(1) Publication number:

0 008 306

A1

(12)

300

EUROPEAN PATENT APPLICATION

(21) Application number: 78100698.6

(22) Date of filing: 17.08.78

(a) Int. Cl.³: **B** 65 **C** 9/18 B 65 **C** 11/02

(43) Date of publication of application: 05.03.80 Bulletin 80/5

(84) Designated Contracting States: BE CH DE FR GB LU NL SE

(1) Applicant: Kabushiki Kaisha Sato Kenkyusho 21-23, 3-chome Kamikitazawa Setagaya-ku Tokyo(JP)

(72) inventor: Yo Sato Mr. 21-23, 3-chome Kamikitazawa Setagaya-ku Tokyo(JP)

(74) Representative: Patentanwälte Dipl.-Ing. A. Grünecker, Dr.-Ing. H. Kinkeldey, Dr.-Ing. W. Stockmair, Dr. rer. nat. K. Schumann, Dipl.-Ing. P. Jakob, Dr. rer. nat. G. Bezold Maximilianstrasse 43 D-8000 München 22(DE)

(A) Label positioning mechanism for printing machine.

(57) A label positioning mechanism for use with a printing machine which is operative to print one by one the labels. The label positioning mechanism includes a feed wheel (9) which is mounted rotatably in the body of the printing machine and formed on its circumference with such a label advancing surface (35) as is engageable with the label strip (8) for advancing the same in a preset direction. Further inclusive is a label positioning member (29) which is connected pivotally to the machine body such that it is rotatable to and from the label advancing surface of the feed wheel. An arm mechanism (25, 29) has its one end fixed to an operating shaft (18), which is mounted rotatably in the machine body, and its other end connected pivotally to the label positioning member so that the operating force of the operating shaft may be transmitted to the label positioning member when the operating shaft is actuated. Biasing means (38) is used to urge the label positioning member to the feed wheel.

./...

FIG.3

1

5

10

LABEL POSITIONING MECHANISM FOR PRINTING MACHINE

BACKGROUND OF THE INVENTION

15 Field of the Invention

The present invention relates to a label printing machine, and more particularly to a label positioning mechanism for use with the label printing machine.

20 Description of the Prior Art

Generally speaking, in a printing machine such as a label printing and applying machine, in order to feed a continuous strip of labels onto a printing platen, a feed wheel is turned while having its pawls engaging

- with the slits which are formed in the continuous label strip. In order to ensure the engagement and accordingly the feed, therefore, the label strip has to be brought into contact with the feed wheel.
- For this purpose, the conventional label positioning mechanism has such a label positioning member mounted in the body of the printing machine as can be brought to and from the label advancing circumference of the feed wheel. However, the prior art has failed to provide a label positioning mechanism which can bring the continuous label strip into contact with the feed wheel in a reliable manner even with a simplified construction and

and which can accomplish the operations of loading and unloading the label strip onto and from the feed wheel.

SUMMARY OF THE INVENTION

It is, therefore, an object of the present invention to provide a label positioning mechanism for use with a printing machine, which is free from the drawbacks concomitant with the prior art.

Another but major object of the present invention is to provide a label positioning mechanism of the above type, in which a label positioning member can be brought to and from the label advancing surface of a feed wheel by the actuation of an operating shaft and in which the label positioning member is urged to the label advancing surface of the feed wheel by the biasing force of biasing means so that the label strip can be pushed onto the feed wheel without any fail to ensure its feed and so that the loading and unloading operations of the label strip onto and from the feed wheel can be carried out easily and smoothly, while simplifying the overall constructure of the label printing mechanism.

According to a major feature of the present invention, there is provided a label positioning mechanism for use with a printing machine, which is operative to print one by one the labels removably adhered in series to a strip of backing paper, said label positioning mechanism comprising: a feed wheel mounted rotatably in the body of said printing machine and formed on its circumference with a label advancing surface which is engageable with the label strip for advancing the same in a preset direction; a label positioning member connected pivotally to the body of said printing machine such that it is rotatable between a first position, where it is apart from the label advancing surface of said feed wheel

thereby to form an opening inbetween, and a second position, where it is close to the same thereby to leave a clearance having a spacing substantially equal to the thickness of said label strip; an operating shaft mounted rotatably in the body of said printing machine; an arm mechanism having its one end fixed to said operating shaft and its other end connected pivotally to said label positioning member thereby to transmit the operating force of said operating shaft to said label positioning member when the former is actuated; and biasing means for urging said label positioning member to the secondnamed position through said arm mechanism.

