| (19) |
 |
|
(11) |
EP 0 007 725 B2 |
| (12) |
NEW EUROPEAN PATENT SPECIFICATION |
| (45) |
Date of publication and mentionof the opposition decision: |
|
02.11.1988 Bulletin 1988/44 |
| (45) |
Mention of the grant of the patent: |
|
29.08.1984 Bulletin 1984/35 |
| (22) |
Date of filing: 06.07.1979 |
|
|
| (54) |
Spun-like yarn with variable denier filaments and process for making such a yarn
Gespinnste-ähnliches Garn mit abwechselnde Denier aufweisenden Filamenten und Verfahren
zur Herstellung dieses Garns
Fil ressemblant à un filé et contenant des filaments de denier variable, et procédé
pour fabriquer ce fil
|
| (84) |
Designated Contracting States: |
|
BE CH DE FR GB IT NL |
| (30) |
Priority: |
10.07.1978 US 922937
|
| (43) |
Date of publication of application: |
|
06.02.1980 Bulletin 1980/03 |
| (73) |
Proprietor: CELANESE CORPORATION |
|
New York
New York 10036 (US) |
|
| (72) |
Inventors: |
|
- Blackmon, Lawrence Everett
Foley, Alabama 36535 (US)
- Mowe, Wayne Thomas
Pensacola, Florida 32503 (US)
- Dees, John Robert
Pensacola, Florida 32504 (US)
|
| (74) |
Representative: Corbett, William Michael et al |
|
Imperial Chemical Industries PLC
Legal Department: Patents
Po Box 6
Bessemer Road Welwyn Garden City
Herts, AL7 1HD Welwyn Garden City
Herts, AL7 1HD (GB) |
| (56) |
References cited: :
AT-A- 252 770 DE-A- 2 308 138 GB-A- 971 573 US-A- 4 000 960 US-A- 4 084 622
|
DE-A- 2 308 031 DE-A- 2 313 474 JP-A-16 080 469 US-A- 4 059 950
|
|
| |
|
|
- J.Sikorski, The Fine Structure of Animal and Man-made Fibres in "Fibre Structure",
ed. by Hearle and Peters, Manchester 1963, pp. 269,271
|
|
| |
|
[0001] The invention relates to novel processes for making from a yarn consisting of essentially
continuous filaments a yarn simulating one spun from staple fibers.
[0002] It is known to treat certain types of continuous filament yarns by various processes
to produce yarns which simulate to some degree yarns spun from staple fibers. Typical
prior art processes which break the filaments so as to leave the broken ends protruding
from the yarn bundle are Heinrich U.S. patent 3 857 232; Cardinal U.S. patent 3 857
233; and Yasuzuka U.S. patent 3 967 441. Farley British Specification 971 573 discloses
a similar process wherein the broken filament ends are stated to be entangled within
the yarn bundle, rather than protruding from the bundle. In each of these and other
known processes wherein filaments are broken, the breakable filaments are substantially
uniform from end to end. That is, there is made no provision for preferred locations
of breakage along the breakable filaments, and hence, less control of breakage than
might be desired.
[0003] According to the present invention, this and other difficulties in the prior art
are avoided by using a feed yarn having preferred locations for breakage along the
breakable filaments.
[0004] Negishi et al U.S. Patent 4 059 950 described non-uniform drawing a partially oriented
filament yarn, at below the natural draw ratio and at a temperature high enough to
initiate crystallisation, to produce a yarn having thick and thin portions wherein
the thick portions are brittle. Subsequent draw-texturing causes the thick brittle
portions to break so that the resulting yarn has protruding thick broken ends. Fabrics
made from the yarn have a coarse "touch".
[0005] Nakgawa et al. U.S. Patent 4 084 622 describes a similar hot drawing process leading
to filaments having thick and thin portions. Breakage of the thick portions occurs
but is preferably avoided.
[0006] ' Therefore the problem to be solved by the present invention is to provide a new
broken filament yarn having improved handle in the fabric form and which can be made
by a process which can be more readily controlled."
[0007] The present invention comprises a yarn bundle comprising a plurality of quasi-continuous
filaments, each of the plurality of filaments having a non-round cross-sectional area
which varies repetitively from small values in thin regions to large values in thick
regions along its length, the large values being at least 25 % greater than the small
values, the thick and thin regions being out of phase from filament to filament along
the length of the yarn, and the filaments being repeatedly broken primarily in the
thin regions to provide broken ends protruding from the bundle.
