(19)
(11) EP 0 009 236 A1

(12) EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag:
02.04.1980  Patentblatt  1980/07

(21) Anmeldenummer: 79103509.0

(22) Anmeldetag:  19.09.1979
(51) Internationale Patentklassifikation (IPC)3C10G 69/06
(84) Benannte Vertragsstaaten:
AT BE DE FR GB IT NL SE

(30) Priorität: 21.09.1978 DE 2840987

(71) Anmelder: Linde Aktiengesellschaft
D-65189 Wiesbaden (DE)

(72) Erfinder:
  • Dorner, Armin
    D-8023 Baierbrunn (DE)

(74) Vertreter: Schaefer, Gerhard, Dr. 
Linde Aktiengesellschaft Zentrale Patentabteilung
D-82049 Höllriegelskreuth
D-82049 Höllriegelskreuth (DE)


(56) Entgegenhaltungen: : 
   
       


    (54) Verfahren zum Spalten von Kohlenwasserstoffen


    (57) 57 Das Verfahren zum Spalten von Kohlenwasserstoffen kann bei der thermischen Spaltung (9) schwerer Kohlenwasserstoffe, die einer hydrierenden Vorbehandlung (2) unterzogen werden, angewendet werden. Der Pyrolyserückstand (14) der thermischen Spaltung (9) wird durch partielle Oxidation (15) vergast. Der dabei gebildete Wasserstoff wird abgetrennt (19, 21) und der hydrierenden Vorbehandlung (2) zugeführt. Bei einer Abtrennung polymerer Bestandteile des Pyrolyserückstandes (14) werden nur diese vergast, während die nicht polymeren Komponenten zur Hydrierung (2) zurückgeführt werden.




    Beschreibung


    [0001] Die Erfindung betrifft ein Verfahren zum Spalten von Kohlenwasserstoffen, bei dem die Kohlenwasserstoffe zunächst hydriert und anschließend thermisch gespalten werden.

    [0002] Für die Herstellung von Olefinen sind als Einsatz für eine thermische Spaltung leichte Kohlenwasserstoffe wie Äthan oder Propan oder Kohlenwasserstoffgemische mit einem Siedepunkt unterhalb 200 °C, beispielsweise Naphtha, besonders geeignet. Sie führen zu einer hohen Ausbeute und ergeben wenig unerwünschte Nebenprodukte.

    [0003] Da jedoch ein großer Bedarf an Olefinen besteht, der zu einer Verknappung oder Preissteigerung dieser günstigen Einsätze führen kann, wird seit einiger Zeit der Versuch unternommen, Verfahren zu entwickeln, die auch die günstige Verwertung eines höhersiedenden Einsatzmaterials erlauben.

    [0004] Die Verwendung höhersiedender Einsätze bringt grundsätzlich das Problem mit sich, daß die Olefinausbeute abnimmt und flüssige Spaltprodukte anfallen, deren Anteil mit steigendem Siedebereich des Einsatzes stark zunimmt. Die flüssigen Spaltprodukte werden im allgemeinen in eine unter 200 °C siedende Fraktion und eine über 200 °C siedende Fraktion aufgetrennt. Die tiefersiedende Fraktion stellt einen hochoktanigen Treibstoff dar und enthält wertvolle Komponenten wie Benzol, Toluol und Xylol. Die über 200 °C siedende Fraktion bildet dagegen ein unerwünschtes Produkt, das hochkondensierte Aromaten, polymere Verbindungen und Schwefelverbindungen enthält. Der Anteil dieser nachfolgend als Rückstand bezeichneten Fraktion liegt bei der Spaltung von Naphtha im Bereich von etwa 1 bis 5 Gew-% der Gesamtprodukte und steigt bei der Verwendung von Gasöl in die Größenordnung von 30 Gew-% und bei noch schwereren Einsätzen wie Vakuumgasöl oder Rohöl bzw. Rohölrückstände auf noch höhere Werte. Der im Einsatzmaterial enthaltene Schwefel reichert sich im Rückstand in solchen Mengen an, daß die Verfeuerung nur dieses Brennstoffes ohne Zumischung schwefelarmer Brennstoffe zu einem unvertretbar stark verschmutzten Abgas führt. Die Mischung mit schwefelarmen Brennstoffen ist jedoch mit weiteren Problemen verbunden, weil der Rückstand nur begrenzt mit Rohöldestillaten mischbar ist und deshalb nur teilweise mit ihnen verschnitten werden kann. Eine weitere unerwünschte Eigenschaft dieser Fraktion ist darin zu sehen, daß sie nur bedingt lagerungs- und transportfähig ist.

