 30. Ce miroir dichroïque est un dispositif qui est transparent pour une gamme et réfléchissant pour une autre et qui permet ainsi de recombiner deux faisceaux émis séparemment en un seul. Inversement il permet aussi de les séparer. Il existe 10 au moins trois structures bien connues pour ce type de miroir :

- une structure en grilles parallèles à mailles rectangulaires de fils métalliques ou de bandes imprimées sur support très mince de type mylar,
- 15 une structure en grilles métalliques parallèles percées de fentes en croix,
 - un réseau de guides d'ondes à la coupure pour une gamme de fréquence et passant pour l'autre.

Une réalisation particulière de la première des 20 trois structures mentionnées est décrite dans un article intitulé "A Quasi-Optical Polarization-Independent Diplexer..." paru dans la revue IEEE de novembre 1976, pages 780-785.

Le système de réflecteurs 7 et 8 de la figure 2 25 restent inchangés car on conserve l'exemple de l'antenne Cassegrain considéré plus haut.

On a deux dispositifs d'alimentation respectivement gamme basse 40 et gamme haute 50 : celui de la gamme basse reste identique à celui de l'antenne mono-30 gamme, le miroir dichroïque 30 jouant pour lui le même rôle que le miroir plan 3 de la figure l ; c'est une source primaire, par exemple un cornet corrugué l, située sur l'axe azimut. Le miroir dichroïque 30 est un miroir "passe haut" dont la fréquence de coupure est telle qu'il réfléchit les ondes émises par le cornet 7.

Ces ondes suivent donc un chemin identique à celui que suivent les ondes dans l'antenne mono-gamme.

Le dispositif d'alimentation 50 de la gamme haute comporte une source primaire 10 et un miroir focalisant 5 9. La source primaire 10, par exemple un cornet corrugué est parallèle à l'axe azimut, dirigé vers le haut. Le miroir 9 est situé de telle sorte que le faisceau d'ondes de la gamme haute qu'il réfléchit soit dirigé vers le miroir dichroïque 30 et se superpose au fais10 ceau réfléchi de la gamme basse au-delà de ce miroir.

En jouant sur les distances respectives de la source 10, du miroir focalisant 9 et du miroir dichroïque 30, ainsi que sur la courbure du miroir 9, on obtient obtient dans la région quasi-commune aux deux gammes où est disposé le miroir dichroïque 30, une concentration du champ en même temps qu'une surface d'onde plane pour la gamme haute. Ces conditions sont également réalisées de façon analogue pour la gamme basse.

Ces moyens étant réunis, la pureté de la polari20 sation est obtenue, comme dans l'antenne mono-gamme, par
compensation entre les polarisations croisées créées par
chacun des deux miroirs focalisants 4 et 5. Il suffit
que les régions centrales de ces miroirs soient réalisées avec une précision accrue pour obtenir le même
25 effet pour la gamme haute que pour la gamme basse.

On voit, sur la figure 2, que lorsque le périscope 60 effectue une rotation autour de l'axe azimut, il est nécessaire que le dispositif d'alimentation 50 de la gamme haute effectue la même rotation ; ce dispositif 30 50 est donc lié mécaniquement au périscope 60 et la source primaire 10 est mobile.

Un des inconvénients majeurs présenté par cette réalisation de l'art antérieur réside dans la mobilité de cette source ; en effet, comme elle doit-être elle-35 même alimentée par un guide d'onde non représenté sur la figure, la réalisation de ce dernier conduit à des solutions complexes et onéreuses.

Un des objets de l'invention est un réarrangement des différentes sources primaires et des miroirs, tel 5 qu'il permette d'utiliser en fonctionnement bi-gamme une antenne à alimentation périscopique et que les sources primaires conservent une place déterminée.

Selon une caractéristique de l'invention, le système d'alimentation périscopique pour antenne bi10 gamme, comportant un périscope à quatre miroirs et deux dispositifs d'excitation respectivement gamme haute et gamme basse, comporte en outre un dispositif séparateur des deux gammes de fréquence, situé en dessous du périscope, centré sur l'axe azimut et fixe; chacun des deux 15 dispositifs d'excitation reste fixe quelles que soient les rotations de l'antenne autour des axes azimut et élévation, leurs faisceaux d'ondes se superposant au niveau du dispositif séparateur pour pénétrer ensuite dans le périscope suivant la direction de l'axe azimut.