BRIEF DESCRIPTION OF THE DRAWINGS

15

20

25

30

Other objects and advantages of the present invention will become apparent from the following description taken in conjunction with the accompanying drawings, in which:

Fig. 1 is a simplified side elevation of the label printing machine such as a label printing and applying machine of portable type, in which the label positioning mechanism according to the present invention is used, with the label positioning member being apart from the feed wheel;

Fig. 2 is also a simplified side elevation of the label printing machine with the label positioning member being positioned close to the label advancing circumference of the feed wheel; and

Fig. 3 is an enlarged perspective view showing the essential components of the label positioning mechanism partially in an exploded manner.

DESCRIPTION OF THE PREFERRED EMBODIMENT

The label positioning mechanism according to the present invention will now be described with reference to Figs. 1 to 3.

Indicated generally at reference numeral 1 is the body 1 of a printing machine such as a hand labeler, with which the label positioning mechanism is to be used. machine body 1 is equipped with a grip 2, a hand lever 3, a printing head 4 and a not-shown printing platen, all of which are required for the printing operations. machine body 1 thus constructed has its upper center portion formed integrally with a label holder side plate 6, which in turn is equipped at its center with a core There is attached removably and rotatably retainer 7. 10 to the core retainer 7 a continuous strip of labels 8 which is rolled on a not-shown core. The continuous label strip 8 is composed of a number of labels which are removably adhered to the surface of a strip of back-15 ing paper. This backing paper strip is formed at its preset positioned with not-shown slits, which are sized to be detachably retained by the pawls 10 of a laterdescribed feed roller 9. On the other hand, the label holder side plate 6 is equipped at its rear end (or at 20 the righthand side of Fig. 1) with a guide roller 11, by which the leading end of the continuous label strip 8 is guided while being retained thereon.

There are located at the upper portion of the machine 25 body 1 a pair of upper label inlet members 12 which are made integral therewith while leaving a preset clearance therefrom in the widthwise direction. Each of the upper label inlet members 12 has its upper end positioned in the vicinity of the guide roller 11 and its lower end 30 positioned in the vicinity of the upper end portion of a guide plate 13, which will be described later. intermediate portion of each of the upper label inlet members 12 between the two ends thereof is gently curved along the outer surface of the continuous label strip 8. 35 There are located below the upper label inlet members 12 a pair of lower label inlet members 14 which are also made integral with the machine body 1 such that they are

1 curved along the upper members 12. Thus, there is formed a clearance 15 of preset spacing between the upper surfaces of the lower members 14 and the lower surfaces of the upper members 12. It should be noted bere that the upper end portions of the both label inlet members 12 and 14 are curved to leave each other so that they can receive the leading end of the continuous label strip 8 without any difficulty.

The afore-mentioned guide plate 13 is made to have a generally rectangular shape and to depend from the front (which is located in the lefthand side of Fig. 1) of the lower end portions of the lower label inlet members 14.

There is located at the back of the guide plate 13 a pressure tongue 16 which is hinged to depend from the lower end portions of the lower label inlet members 14.

The pressure tongue 16 thus hinged is always biased by a torsion spring 17 in the direction to be brought into contact with the back of the guide plate 13.

20

25

30

35

There is located in front of the guide plate 13 an operating shaft 18 of rectangular section, which is rotatably mounted to the machine body 1 by means of two As seen from Fig. 3, a lock lever 19 is formed with a rectangular hole so that it is fixed therethrough to one end portion of the operating shaft The lock lever 19 is made to have a cylindrical 18. main portion 20 formed in its outer circumference with an engagement notch 21, which is made into and out of engagement, by the raising and laying operations of the lock lever 19, with the engagement projection 23 of such an L-shaped engagement member 22 as is fixed to the outer side of the machine body 1. It should be noted here that the upright portion 22a of the engagement member 22 is made of an elastic material so as to ensure and facilitate the engagement and disengagement between the engagement notch and projection 21 and 23.