    [0005] Die Herstellung von Olefinen durch Spaltung von Kohlenwasserstoffgemischen mit einem Siedebereich oberhalb von 200 °C, wie beispielsweise Gasöl oder Vakuumgasöl, ist wirtschaftlich nicht vertretbar, falls keine Vorkehrungen zur Herabsetzung der anfallenden Mengen des Rückstandes getroffen werden oder falls diese Fraktion nicht anderweitig einer wirtschaftlichen Nutzung zugeführt werden kann.

    [0006] Zur Lösung dieses Problems ist es bereits aus der DE-OS 21 64 951 bekannt, das Einsatzmaterial vor der thermischen Spaltunq in Anwesenheit von Wasserstoff katalytisch zu hydrieren. Die hydrierende Vorbehandlung führt zu einer Verringerung des Gehaltes an polyaromatischen Verbindungen, die im wesentlichen für die Bildung des Rückstandes verantwortlich sind. Darüber hinaus findet auch eine Entschwefelung des Einsatzmaterials statt. Bei Anwendung dieses bekannten Verfahrens wird zwar die Menge der über 200 °C . siedenden flüssigen Spaltprodukte gegenüber Verfahren ohne vorherige Hydrierung verringert, doch fallen aufgrund der verwendeten höhersiedenden Einsatzmaterialien trotzdem erhebliche Mengen an Rückstand an.

    [0007] Darüber hinaus ist auch bereits vorgeschlagen worden (Patentanmeldung P 28 05 721.8), die über 200 °C siedenden Spaltprodukte dadurch aufzuarbeiten, daß die polymeren Bestandteile dieser Fraktion, die etwa 20 Gew-% ausmachen, abgetrennt werden. Während die polymerfreEFraktion ein gut verwertbares Heizöl darstellt, bilden die polymeren Rückstände dagegen ein wirtschaftlich gering bewertetes Produkt.

    [0008] Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art so auszugestalten, daß keine Produkte anfallen, deren Siedebereich über dem von Benzin liegt.

    [0009] Diese Aufgabe wird dadurch gelöst, daß mindestens ein Teil des Rückstandes der thermischen Spaltung durch eine partielle Oxidation zu einem Gasgemisch umgesetzt wird.

    [0010] Bei der erfindungsgemäßen Verfahrensführung wird aus der Rückstandsfraktion ein im wesentlichen aus Kohlenoxiden und. Wasserstoff bestehendes Gasgemisch erzeugt, das - gegebenenfalls nach einer Reinigung und/oder Zerlegung in seine einzelnen Bestandteile - für eine Reihe verschiedener Prozesse verwendbar ist, beispielsweise als Reduktionsgas, Synthesegas oder Heizgas. Aus dem gering bewerteten Rückstand der thermischen Spaltung wird damit also ein vielseitig verwertbares und wirtschaftlich interessantes Gasgemisch hergestellt.

    [0011] Die partielle Oxidation kann mit Luft, mit Sauerstoff oder mit anderen an Sauerstoff angereicherten Gasen oder Gasgemischen durchgeführt werden. Darüber hinaus ist es günstig, als zusätzliches Vergasungsmittel noch Wasserdampf zuzuführen.

    [0012] In einer günstigen Weiterbildung des erfindungsgemäßen Verfahrens werden, nach ihrer Abtrennung aus der Rückstandsfraktion, nur die polymeren Bestandteile dieser Fraktion zu dem Gasgemisch umgesetzt. Durch diese Maßnahme wird die Wirtschaftlichkeit des Gesamtverfahrens erhöht, da lediglich eine geringe Menge von etwa 20 % der Rückstandsfraktion in die partielle Oxidation gelangt, was die Verwendung kleinerer Bauteile und die Bereitstellung geringerer Mengen an sauerstoffhaltigem Oxidationsmittel und gegebenenfalls Wasserdampf zur Folge hat. Der polymerfreie Anteil der Rückstandsfraktion kann entweder direkt als Heizöl verwertet oder erneut als Einsatzmaterial für die Hydrierung verwendet werden.