D'autres avantages et caractéristiques de l'invention apparaîtront au cours de la description qui suit d'un exemple de réalisation donné à l'aide des figures qui représentent :

- la figure 1, la visualisation schématique d'une
 25 antenne monogramme et de son système d'alimentation périscopique,
 - la figure 2, le schéma d'un exemple de réalisation de l'art antérieur d'une antenne bi-gamme comportant un système d'alimentation périscopique,
- la figure 3, le schéma d'un exemple de réalisation d'un système d'alimentation périscopique pour une antenne bi-gamme suivant l'invention.

On reconnaît sur la figure 3 un périscope 60 à quatre miroirs 3, 4, 5 et 6, semblables à celui de 35 l'antenne mono-gamme de la figure 1. Ce périscope

ę

alimente par exemple, un système de réflecteur du type Cassegrain non représenté sur la figure.

Sous le périscope se trouve un dispositif séparateur, fixe, par exemple un miroir dichroïque 30.

5 Ce miroir est centré sur l'axe azimut AZ et parallèle au premier miroir 3 du périscope; il assure à l'émission la recombinaison des deux faisceaux d'ondes émis par deux dispositifs d'alimentation respectivement gamme basse 40 et gamme haute 50 et leur séparation à 10 la réception.

Ce type de miroir fonctionne toujours mieux à la réflexion qu'à la transmission, si bien qu'il privilégie une gamme par rapport à l'autre. Dans ce cas des télécommunications spatiales, la gamme à privilégier 15 est la gamme basse. Dans l'exemple de réalisation décrit, le miroir dichroïque 30 est donc du type "passe-haut", c'est-à-dire qu'il est transparent pour la gamme haute et réfléchissant pour la gamme basse.

Le dispositif 50 d'excitation de la gamme haute 20 envoie un train d'onde selon l'axe fixe AZ; ce train d'onde traverse le miroir 30 et continue son chemin selon l'axe AZ vers le miroir 3.

Ce dispositif d'excitation 50 comprend une source primaire par exemple un cornet corrugué 10, alimenté 25 par un guide d'onde non représenté sur la figure, et un certain nombre de miroirs. Dans le cas représenté sur la figure, il comprend un cornet corrugué 10 et un miroir focalisant 11. Le cornet 10 est situé parallèlement à l'axe EL; le miroir 11 a son centre sur l'axe 30 AZ et a pour normale en ce point une parallèle à la première bissectrice du repère (EL-AZ), de façon que le faisceau d'onde réfléchi par ce miroir ait pour direction de propagation l'axe AZ. La courbure du miroir 11 et les distances respectives de ce miroir, du 35 cornet 10 et du miroir dichroïque 30 sont telles que

l'on a une concentration du champ en même temps qu'une surface d'onde plane au niveau de ce miroir dichroïque.

Le dispositif 40 d'excitation de la gamme basse envoie un train d'onde selon une direction telle 5 qu'après réflexion sur le miroir 30, le faisceau réfléchi se propage selon l'axe AZ, se superposant alors au faisceau de la gamme haute. A cet effet, le train d'onde émis par le dispositif 40 est donc réparti autour d'un axe AA' parallèle à l'axe EL et passant par 10 le centre du miroir dichroïque 30.

Ce dispositif d'excitation 40 comprend dans le cas particulier de la figure 3, une source primaire, en l'occurrence, un cornet corrugué l'alimenté par un guide d'onde non représenté sur la figure, et deux 15 miroirs focalisants 12 et 13. Le miroir 13 est centré sur l'axe AA'. Le miroir 12 est centré sur une parallèle à l'axe azimut passant par le centre du miroir 13. Le cornet corrugué a pour axe de symétrie et donc pour direction moyenne de rayonnement un axe parallèle à 20 l'axe élévation et passant par le centre du miroir 12.

L'ensemble de ce dispositif d'excitation de la gamme basse est décrit dans le cas où son plan de symétrie est vertical. En faisant subir une rotation autour de l'axe AA' à ce dispositif, on peut, sans 25 inconvénient, rendre ce plan horizontal.

Les paramètres géométriques (distance, courbure des miroirs focalisants) des deux dispositifs d'excitation ainsi que les distances du miroir dichroïque 30 à chacun de ces deux dispositifs d'excitation et au 30 premier miroir du périscope sont déterminés selon les principes, bien connus dans l'art antérieur, des systèmes d'alimentation périscopique d'antenne à réutilisation de fréquence. On rappelle que ces paramètres sont choisis de telle façon que d'une part, dans la région où est disposé le miroir dichroïque 30, on