[0008] The process of the invention is one for "making a spun-like yarn, comprising melt
spinning a feed yarn by contacting molten polymer streams extruded at different velocities
through combined orifices, the speeds and momenta of the paired streams issuing from
each combined orifice and the angle at which the streams converge outside the spinneret
are such that the slower streams travel in substantially straight lines after the
points at which the paired streams first touch and attach, while each of the smaller
and faster of the streams forms sinuous loops back and further between successive
points of attachment with its associated larger stream, the feed yarn so produced
comprising a plurality of continuous filaments, each of the filaments having a non-round
cross-sectional area which varies repetitively from small values in thin regions to
large values in thick regions along its length, the large values being at least 25
% greater than the small values, the thick and thin regions being out of phase from
filament to filament due to minor spinning differences between combined orifices,
and subsequently drawing the feed yarn at a draw ratio such that a plurality of the
filaments are broken primarily in the thin regions."
[0009] The term "quasi-continuous" is intended to reflect the fact that the filaments are
not continuous throughout the length of the yarn, being repeatedly broken in the way
defined, yet they are longer than "staple fibres" and otherwise behave as continuous
filaments do in forming the main structure of the yarn.
[0010] Preferably the filaments in the yarn bundle have alternating S and Z helical crimp
along their lengths.
[0011] According to another aspect of the invention, the yarn is false-twisted while being
drawn.
[0012] According to another aspect of the invention, the yarn is false-twisted and heat-set
while being drawn.
[0013] According to another aspect of the invention, the average distance between consecutive
thick portions along each of the filaments is between 2 centimeters and 20 meters,
and preferably between 20 centimeters and 5 meters.
[0014] According to another aspect of the invention, the large area values are at least
100 % greater than the small area values, and preferably are between 300 % and 500
% of the small area values.
[0015] Other aspect of the invention are in part set forth below and will in part be obvious
frorn the following description taken in connection with the accompanying Drawings
wherein:
Figure 1 is a vertical sectional view of the preferred embodiment of a spinneret usable
to make the feed yarns according to the invention;
Figure 2 is a bottom plan view of the Figure 1 spinneret, looking up;
Figure 3 is a cross-sectional view of a filament according to certain aspects of the
invention;
Figure 4 is a side elevation view of the molten streams issuing from the Figure 1
spinneret according to certain aspects of the invention;
Figure 5 is a graph illustrating the variation in denier along a representative filament
according to certain aspects of the invention; and
Figure 6 is a graph illustrating the distribution of the fluctuations illustrated
in Figure 4 for a representative multiple orifice spinneret according to certain aspects
of the invention.
Preparation of Exemplary Feed Yarn
[0016] The feed yarn for the process invention will be specifically exemplified using polyester
polymer, it being understood that certain aspects of the invention are applicable
to the class of melt- spinnable polymers generally. "Polyester" as used herein means
fiber-forming polymers at least 85 % by weight of which is formable by reacting a
dihydric alcohol with terephthalic acid. Polyester typically is formed either by direct
esterification of ethylene glycol with terephthalic acid, or by ester interchange
between ethylene glycol and dimethyltereph thalate.
[0017] Figures 1 and 2 illustrate the preferred embodiment of a spinneret design which can
be employed for obtaining all aspects of the invention. The spinneret includes a large
counterbore 20 formed in the upper surface 21 of spinneret plate 22. Small counterbore
24 is formed in the bottom of and at one side of large counterbore 20. A large capillary
26 extends from the bottom of large counterbore 20 at the side opposite small counterbore
24, and connects the bottom of large counterbore 20 with the lower surface 28 of plate
22. Small capillary 30 connects the bottom of counterbore 24 with surface 28. Capillaries
26 and 30 are each inclined four degrees from the vertical, and thus have an included
angle of eight degrees. Counterbore 20 has a diameter of 0,113 inch (2,87 mm.), while
counterbore 24 has a diameter of 0,052 inch (1,32 mm.). capillary 26 has a diameter
of 0,016 inch (0,396mm.) and a length of 0,146 inch (3,81mm.), while capillary 30
has a diameter of 0,009 inch (0,229 mm.) and a length of 0,032 inch (0,813 mm.). Land
32 separates capillaries 26 and 30 as they emerge at surface 28, and has a width of
0,0043 inch (0,108 mm.). Plate 22 has a thickness of 0,554 inch (14,07 mm.). Capillaries
26 and 30 together with counterbore 20 and 24 constitute a combined orifice for spinning
various novel and useful filaments according to the invention, as will be more particularly
described hereinafter.