    [0013] Falls die von den polymeren Verbindungen befreite Rückstandsfraktion erneut in die Hydrierstufe eingeführt wird, lassen sich besonders hohe Ausbeuten hinsichtlich der gewünschten Verfahrensprodukte erzielen, weil die gereinigte Rückstandsfraktion in der Hydrierung und nachfolgenden thermischen Spaltung ähnliche Produkte ergibt wie das frische Einsatzmaterial.

    [0014] Zu den in der Hydrierstufe erfolgenden Reaktionen wird Wasserstoff benötigt. Dazu kann der bei der thermischen Spaltung erzeugte Wasserstoff nach seiner Abtrennung von den übrigen Spaltprodukten direkt verwendet werden. Hierdurch können aber im allgemeinen nur etwa 10 bis 30 % des Wasserstoffbedarfs gedeckt werden. Zur weiteren Abdeckung des Wasserstoffbedarfs aus unmittelbaren Verfahrensprodukten wird deshalb in einer weiteren Ausbildung der Erfindung aus dem bei der partiellen Oxidation gebildeten Gasgemisch eine wasserstoffreiche Fraktion abgetrennt und der Hydrierung zugeführt. Bei einer derartigen Verfahrensführung ist der durch eine externe Versorgung zu deckende Wasserstoffbedarf besonders gering. Darüber hinaus ist es günstig, daß ein Teil des Gasgemisches im Prozeß selbst wieder verwertet werden kann, so daß keine Vorkehrungen für einen Export von Gas zu gesonderten Anlagen erforderlich sind. Das bei der Trennung des Gasgemisches anfallende Restgas läßt sich beispielsweise als Heizgas verwenden.

    [0015] Da die Hydrierung im allgemeinen unter Wasserstoffüberschuß durchgeführt wird, ergibt sich als Hydrierprodukt eine flüssige Fraktion aus Kohlenwasserstoffen und eine gasförmige Fraktion, die im wesentlichen aus Wasserstoff besteht und daneben noch leichte Kohlenwasserstoffe und gasförmige Verunreinigungen wie Schwefelwasserstoff enthält. Während die leichten Kohlenwasserstoffe aus der gasförmigen Fraktion einen günstigen Einsatz für die thermische Spaltung darstellen, wird der überschüssige Wasserstoff nach seiner Abtrennung auf einer Rückführungsbasis wieder der Hydrierstufe zugeführt. Für diese Verfahrensführung ist eine Gaszerlegung erforderlich, in der eine Abtrennung des Wasserstoffs sowie der Verunreinigungen von den leichten Kohlenwasserstoffen vorgenommen wird. Da auch das bei der partiellen Oxidation anfallende Gasgemisch einer Zerlegung unterzogen werden muß, um den Wasserstoff für die Hydrierung abzutrennen, ist es in weiterer Ausbildung des erfindungsgemäßen Verfahrens günstig, dieses Gasgemisch gemeinsam mit der nach der Hydrierung anfallenden gasförmigen Fraktion zu zerlegen, um die Kosten für Investitionen und Betrieb einer verfahrensgemäßen Anlage zu senken.

    [0016] Nachfolgend wird das erfindungsgemäße Verfahren anhand zweier Ausführungsbeispiele, die in den Figuren schematisch dargestellt sind, näher erläutert. Beide Figuren zeigen eine Verfahrensführung, bei der ein schweres Kohlenwasserstoffgemisch zunächst hydriert und anschließend thermisch gespalten wird. Die bei dem Verfahren anfallenden schweren Rückstände werden mittels partieller Oxidation in ein wasserstoffreiches Gas umgesetzt, wobei der Wasserstoff nach seiner Reinigung der Hydrierstufe zugeführt wird.

    [0017] über Leitung 1 wird das Einsatzmaterial, beispielsweise ein Vakuumdestillat, einer Hydrierstufe 2 zugeführt. Die Hydrierung kann unter Verwendung üblicher schwefelresistenter Katalysatoren mit Elementen der VI-VIII. Nebengruppe des Periodensystems oder deren Mischungen in elementarer, oxidischer oder sulfidischer Form auf einem Träger aus Kieselsäure, Kieselsäure/Tonerde oder auf Zeolithbasis durchgeführt werden. Günstige Hydrierbedingungen liegen vor, wenn bei einem Druck zwischen 10 und 300 bar, vorzugsweise zwischen 15 und 150 bar, bei Temperaturen zwischen 100 und 500 °C, vorzugsweise zwischen 200 und 400 °C und bei einer stündlichen Raumge- schwindigkeit zwischen 0,2 und 10 l.l/h gearbeitet wird.