There are fixed to the operating shaft 18 a pair of 7 operating arms 25, which are juxtaposed at a preset spacing while being connected by means of a bridge member 24, at their end portions 25a through their rectangular holes 26. The other end portions 25b of the operating arms 25 are arranged before and below the operating shaft 18. A pair of connecting arms 27 are pivotally connected at their one ends 27a to the other end portions 25b of the operating arms 25, respectively. The arms 27 thus connected are made to depend from the 10 other end portions 25b of the operating arms 25 and to have their other ends 27b pivotally connected to the one end 29a of a label positioning member 29 through a long It should be noted here that there are mounted pin 28. three guide rollers 30 equidistantly and rotatably on 15 that long pin 28 so as to smoothen the feed of the continuous label strip 8.

The afore-mentioned label positioning member 29 is made 20 of a synthetic resin or the like such that it is curved along the outer circumference of the feed wheel 9, which will be described later in detail. The label positioning member 29 is connected at its other end 29b to the machine body 1 pivotally by a preset angle by means of a 25 There is mounted on the lower surface of the shaft 31. label positioning member 29 a label holding member 32 which has its one end 32a retained on the one end 29a of the member 29 and its other end 32b retained on the other end 29b of the same. The center portion of the 30 label holding member 32 is exposed to the outside through an aperture 33 which is formed in the label positioning member 29. A pair of widthwise regulating side plates 34 are formed to depend from the both side edges of the label positioning member 29 so as to 35 regulate the widthwise play of the continuous label strip 8.

The label positioning member 29 thus constructed is brought to approach and leave the feed wheel 9 of cylindrical shape through the continuous label strip 8. The feed wheel 9 is mounted to the machine body 1 by 5 means of a shaft 36 such that it can be turned a preset pitch by the manual squeezing action of the hand lever 3 of the machine body 1. The outer circumference of the feed roller 9 acts as a label advancing surface which is formed equidistantly with a number of the pawls 10 in the circumferential direction of the feed wheel 9.

On the other hand, a pair of torsion springs 38 are wound on the center portion of the afore-mentioned operating shaft 18 such that they have their one ends 38a 15 retained on the upper edges of the operating arms 25 and their other ends 38b retained on the upper edge of the bridge member 24. As a result, the both operating arms 25 are always biased to rotate counter-clockwise about the operating shaft 18, as viewed in Fig. 2. Thus, the 20 label positioning member 29 is biased to rotate clockwise about the shaft 31 by the actions of the operating arms 25 so that it is pushed onto the label advancing surface 35 of the feed wheel 9.

25 Now, the loading and unloading operations of the continuous label strip 8 onto and from the label positioning mechanism thus far described will be described here-The description is first made upon the case, inafter. in which the label strip 8 is to be loaded onto the 30 Fig. 1 shows the condilabel positioning mechanism. tion, under which the lock lever 19 is at its raised position so that its engagement notch 21 is in engagement with the engagement projection 23 of the engagement As a result, the operating arms 25 have member 22. 35 their other ends 25b held before and above their one ends 25a, and the label positioning member 29 has its one end 29a held at the upper limit of its rotations so

that it establishes an open space together with the label advancing surface 35 of the feed wheel 9.

Under this condition, the continuous label strip 8, which is held on the core retainer 7, is unrolled therefrom so that its leading end is inserted by way of the guide roller 11 into the clearance 15 between the upper and lower label inlet members 12 and 14 and further advanced along these members 12 and 14. The label strip 8 thus 10 advanced brings its leading end into abutment against the rear surface of the guide plate 13, where it turns its advancing direction so that its leading end can proceed between the guide plate 13 and the pressure tongue Since, in this instance, the pressure tongue 16 is 15 urged forward by the action of the torsion spring 17, the leading end of the label strip 8 is guided, while running on the upper surface of the pressure tongue 16, into the opening which is formed between the label positioning member 29 and the feed wheel 9. 20 label strip 8 is advanced along the label advancing surface 35 of the feed wheel 9 until it is fed to the outside from between that surface 35 and the other end 29b of the label positioning member 29.

After that, the afore-mentioned lock lever 19 is laid down so as to release the engagement between the notch 21 and the projection 23. Then, the operating shaft 18 is turned counter-clockwise, as viewed in Fig. 1, and the operating arms 25 are accordingly turned counter-clockwise about the operating shaft 18. It should be noted here that the rotations of the operating arms 25 can take place promptly and smoothly because the biasing forces of the torsion springs 38 act in the direction to promote the rotations of the operating arms 25.