[0018] As a specific example, molten polyester polymer of normal textile molecular weight
is metered at a temperature of 290° C through a spinneret having 34 combined orifices
as above specifically disclosed. The polymer throughput is adjusted to produce filaments
of 8 average denier per filament at a spinning speed of 3400 yards per minute (3091
metres per minute), the molten streams being conventionally quenched into filaments
by transversely directed quenching air.
[0019] Under these spinning conditions a remarkable phenomenon occurs, as illustrated in
Figure 4. Due to the geometry of the spinneret construction, the polymer flowing through
the smaller capillaries 30 has a higher velocity than that flowing through the larger
capillaries. The speeds and momenta of the paired streams issuing from each combined
orifice and the angle at which the streams converge outside the spinneret are such
that the slower streams 34 travel in substantially straight lines after the points
at which the paired streams first touch and attach, while each of the smaller and
faster of the streams 36 forms sinuous loops back and forth between successive points
of attachment 38 with its associated larger streams. This action can be readily observed
using a stroboscopic light directed onto the streams immediately below the spinneret
face 28. As the molten streams accelerate away from the spinneret, the slower stream
attenuates between the points of attachment 38 and the loops of the faster stream
become straightened until the faster stream is brought into continuous contact with
the slower stream. The slower stream attenuates more between the points of first attachment
than at the points of first attachment so that the resulting combined stream has a
cross-section which is larger at the points of first attachment than in the regions
between these points. The resulting combined stream is then further attenuated somewhat
until it is solidified into a filament 40 by the transverse quench air.
[0020] Each solidified filament 40 has non-round cross-sectional areas which vary repetitively
along its length. As illustrated qualitatively in Figure 5, when using the above spinning
conditions, the filament cross-sectional area repetitively varies at a repetition
rate of about one per meter, although this can be varied by modifying the spinning
conditions and the geometry of the spinneret passages.
[0021] Due to minor differences between confined orifices, temperature gradations across
the spinneret, and other like deviations from exactly the same treatment for each
pair of streams, a multiple orifice spinneret will typically provide somewhat different
repetition rates among the several resulting streams and filaments. An example of
this is qualitatively shown in Figure 6, wherein is shown that various orifices produce
somewhat different repetition rates as determined by stroboscopic examination of the
combined streams just below the spinneret face. The repetition rate is proportional
to the stroboscope frequency bringing about apparent cessation (or freezing) of movement
of the thick and thin regions of the filament. A number of such frequencies are plotted
along the horizontal axis of Figure 6, and on the vertical axis are plotted the number
of orifices giving filaments wherein such freezing was observed, at each given stroboscope
frequency. In the resulting multifilament yarn, each filament has a crosssectional
area which varies repetitively from small values in thin regions to large values in
thick regions along its length, the large values being at least 25 % greater than
the small values. Improved spun-like effects in the ultimate textured yarn are obtained
when the large values are at least 100 % greater than the small values, with optimum
results when the large values are between 300 % and 500 % of the small values.
An Exemplary process of the Invention
[0022] The above feed yarn is simultaneously draw- textured on a Barmag FK-4 texturing machine,
using as the false-twist device a friction aggregate of the type disclosed in Yu U.S.
Patent 3 973 383. The draw ratio is set at 1,60 with a winding speed of 385 ypm (about
350 meters per minute). Both heaters are set at 200° C., with an overfeed to the second
heater of 10.47 % and an overfeed to the winder of 6.79 %. The aggregate speed is
set such that the yarn tensions just before and just after the aggregate are equal.
[0023] The resulting yarn has numerous filament breaks primarily in the thin regions, the
broken ends protruding from the yarn bundle. The filaments are broken with considerably
more control than those in the patents referred to above, and because of the variable
denier, fabrics made from the resulting yarns have a much more soft and luxurious
hand than those made from prior art yarns with the same average denier per filament.
This softness of hand is particularly evident when the cross-sectional areas of the
thick portions of the filaments are at least 100 % greater than those of the thin
portions, and values between 300 % and 500 % greater are particularly preferred.
1. A yarn bundle comprising a plurality of quasi-continuous filaments, each of the
plurality of filaments having a non-round cross-sectional area which varies repetitively
from small values in thin regions to large values in thick regions along its length,
the large values being at least 25 % greater than the small values, the thick and
thin regions being out of phase from filament to filament along the length of the
yarn, and the filaments being repeatedly broken primarily in the thin regions to provide
broken ends protruding from the bundle.
2. A yarn bundle according to Claim 1 in which the filaments have alternating S and
Z helical crimp along their lengths.
3. A yarn bundle according to either Claim 1 or claim 2, in which the average distance
between consecutive thick regions along each of the filaments is between 2 centimeters
and 20 meters.