    [0018] Der für die Hydrierung erforderliche Wasserstoff wird der Hydrierstufe 2 über Leitung 3 zugeleitet. Das Hydrierprodukt gelangt über Leitung 4 zum Entspannungsventil 29, in dem es auf den Druck der thermischen Spaltung, vorzugsweise auf einen Druck zwischen 1 und 4 bar, entspannt wird. Anschließend strömt das Hydrierprodukt in einen Abscheider 5 und wird dort in eine im wesentlichen aus Wasserstoff bestehende gasförmige Fraktion und in ein flüssiges Hydrierprodukt zerlegt. Die flüssige Fraktion gelangt in eine Fraktioniereinrichtung 6, in der ein schwerer Rückstand vom Hydrierprodukt abgetrennt und über Leitung 7 abgezogen wird, während eine leichtere, im Benzinbereich siedende Fraktion über Leitung 8 abgezogen wird.

    [0019] Diese Fraktion gelangt in die thermische Spaltstufe 9 und wird dort in ein olefinreiches Gasgemisch gespalten. Die Spaltung wird dabei vorteilhaft in einem Röhrenofen bei Temperaturen zwischen 700 und 1000 °C, einer Verweildauer zwischen 0,01 und 1 sec. und einer Dampfverdünnung von 0,2 bis 4,0 kg Wasserdampf pro kg Kohlenwasserstoffe durchgeführt. Das heiße Spaltgas wird anschließend abgekühlt und einer Zerlegungseinheit 10 zugeleitet. Hier werden die einzelnen Spaltprodukte isoliert und getrennt voneinander abgezogen, was durch die Leitungen 11, 12, 13 angedeutet ist. Der bei der Zerlegung anfallende über 200 °C siedende Pyrolyserückstand wird über Leitung 14 abgezogen und in eine Vorrichtung 15 eingespeist.

    [0020] In dieser Vorrichtung 15 werden die Rückstände aus den Leitungen 7 und 14 mittels partieller Oxidation zu einem wasserstoffreichen Gasgemisch umgesetzt. Als Vergasungsmittel werden über Leitung 16 Wasserdampf und über Leitung 17 Luft oder Sauerstoff zugeführt.

    [0021] Das bei der partiellen Oxidation gebildete Rohgas wird über Leitung 18 abgezogen. Es besteht im wesentlichen aus Wasserstoff und Kohlenmonoxid; wenn Sauerstoff über Leitung 17 zugeführt wird, oder aus Wasserstoff, Kohlenmonoxid und Stickstoff, sofern über Leitung 17 Luft als Vergasungsmittel eingesetzt wird. Daneben enthält das Rohgas noch Verunreinigungen, insbesondere Schwefelwasserstoff. Deshalb wird das Gas einer Entschwefelung 19 unterzogen, wobei über Leitung 30 der abgetrennte Schwefelwasserstoff entfernt wird.

    [0022] Das entschwefelte Gas wird anschließend über Leitung 20 einer Zerlegungseinheit 21 zugeführt, in der der Wasserstoff abgetrennt wird. Die Zerlegungseinheit 21 kann beispielsweise eine mit Molekularsieben arbeitende Druckwechsel-Adsorptionsanlage sein. Der abgetrennte Wasserstoff wird über Leitung 3 abgezogen und in die Hydrierstufe 2 zurückgeführt. Zur Deckung des Wasserstoffbedarfs für die Hydrierung wird über Leitung 22 weiterer Wasserstoff zugeführt, der zumindest teilweise aus der Zerlegungsstufe 10 stammen kann. Das im wesentlichen aus Kohlenmonoxid oder im Falle der partiellen Oxidation mit Luft aus Kohlenmonoxid und Stickstoff bestehende Restgas wird über Leitung 23 abgezogen.

