(11) Veröffentlichungsnummer:

0 014 890

A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 80100558.8

(22) Anmeldetag: 04.02.80

(5) Int. Cl.³: **D 06 P 5**/**00** D 06 P 3/06, D 06 P 1/52

(30) Priorität: 05.02.79 DE 2904223

(43) Veröffentlichungstag der Anmeldung: 03.09.80 Patentblatt 80/18

(84) Benannte Vertragsstaaten: AT BE CH DE FR GB IT LU NL SE (71) Anmelder: BASF Aktiengesellschaft Carl-Bosch-Strasse 38

D-6700 Ludwigshafen(DE)

72 Erfinder: Tropschuh, Karl Pfalzring 128 D-6704 Mutterstadt(DE)

(72) Erfinder: Schwindt, Wolfgang, Dr. Schlossgartenstrasse 12 D-6940 Weinheim(DE)

[54] Verfahren zum Bedrucken von voluminösen textilen Materialien.

(57) Die Erfindung betrifft ein Verfahren zum Bedrucken von voluminösen textilen Materialien, bei dem man die voluminösen textilen Materialien zunächst mit

a) einem synthetischen Verdickungsmittel,

b) einem Bad, das ein synthetisches Verdickungsmittel und einen Farbstoff enthält, oder

c) einer elektrolythaltigen Klotzflotte oder einer elektrolythaltigen Druckpaste

präpariert und sie anschließend, im Fall der Anwendung der Maßnahmen a) und b) mit einer elektrolythaltigen Druckpaste und bei Anwendung der Maßnahme c) mit einer Druckpaste bedruckt, die mit einem synthetischen Verdickungsmittel verdickt ist. Man erhält auf diese Weise hervorragende Durchdrucke mit scharfstehenden Konturen.

25

30

Verfahren zum Bedrucken von voluminösen textilen Materialien

Für das Bedrucken von textilen Materialien verwendet man üblicherweise Druckpasten, deren Viskosität mit Hilfe eines Verdickungsmittels eingestellt wird. Die Druckpasten 5 enthalten entweder faseraffine Farbstoffe, die das jeweils zu bedruckende Material anfärben oder einen Pigmentfarbstoff und zusätzlich ein Bindemittel, das die Pigmente fest mit dem textilen Material verbindet. Nach dem Druckvorgang erfolgt in allen Fällen ein Fixieren der Farb-10 stoffe sowie das Auswaschen und Trocknen des bedruckten Materials. Um beispielsweise Wollkammzüge zu bedrucken, ist es erforderlich, die Kammzüge in ausgebreiteter Form der Druckvorrichtung zuzuführen, damit ein annehmbarer Durchdruck erzielt wird. Dennoch läßt der erreichbare 15 Durchdruck zu wünschen übrig.

Bei einem anderen Druckverfahren, dem Space-Dyeing (Buntfärben) von Polyamidteppichfasern wird zur Zeit in erster Linie nach dem "Knit-Deknit"-(Strick-Aufzieh-)Verfahren gearbeitet. Dazu werden vor allem Garne aus texturierten Polyamidteppichfasern auf Rund- oder Flachstrickmaschinen zu Schläuchen oder Bändern verstrickt und diese zuerst mit Hilfe eines Foulards mit der Grundfarbe imprägniert und anschließend ohne Zwischentrocknung bedruckt. Beim Bedrukken arbeitet man in erster Linie nach dem Rouleaudruckverfahren; man kann die vorgeklotzten Bänder auch nach dem Vigoureuxdruckverfahren bedrucken. Nach dem Farbauftrag werden die Farbstoffe durch Dämpfen auf der Ware fixiert, in speziellen Waschbädern ausgewaschen und getrocknet. Nach dem Aufziehen der Strickbänder oder Strickschläuche werden die Garne in erster Linie zu Tuftingteppichen verarbeitet.