4. A yam bundle according to Claim 3, in which the said average distance is between
20 centimeters and 5 meters.
5. A yarn bundle according to any one of the preceding claims, in which the large
values are at least 100 % greater than the small values.
6. A yarn bundle according to any one of the preceding claims, in which the large
values are between 300 % and 500 % of the small values.
7. A process for making a spun-like yarn, comprising melt spinning a feed yarn by
contacting molten polymer streams extruded at different velocities through combined
orifices, the speed and momenta of the paired streams issuing from each combined orifice
and the angle at which the streams converge outsides the spinneret are such that the
slower streams travel in substantially straight lines after the points at which the
paired streams first touch and attach, while each of the smaller and faster of the
streams froms sinuous loops back and forth between successive points of attachment
with its associated larger stream, the feed yarn so produced comprising a plurality
of continuous filaments, each of the filaments having a non-round cross-sectional
area which varies repetively from small values in thin regions to large values in
thick regions along its length, the large values being at least 25 % greater than
the small values, the thick and thin regions being out of phase from filament to filament
due to minor spinning differences between combined orifices, and subsequently drawing
the feed yarn at a draw ratio such that a plurality of the filaments are broken primarily
in the regions.
The first underlined addition is taken from the specification at column 3, line 58
to column 4, line 3, and the second underlined addition from column 4, lines 30 to
36.
8. A process according to Claim 7, in which the yarn is false-twisted while the yarn
is being drawn.
9. A process according to Claim 7, in which the yarn is false-twisted and heat-set
while the yarn is being drawn.
10. A process according to any one of Claims 7 to 9, in which the large values are
at least 100 % greater than the small values.
11. A process according to Claim 10, in which the large values are between 300 % and
500 % of the small values.
1. Faisceau pour fil comprenant un grand nombre de filaments quasi continus, chacun
de ces filaments présentant une zone de section transversale non ronde qui varie de
manière répétitive à partir de valeurs faibles dans des régions minces vers des valeurs
élevées dans des régions épaisses dans le sens de sa longueur, les valeurs élevées
étant supérieures d'au moins 25 % aux valeurs faibles, les régions épaisses et minces
étant décalées d'un filament à un autre dans le sens longitudinal du fil et les filaments
étant rompus de manière répétée principalement dans les régions minces pour fournir
des bouts rompus faisant saillie sur le faisceau.
2. Faisceau pour fil suivant la revendication 1, dans lequel les filaments présentent
un crêpage hélicoidal S et un crêpage hélicoidal Z qui alternent dans le sens de leurs
longueurs.
3. Faisceau pour fil suivant la revendication 1 ou 2, dans lequel la distance moyenne
entre des régions épaisses successives le long de chacun des filaments est comprise
entre 2 cm et 20 m.
4. Faisceau pour fil suivant la revendication 3, dans lequel la distance moyenne est
comprise entre 20 cm et 5 m.
5. Faisceau pour fil suivant l'une quelconque des revendications précédentes, dans
lequel les valeurs élevées sont supérieures d'au moins 100 % aux valeurs faibles.
6. Faisceau pour fil suivant l'une quelconque des revendications précédentes, caractérisé
en ce que les valeurs élevées sont supérieures de 300 à 500 % aux valeurs faibles.
7. Procédé pour fabriquer un fil ressemblant à un filé, dans lequel on file un fil
d'alimentation à l'état fondu en amenant en contact des filets de polymère fondu extrudés
à des vitesses différentes à travers des orifices combinés, les vitesses et les forces
impulsionnelles des paires de filets sortant chacune de chaque orifice combiné, et
l'angle sous lequel les filets convergent à l'extérieur de la filière sont tels que
les filets plus lents suivent des lignes sensiblement droites en aval des points où
les filets de chaque paire se touchent pour la première fois et se fixent l'un à l'autre,
tandis que chaque filet plus petit et plus rapide forme des boucles sinueuses s'incurvant
dans un sens et dans l'autre entre des points de fixation successifs aux filets plus
grands associés, le fil d'alimentation ainsi produit comprenant un grand nombre de
filaments continus, chacun des filaments présentant une zone de section transversale
non ronde qui varie de manière répétitive à partir de valeurs faibles situées dans
des régions minces vers des valeurs élevées situées dans des régions épaisses dans
le sens de sa longueur, les valeurs élevées étant supérieures d'au moins 25 % aux
valeurs faibles, les régions épaisses et minces étant décalées d'un filament à un
autre par suite des différences mineures de filage entre orifices combinés, et on
étire ultérieurement le fil d'alimentation selon un rapport d'étirage tel que plusieurs
filaments soient rompus principalement dans les régions minces.