    [0023] Die im Abscheider 5 anfallende gasförmige Fraktion besteht im wesentlichen aus überschüssigem Wasserstoff aus der Hydrierung 2 und enthält daneben auch leichte Kohlenwasserstoffe, die bei der Hydrierung entstanden sind, sowie Verunreinigungen, insbesondere Schwefelwasserstoff. Diese Fraktion wird über Leitung 24 in eine Reinigungsstufe 25 eingespeist, in der die leichten Kohlenwasserstoffe abgetrennt und über Leitung 26 der thermischen Spaltung 9 zugeführt werden. Daneben wird in dieser Reinigungsstufe Schwefelwasserstoff abgetrennt und über Leitung 27 abgezogen. Das gereinigte Gas wird anschließend über Leitung 28 in die Reinigungsstufe 21 eingeführt und dort gemeinsam mit dem über Leitung 20 zugeführten Gasgemisch einer weiteren Reinigung unterzogen.

    [0024] Das in der Figur 2 dargestellte Verfahren unterscheidet sich von dem der Figur 1 in drei Punkten.

    [0025] Der erste Unterschied besteht darin, daß das im Abscheider 5 anfallende flüssige Hydrierprodukt nicht zerlegt wird, sondern über Leitung 31 vollständig in die thermische Spaltung 8 geführt wird.

    [0026] Der zweite Unterschied zum Verfahren der Figur 1 besteht darin, daß die in der Zerlegungseinheit 10 anfallende, über 200 °C siedende Rückstandsfraktion nicht vollständig der partiellen Oxidation 15 zugeführt wird. Statt dessen wird diese über Leitung 32 abgezogene Fraktion in eine Behandlungseinheit 33 eingespeist, in der die polymeren Bestandteile der Fraktion abgetrennt werden, beispielsweise . durch eine Lösungsmittelextraktion. Die polymerfreie Fraktion wird über Leitung 34 abgezogen und gemeinsam mit frischem Einsatzmaterial zur Hydrierung 2 zurückgeführt. Die polymeren Bestandteile der schweren Fraktion werden über Leitung 35 abgezogen und der partiellen Oxidation 15 zugeführt.

    [0027] Der dritte Unterschied zum Verfahren der Figur 1 besteht in der gemeinsamen Aufarbeitung des bei der partiellen Oxidation anfallenden Gases und der gasförmigen Fraktion aus dem Abscheider 5 in einer Reinigungseinheit 36.

    [0028] Es ist nicht erforderlich, daß die drei aufgezeigten Unterschiede in der Verfahrensführung gemeinsam durchgeführt werden. Vielmehr ist es auch möglich, jeden dieser Unterschiede für sich alleine oder in beliebigen Kombinationen zu verwirklichen. Die jeweils bevorzugte Verfahrensführung richtet sich dabei nach den jeweils im speziellen Fall gegebenen Voraussetzungen, die nicht nur von der Wahl des verwendeten Einsatzmaterials, sondern auch von den gewünschten Verfahrensprodukten und von äußeren betriebstechnischen Voraussetzungen abhängen können.


    Ansprüche

    1. Verfahren zum Spalten von Kohlenwasserstoffen, bei dem die Kohlenwasserstoffe zunächst hydriert und anschließend thermisch gespalten werden, dadurch gekennzeichnet, daß mindestens ein Teil des Rückstandes der thermischen Spaltung durch eine partielle Oxidation zu einem Gasgemisch umgesetzt wird.
     
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die partielle Oxidation in Gegenwart von Wasserdampf durchgeführt wird.
     
    3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß eine Abtrennung polymerer Bestandteile des Rückstandes der thermischen Spaltung durchgeführt wird, daß die polymeren Bestandteile zu dem Gasgemisch umgesetzt, und daß die restlichen Bestandteile des Rückstandes der thermischen Spaltung erneut der Hydrierung zugeführt werden.
     
    4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß aus dem Gasgemisch eine wasserstoffreiche Fraktion abgetrennt und der Hydrierung zugeführt wird.
     
    5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß das Hydrierprodukt in eine flüssige und eine gasförmige Fraktion getrennt wird, daß aus der gasförmigen Fraktion eine wasserstoffreiche und eine kohlenwasserstoffreiche.-Fraktion abgetrennt werden, daß die wasserstoffreiche Fraktion der Hydrierung und die kohlenwasserstoffreiche Fraktion der thermischen Spaltung zugeführt wird und daß die Zerlegung des Gasgemisches und der gasförmigen Fraktion des Hydrierproduktes gemeinsam erfolgt.
     




    Zeichnung










    Recherchenbericht