Das Verfahren besitzt heute eine sehr große wirtschaft-11 liche Bedeutung, weil auf den kontinuierlich arbeitenden Ks/BL Anlagen große Mengen in kurzer Zeit gefärbt werden können, wobei aufgrund des hohen Automationsgrades nur wenige Arbeitskräfte benötigt werden. Voraussetzung dafür ist ein störungsfreies Arbeiten der Anlagen.

5

Eine der wichtigsten Ursachen für die Störung des Betriebs einer Space-Dye-Anlage ist die Bildung von Schaum. Vor allem an den Druckwerken ist die Schaumbildung außerordentlich schädlich, weil der Schaum anstelle der Druckpasten in die Gravuren der Druckwalzen gelangt und dadurch hellere Drucke bzw. einen sehr schlechten Durchdruck verursacht, da er wesentlich weniger Farbstoff pro Volumeneinheit enthält als die schaumfreie Druckpaste. Die Schaumbildung kann bei diesem Druckverfahren durch Zusatz geeigneter Schaumbildung kann dämpfer weitgehend zurückgedrängt werden, doch sind auch hier infolge gesteigerter Qualitätsanforderungen an das bedruckte Material bessere Durchdrucke und höhere Verarbeitungsgeschwindigkeiten erwünscht.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Bedrucken von voluminösen textilen Materialien mit Druckpasten zur Verfügung zu stellen, bei dem man gute Durchdrucke mit trotzdem scharfstehenden Konturen erhält und somit bei schwer durchzudruckenden Materialien auch eine Erhöhung der Raum-Zeit-Ausbeute erreicht.

Die Aufgabe wird erfindungsgemäß dadurch gelöst, daß man die voluminösen textilen Materialien zunächst mit

- 30 (a) einem synthetischen Verdickungsmittel auf Basis hochmolekularer Polycarbonsäuren,
- (b) einem Bad, das ein synthetisches Verdickungsmittel auf Basis hochmolekularer Polycarbonsäuren und einen Farbstoff enthält, oder

L

- (c) einer elektrolythaltigen Klotzflotte oder einer elektrolythaltigen Druckpaste
- präpariert und sie anschließend, im Fall der Anwendung der Maßnahmen (a) und (b) mit einer elektrolythaltigen Druckpaste und bei Anwendung der Maßnahme (c) mit einer Druckpaste bedruckt, die mit einem synthetischen Verdickungsmittel verdickt ist.
- Unter voluminösen textilen Materialien im Sinne der Erfindung sollen Kammzüge, Faservliese, Garnscharen, Strickschläuche, Frottierwaren und Teppiche verstanden werden. Die textilen Materialien können aus natürlichen und/oder synthetischen Fasern oder Fäden bzw. aus Mischungen von Fasern oder Fäden bestehen. Das Verfahren hat vor allem Bedeutung beim Bedrucken von Wollkammzügen, Polyamid-Teppichgarnen in Form von Strickschläuchen oder Garnscharen sowie von Polyamid-Tufting-Teppichware.
- 20 Die Druckpasten enthalten entweder einen Pigmentfarbstoff und zusätzlich ein Bindemittel oder faseraffine Farbstoffe, die das jeweils zu bedruckende Material anfärben, z.B. verwendet man beim Bedrucken von Wollkammzügen oder Polyamid-Teppichgarnen Säurefarbstoffe oder sulfogruppen-25 haltige Metallkomplex-Farbstoffe, und beim Bedrucken von Polyestermaterialien Dispersionsfarbstoffe. Die Druckpasten können die üblichen Zusätze, wie pH-Regulatoren, Emulgatoren, Dispergiermittel, Egalisiermittel, Fixierbeschleuniger, Schaumdämpfer, Oxidationsmittel, Reduktionsmittel und 30 Mittel für die Textilhochveredlung enthalten. In letzterem Fall erfolgt ein gleichzeitiges Bedrucken und Ausrüsten des Materials.
- Das textile Material wird vor dem Bedrucken zunächst auf der gesamten Fläche mit den oben unter (a) bis (c) ange-