8. Procédé suivant la revendication 7, dans lequel le fil est soumis à une fausse
torsion pendant son étirage.
9. Procédé suivant la revendication 7, dans lequel le fil est soumis à une fausse
torsion et à un thermofixage pendant son étirage.
10. Procédé suivant l'une quelconque des revendications 7 à 9, dans lequel les valeurs
élevées sont supérieures d'au moins 100 % aux valeurs faibles.
11. Procédé suivant la revendication 10, dans lequel les valeurs élevées sont supérieures
de 300 à 500 % aux valeurs faibles.
1. Garnbündel, bestehend aus einer Anzahl von quasikontinuierlichen Filamenten, wobei
jedes der Filamente eine unrunde Querschnittsfläche aufweist, die sich entlang des
Filaments wiederholt von kleinen Werten in dünnen Bereichen zu großen Werten in dicken
Bereichen verändert, wobei die großen Werte mindestens 25 % größer als die kleinen
Werte sind, die dicken und dünnen Bereiche entlang des Garns von Filament zu Filament
außer Phase sind und die Filamente wiederholt gebrochen sind, und zwar vorzugsweise
in den dünnen Bereichen, derart, daß gebrochene Enden aus dem Bündel vor springen.
2. Garnbündel nach Anspruch 1, bei welchem die Filamente entlang ihrer Länge eine
alternierende schraubenförmige S- und Z-Kräuselung aufweisen.
3. Garnbündel nach Anspruch 1 oder 2, bei welchem der durchschnittliche Abstand zwischen
aufeinanderfolgenden dicken Bereichen entlang eines jeden der Filamente zwischen 2
cm und 20 m liegt.
4. Garnbündel nach Anspruch 3, bei welchem der besagte durchschnittliche Abstand zwischen
20 cm und 5 m liegt.
5. Garnbündel nach einem der vorhergehenden Ansprüche, bei welchem die großen Werte
mindestens 100 cVo größer als die kleinen Werte sind.
6. Garnbündel nach einem der vorhergehenden Ansprüche, bei welchem die großen Werte
zwischen 300 und 500 % größer als die kleinen Werte sind.
7. Verfahren zur Herstellung eines Garns, das einem gesponnenen Garn ähnelt, bei welchem
ein Beschickungsgarn schmelzgesponnen wird durch Zusammenführen von mit unterschiedlicher
Geschwindigkeit durch kombinierte Öffnungen extrudierten geschmolzenen Polymerströmen,
wobei die Geschwindigkeiten und die Momente der aus jeder kombinierten Öffnung austretenden
gepaarten Ströme und der Winkel, mit welchem die Ströme außerhalb der Spinndüsenplatte
konvergieren, so sind, daß die langsameren Ströme nach den Punkten, an denen sich
die gepaarten Ströme zuerst berühren und aneinander haften, in im wesentlichen geraden
Linien laufen, während jeder der kleineren und schnelleren Ströme zwischen aufeinanderfolgenden
Haftpunkten am zugehörigen größeren Strom hinund hergehende sinusförmige Schlingen
bildet, wobei das so hergestellte Beschickungsgarn eine Anzahl kontinuierlicher Filamente
aufweist, von denen jedes eine unrunde Querschnittsfläche besitzt, die sich entlang
des Filaments von kleinen Werten in dünnen Bereichen zu großen Werten in dicken Bereichen
ändert, wobei die großen Werte mindestens 25 % größer sind als die kleinen Werte und
wobei die dicken und dünnen Bereiche von Filament zu Filament aufgrund kleinerer Spinnunterschiede
zwischen kombinierten Öffnungen außer Phase sind, worauf das Beschickungsgarn mit
einem solchen Verstreckverhältnis verstreckt wird, daß eine Anzahl der Filamente gebrochen
wird, und zwar vorzugsweise in den dünnen Bereichen.
8. Verfahren nach Anspruch 7, bei welchem das Garn während des Verstreckens falschgezwirnt
wird.
9. Verfahren nach Anspruch 7, bei welchem das Garn während des Verstreckens falschgezwirnt
und wärmefixiert wird.
10. Verfahren nach einem der Ansprüche 7 bis 9, bei welchem die großen Werte mindestens
100 % größer als die kleinen Werte sind.
11. Verfahren nach Anspruch 10, bei welchem die großen Werte zwischen 300 und 500
% größer als die kleinen Werte sind.