In this meanwhile, the connecting arms 27 are moved downward in accordance with the rotations of the operat-

ing arms 25 so that the label positioning member 29 is turned clockwise, as viewed in Fig. 1, about the shaft 31 until it pushes the continuous label strip 8 in position onto the label advancing surface 35 of the feed wheel 9, as can be seen from Figs. 2 and 3. It should be noted here that the pushing operation of the label positioning member 29 can be accomplished reliably because the biasing forces of the torsion springs 38 act to bias the connecting arms 27 downwardly, as viewed in Fig. 2, through the operating arms 25.

If, under such condition, the hand lever 3 or the like of the machine body 1 is actuated or squeezed, the feed wheel 9 is turned a preset pitch so that the continuous label strip 8 can be fed in a desired direction by the actions of the pawls 10 on the feed wheel 9.

Now, the description will be made upon the case, in which the continuous label strip 8 is to be unloaded from the feed wheel 9. When the lock lever 19 is raised from its laid position of Fig. 2, the operating shaft 18 is turned clockwise, as viewed in the same Figure. The operating arms 25 are accordingly turned clockwise about the operating shaft 18 so that their other ends 25b are held at the upper limit of their rotations by the engagement between the notch 21 of the lock lever 19 and the projection 23 of the engagement member 22.

During the rotations of the operating arms 25, the connecting arms 27 are pulled upward so that the label positioning member 29 is turned counter-clockwise, as viewed in Fig. 2, about the shaft 31. As a result, the afore-mentioned opening is formed again between that member 29 and the feed wheel 9, thus restoring the initial condition of Fig. 1.

- After that, if that portion of the continuous label strip 8 in the vicinity of the upper ends of the upper and lower label inlet members 12 and 14 is pulled upward, the label strip 8 as a whole can be taken out of the machine
- 5 body 1 by way of that opening, the pressure tongue 16, the guide plate 13 and the clearance 15 between the inlet members 12 and 14 in the order recited.
- As has been described hereinbefore, the following points
 will be appreciated as the advantages of the label
 positioning mechanism according to the present invention.
- First of all, since the label positioning member is urged toward the feed wheel by the biasing forces of the elastic members, the continuous label strip never fails to be pushed onto the feed wheel so that it can be fed without fail in accordance with the rotations of the feed wheel.
- Since, moreover, the label positioning member is made capable of approaching and leaving the label advancing surface of the feed wheel, the loading and unloading operations of the label strip onto and from the feed wheel can be accomplished easily and promptly. This advantage can be reflected by the case, in which the labels are peeled off from their backing strip and adhered to the feed wheel or the like. Even in this case, those labels can be removed without any difficulty.
- It should be appreciated as a further advantage that the bringing operations of the label positioning member to and from the feed wheel can be carried out easily and promptly simply by actuating the operating shaft.
- Since, still moreover, the pushing operation of the label positioning member onto the feed wheel is accomplished by the biasing forces of the elastic members,

it can take place smoothly and promptly.

The major components of the label positioning mechanism of the present invention are five, namely, the label positioning member, the arm mechanism, the operating shaft, the elastic member and the feed wheel. Thus, the number of parts required is relatively small for the label positioning mechanism of this kind, while simplifying the construction, so that the label positioning mechanism of the invention can suit itself for mass production.

Claims:

- 1. A label positioning mechanism for use with a printing machine which is operative to print one by one the labels, said label positioning mechanism comprising: a feed wheel mounted rotatably in the body of said printing machine and formed on its circumference with a label advancing surface which is engageable with the label strip for advancing the same in a preset direction; 10 a label positioning member connected pivotally to the body of said printing machine such that it is rotatable between a first position, where it is apart from the label advancing surface of said feed wheel thereby to form an opening inbetween, and a second position, where 15 it is close to the same thereby to leave a clearance having a spacing substantially equal to the thickness of said label strip; an operating shaft mounted rotatably in the body of said printing machine; 20 an arm mechanism having its one end fixed to said operating shaft and its other end connected pivotally to said label positioning member thereby to transmit the operating force of said operating shaft to said label positioning member when the former is actuated; and 25 biasing means for urging said label positioning member
- 2. A label positioning mechanism according to claim 1,
 wherein said arm mechanism includes a pair of operating
 arms having their one ends fixed to said operating shaft,
 a bridge member connecting said operating arms, and a
 pair of connecting arms having their one ends connected
 pivotally to the other ends of said operating arms,
 respectively, and their other ends connected pivotally
 to said label positioning member.

to the second-named position.