gebenen Präparationen behandelt, und zwar in der Weise, daß das voluminöse textile Material vollständig imprägniert wird. Im Fall (a) präpariert man das voluminöse textile Material mit einem synthetischen Verdickungsmittel auf Basis hochmolekularer Polycarbonsauren. Synthetische Verdickungsmittel dieser Art sind im Handel erhältlich. Es kommen beispielsweise Homopolymerisate und Copolymerisate von äthylenisch ungesättigten Carbonsäuren mit 3 bis 5 Konlenstoffatomen in Betracht. Es handelt sich dabei in erster Linie um Polymerisate von Acrylsäure, Methacryl-10 säure, Maleinsäure, Maleinsäureanhydrid, Fumarsäure und Itaconsäure sowie Copolymerisate der genannten Carbonsäuren untereinander, z.B. Copolymerisate von Acrylsäure mit Methacrylsäure im Molverhältnis 1 : 1 oder in einem anderen Molverhältnis, sowie Copolymerisate der genannten 15 Carbonsäuren mit anderen copolymerisierbaren äthylenisch ungesättigten Monomeren, wie Vinylestern, Acrylsäureestern, Methacrylsäureestern, Äthylen, Styrol, Vinyläthern und Amiden von äthylenisch ungesättigten Cz- bis Cz-Carbonsäuren. Die Copolymerisate enthalten mindestens 40, vorzugs-20 weise 75 bis 99,5 Gew.% einer äthylenisch ungesättigten Carbonsäure. Bei den Verdickungsmitteln handelt es sich um hochmolekulare Polymerisate, deren Molekulargewicht mehr als 200000 beträgt und vorzugsweise über einer Million 25 liegt. Besonders hochmolekulare synthetische Verdickungsmittel erhält man, wenn man die Polymerisation der äthylenisch ungesättigten Carbonsäuren in Gegenwart von Monomeren durchführt, die zwei äthylenisch ungesättigte Doppelbindungen enthalten. Solche Monomere sind beispielsweise 30 Butadien, Divinylbenzol, Butandioldiacrylat, Divinyldioxan und Diallylphthalat. Diese Monomeren sind zu etwa 0.05 bis 5 Gew. % am Aufbau der hochmolekularen Copolymerisate beteiligt.

O.Z. 0050/033655

Die verdickende Wirkung der Homopolymerisate bzw. Copolymerisate von äthylenisch ungesättigten Carbonsäuren tritt bei teilweiser oder vollständiger Neutralisation mit Basen ein. Als Basen eignen sich beispielsweise Natronlauge, Kalilauge, Ammoniak sowie Amine, z.B. Triäthylamin, Butyl-5 amin, Athanolamin, Triäthanolamin, Hexamethylendiamin, Athylendiamin, Diäthylentriamin, Triäthylentetramin sowie Mischungen aus Ammoniak und Morpholin oder Hexamethylendiamin und Morpholin. Bei der Neutralisation der synthetischen Verdickungsmittel mit den genannten Basen erhält 10 man wäßrige Lösungen der synthetischen Verdickungsmittel, die bei einer Konzentration von 0,25 Gew.%, einer Temperatur von 25°C und einem pH von 7 nach DIN 53 211, gemessen mit Fordbecher und einer Auslaufdüse mit 4 mm Durchmesser, eine Auslaufzeit von 30 bis 60 s ergeben. 15

Die neutralisierten synthetischen Verdickungsmittel haben in den Präparationen (a) bis (c) einen pH-Wert in dem Bereich von 10 bis 6, vorzugsweise 9 bis 7.