1

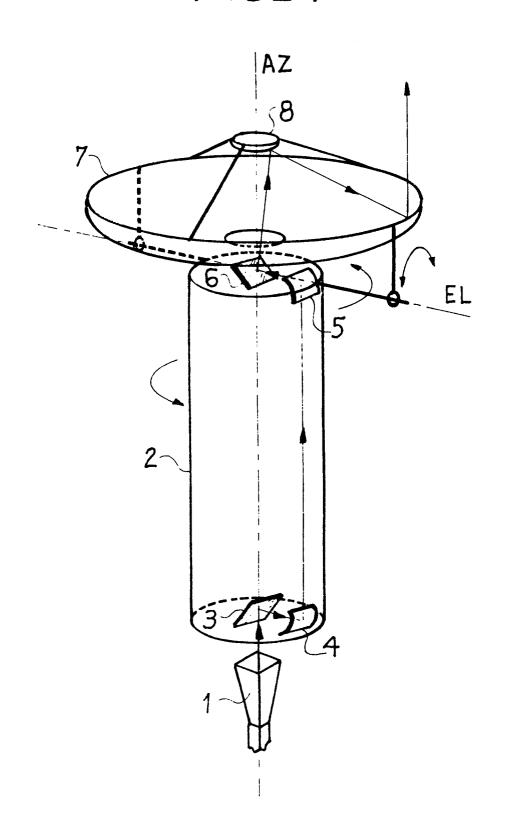
observe pour chacune des deux gammes à la fois une concentration du champ et une surface d'onde plane, et que d'autre part la structure du champ au niveau du miroir dichroïque à l'émission reproduit celle issue du périscope à la réception, ceci permettant d'effectuer la synthèse du champ obtenu à la réception comme à l'émission.

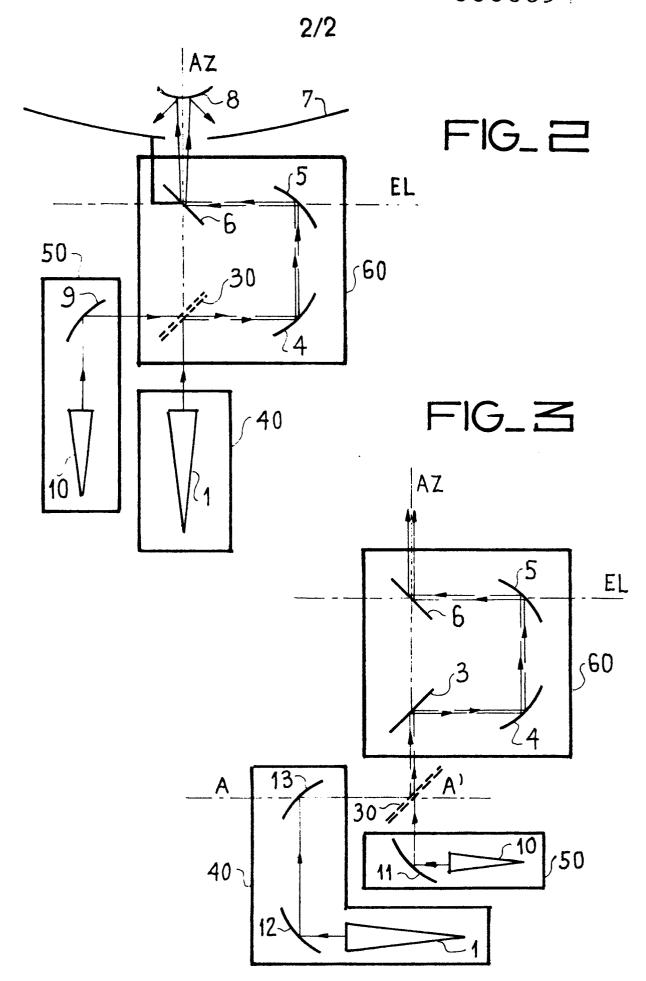
Un tel système d'alimentation périscopique permet la transformation d'une antenne à fonctionnement mono10 gamme en une antenne à fonctionnement bi-gamme et ceci sans modification de la structure du périscope proprement dit et en conservant une position fixe à chacun des dispositifs d'excitation.

Une application privilégiée se trouve dans le
15 domaine des télécommunications spatiales où la gamme
basse couvre par exemple des fréquences allant de 3, 7
à 6, 4 GHz et la gamme haute de ll à 14,5 GHz. Dans ce
domaine la gamme utilisée par les antennes classiques
mono-gamme correspond à ce que l'on a appelé gamme

- 20 basse ; c'est donc sur elle que pèsent dans une antenne bi-gamme les normes les plus sévères ; le dispositif d'excitation 40 adopté dans la description qui précède permet, grâce à la compensation de polarisation qu'il procure par l'utilisation de deux miroirs focalisants,
- 25 de conserver la pureté de polarisation du périscope commun pour cette gamme de fréquence. Un même dispositif d'excitation à deux miroirs focalisant pourrait être aussi utilisé pour la gamme haute au cas où les normes exigées seraient aussi sévères que pour la gamme 30 basse.