- 1 3. A label positioning mechanism according to claim 2, wherein said biasing means includes a pair of torsion springs having their one ends retained on said bridge member and their other ends retained on said operating arms, respectively.
 - 4. A label positioning mechanism according to claim 2, further comprising a lock lever fixed to one end of said operating shaft thereby to manually actuate the same.

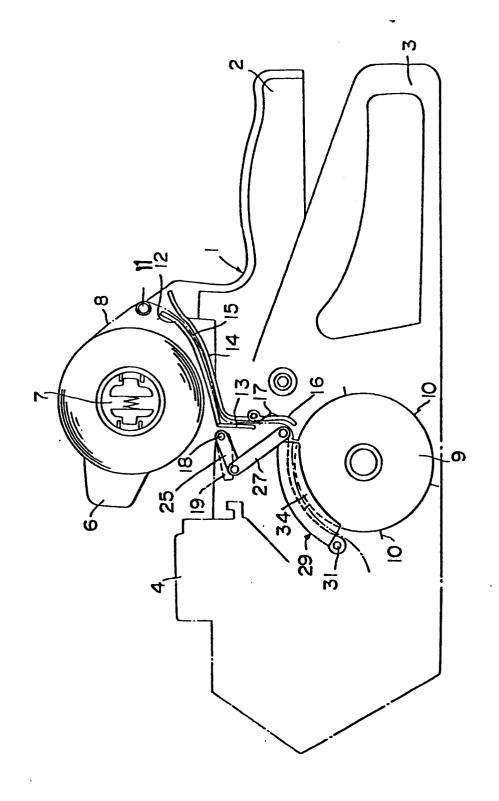
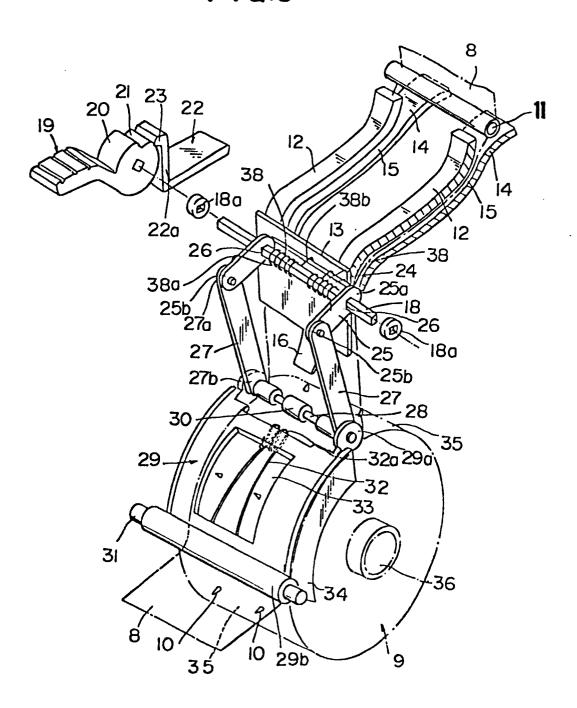



FIG.3

EPO Form 1503.1 06.78

EUROPEAN SEARCH REPORT

Application number

EP 78 10 0698

	DOCUMENTS CONSIDERED TO BE R	ELEVANT	CLASSIFICATION OF THE APPLICATION (Int. Cl. ²)
tegory	Citation of document with indication, where appropria passages	ite, of relevant Releva	<u> </u>
			B 65 C 9/18 11/02
	DE - A - 2 734 334 (K.K.S.K	1,2	17,02
	* Page 8, line 15 to page line 21; figures 1,2 *	1	
	FR - A - 2 202 499 (K.K.S.K	1,2	·
	* Page 8, lines 26-39; fig	gure 2 #	
	NL - A - 78 01161 (K.K.S.K. * Page 7, line 31 to page	1	TECHNICAL FIELDS SEARCHED (Int.Cl. ²)
	line 1; figure 1 *		в 65 С
			2 0, 0
		·	
			CATEGORY OF CITED DOCUMENTS
			X: particularly relevant
			A: technological background
			O: non-written disclosure P: intermediate document
			T: theory or principle underlying
			the invention E: conflicting application
			D: document cited in the
			application L: citation for other reasons
			E. CHARLETT TO GUITO TOUGOUIS
			5: member of the same patent
Ø	The present search report has been drawn up	for all claims	family, corresponding document
	of search The Hague Date of completion of	the search Ex	WROMMAN