20

25

Das voluminöse textile Material wird im Fall (b) dadurch präpariert, indem man es durch ein Bad führt, das außer einem synthetischen Verdickungsmittel auf Basis hochmoelekularer Polycarbonsäuren noch einen Farbstoff enthält. Außerdem können noch die bei Klotzfärbungen üblichen Hilfsmittel im Bad vorhanden sein, z.B. pH-Regulatoren, Puffersubstanzen und Antimigrationsmittel. Die hierfür verwendeten Farbstoffe werden in elektrolytfreier bzw. elektrolytarmer Form eingesetzt. Die Präparationen (a) und (b) werden in elektrolytfreier oder elektrolytarmer Einstellung eingesetzt, weil Elektrolyte die Viskosität der mit synthetischen Verdickungsmitteln verdickten Präparationslösungen erniedrigen.

Im Fall (c) wird das voluminose textile Material mit einer elektrolythaltigen Klotzflotte oder einer elektrolythaltigen Druckpaste präpariert. Diese Klotzflotten oder Druckpasten enthalten vorzugsweise ein natürliches Verdickungsmittel und außer mindestens einem Farbstoff einen oder mehrere Elektrolyte, wie organische Säuren, Alkali- und Ammoniumsalze oder wasserlösliche Erdalkalisalze von organischen oder anorganischen Säuren, Carbonsäuren sowie anionische Dispergiermittel oder deren Alkalisalze. Man kann auch hier synthetische, Carboxylgruppen enthaltende Verdickungsmittel verwenden, muß dann jedoch wegen des Viskositätsabfalls der Flotte nach Zugabe von Elektrolyten weiteres Verdickungsmittel einsetzen, um die Viskosität der Flotte zu erhöhen.

15

10

Die genannten synthetischen Verdickungsmittel sind nämlich elektrolytempfindlich. Bei Zusatz von Glaubersalz
oder Kochsalz tritt eine merkliche Abnahme der Viskosität
der Verdickungsmittellösung ein. Die Verdickungsmittellösung kann gegebenenfalls einen Farbstoff enthalten, um
das textile Material einzufärben. Wegen der Elektrolytempfindlichkeit der synthetischen Verdickungsmittel verwendet man hierfür vorzugsweise elektrolytarme Farbstofflösungen bzw. Farbstoffeinstellungen.

25

20

Die Verfahrensschritte (a) bis (c) können beispielsweise in einem Foulard sowie durch Aufpflatschen oder Aufrakeln durchgeführt werden. Die Flottenaufnahme beträgt 60 bis 150 %. Man kann auch so vorgehen, daß man das zu bedrukkende Material zunächst mit der nicht neutralisierten Verdickungsmittellösung behandelt und die Neutralisation des Verdickungsmittels auf dem Gewebe durchführt, indem man es mit Basen behandelt. Vorzugsweise setzt man jedoch das bereits neutralisierte oder teilneutralisierte Ver-

25

30

dickungsmittel ein, weil dadurch ein Arbeitsgang eingespart wird.

Die voluminösen textilen Materialien werden bei den Präparationen (a), (b) oder (c), bezogen auf das trockene Mate-5 rial, mit 0.05 bis 1 Gew. %, vorzugsweise 0,1 bis 0,5 Gew. % Feststoffen beladen.

Die gemäß (a) oder (b) präparierten voluminösen textilen Materialien werden anschließend, gegebenenfalls nach einem -10 Zwischentrocknen, mit elektrolythaltigen Druckpasten bedruckt, die vorzugsweise ein elektrolytunempfindliches Verdickungsmittel enthalten. Das Aufbringen der Druckpaste kann nach den üblichen Druckverfahren im Tief-, Filmoder Spritzdruck erfolgen. 15

Elektrolytunempfindliche Verdickungsmittel sind beispielsweise Tragant, Stärkeäther, Kernmehläther, Alginate, Guarmehl oder Johannisbrotkernmehläther. Es handelt sich bei diesen Stoffen in erster Linie um Naturprodukte. Verwendet man elektrolytempfindliche Verdickungsmittel, so muß die Druckpaste nach der Zugabe des Elektrolyten, der einen Viskositätsabfall der Druckpaste bewirkt, durch erneute Zugabe eines Verdickungsmittels verdickt werden. 1000 g der fertigen Druckpaste enthalten 2 bis 20, vorzugsweise 5 bis 10 g der elektrolytunempfindlichen Verdickungsmittel.