REVENDICATIONS


- Système d'alimentation pour antenne bi-gamme comportant un périscope à quatre miroirs et deux dispositifs d'excitation des gammes respectivement basse et haute fréquence, caractérisé en ce qu'il comporte un dispo-5 sitif séparateur des deux gammes de fréquences situé en dessous du périscope (60), centré sur l'axe azimut et fixe, et en ce que chacun des deux dispositifs d'excitation reste fixe quelles que soient les rotations de l'antenne autour des axes azimut et élévation, leurs
- 10 faisceaux d'ondes se superposant au niveau du dispositif séparateur pour pénétrer ensuite dans le périscope suivant la direction de l'axe azimut.
 - 2. Système d'alimentation périscopique selon la revendication 1, caractérisé par le fait que le dispositif
- 15 séparateur est un miroir dichroïque (30), parallèle au premier des miroirs plans du périscope (60), que le dispositif d'excitation (50) pour lequel ce miroir dichroïque est transparent émet un train d'onde suivant l'axe azimut et que le dispositif d'excitation (40) pour
- 20 lequel le miroir dichroïque est réfléchissant émet un train d'onde suivant un axe parallèle à l'axe élévation et passant par le centre de ce miroir dichroïque (30).
 - 3. Système d'alimentation périscopique selon la revendication 2, caractérisé en ce que le miroir dichroïque
- 25 (30) est du type passe-haut, et que les dispositifs d'excitation (40) et (50) sont ceux respectivement des gammes basse et haute.
 - 4. Système d'alimentation périscopique selon la revendication 3, caractérisé en ce que le dispositif
- 30 d'excitation (40) de la gamme basse comporte une source primaire (1) et deux miroirs focalisants (12) et (13).
 - 5. Système d'alimentation périscopique selon la revendication 4, caractérisé en ce que la source primaire
 - (1) est un cornet corrugué ayant pour axe de symétrie


1

et pour direction moyenne de propagation un axe parallèle à l'axe élévation et passant par le centre du miroir (12).

- 6. Système d'alimentation périscopique selon la reven-5 dication 3, caractérisé en ce que le dispositif d'excitation (50) de la gamme haute comporte une source primaire (10) et un miroir focalisant (11) centré sur l'axe azimut.
- 7. Système d'alimentation périscopique selon la reven-10 dication 6, caractérisé en ce que la source primaire (10) est un cornet corrugué ayant pour axe de symétrie un axe parallèle à l'axe élévation et passant par le centre du miroir focalisant (11).
- 8. Antenne de télécommunications spatiales pouvant 15 utiliser simultanément et séparemment deux gammes de fréquences, comportant un système d'alimentation périscopique suivant l'une des revendications l à 7

FIG_1

•

RAPPORT DE RECHERCHE EUROPEENNE

000,639aJmande

EP 79 40 0411

DOCUMENTS CONSIDERES COMME PERTINENTS				CLASSEMENT DE LA DEMANDE (int. Ci.²)
Catégorie	Citation du document avec indi pertinentes	cation, en cas de besoin, des parties	Revendica- tion concernee	
	TIONAL SYMPOSIUPROPAGATION, 1- à SENDAI, Japon 1-III C3 M. KOYAMA et al dielectric filt tenna and feed	ter for the an- system for the 4-6 domestic satellite	·	H 01 Q 19/18
	* En entier	*		
		** ***		DOMAINES TECHNIQUES RECHERCHES (Int. Cl.²)
A	FR - A - 2 281 * En entier	······································	1	H 01 Q 19/18
	-	~~		H 01 Q 5/00 H 01 Q 15/00
A	THEORY AND TECH no. 12, décembr New York USA SHUICHI SHINDO	et al.:"A 4-, 6-, Iz Band Branching 953-958	1	
A	DE - A - 2 520		1	CATEGORIE DES DOCUMENTS CITES
	* En entier	*		X: particulièrement pertinent A: arrière-plan technologique O: divulgation non-écrite P: document intercalaire T: théorie ou principe à la base de l'invention E: demande faisant interférence D: document cité dans la demande L: document cité pour d'autres raisons &: membre de la même famille,
λ	Le présent rapport de recher	document correspondant		
Lieu de la recherche La Haye Date d'achèvement de la recherche La Haye 14-09-1979 CHA				IXDELAVARENE