Der Elektrolytgehalt der Druckpaste kann in einem weiten Bereich schwanken und liegt zwischen 1 und 20, vorzugsweise 5 bis 15 g, bezogen auf 1000 g der fertigen Druckpaste. Der Elektrolytgehalt wird entweder durch Zugabe bestimmter Stoffe, wie organischer Säuren, Alkalisalzen von organischen oder anorganischen Säuren oder von anionischen Dispergiermitteln eingestellt. Da die handelsüblichen 35

Farbstoffe zum Teil Alkalisalze von anionischen Dispergiermitteln enthalten, wird in vielen Fällen bereits durch Zugabe eines bestimmten handelsüblichen Farbstoffs ein bestimmter Elektrolytgehalt in der Druckpaste eingestellt. In einigen Fällen reicht bereits dieser Elektrolytgehalt aus, um die Vorteile des erfindungsgemäßen Verfahrens zu erzielen. In anderen Fällen ist es dagegen erforderlich zusätzlich noch organische Säuren, Alkali- oder Ammoniumsalze von organischen oder anorganischen Säuren 10 zuzugeben, z.B. verwendet man Natriumacetat, Natriumformiat, Ammonchlorid, Kochsalz, Glaubersalz, wasserlösliche Erdalkalisalze von organischen oder anorganischen Säuren sowie Natriumsalze von anionischen Dispergiermitteln, die beispielsweise bei der Kondensation von Phenolen oder 15 Naphtholen mit Formaldehyd und Natriumbisulfit erhalten werden. Als anionische Dispergiermittel, die sich ebenfalls wie ein Elektrolyt in der Druckpaste verhalten, kann man niedrigmolekulare Polymerisate von Acrylsäure oder Methacrylsäure in teilweise neutralisierter bzw. vollständig 20 neutralisierter Form verwenden. Die polymeren Dispergiermittel haben Molekulargewichte in dem Bereich von etwa 500 bis 10 000. Bedingung für den Einsatz von Elektrolyten bzw. anionischen Dispergiermitteln in den Druckpasten ist selbstverständlich, daß diese Zusätze mit den übrigen 25 Druckpastenbestandteilen keine Ausfällungen ergeben. Diese Frage kann jedoch mit Hilfe eines Vorversuchs leicht geklärt werden. Besondere Bedeutung als Elektrolyte haben organische Säuren, z.B. Ameisensäure, Essigsäure, Propionsäure, Glutarsäure, Adipinsäure, Bernsteinsäure, p-Toluolsulfonsäure, Sulfobernsteinsäure, Benzolsulfonsäure und 30 Zitronensäure. Der pH-Wert der elektrolythaltigen Druckpasten wird vorzugsweise auf Werte < 5,5 eingestellt.

Die textilen Materialien werden mit Hilfe der bekannten 35 Druckverfahren bedruckt. Besonders hervorgehoben werden sollen von diesen Druckverfahren, das Rouleaudruckverfahren, der Vigoureuxdruck sowie das Spritzdruckverfahren.

Während es bei den bekannten Verfahren zum Färben von Wollkammzügen nur möglich ist, z.B. Wollkammzüge in ausgebreiteter Form und somit in dünner Schicht zu bedrucken, erhält
man nach dem erfindungsgemäßen Verfahren auch auf Wollkammzügen in nicht ausgebreiteter Form mit einer Schichtdicke
von mehr als 4 cm hervorragende Druckdrucke mit scharfstehenden Konturen. Da man bei dem erfindungsgemäßen
Verfahren die textilen Materialien in nicht ausgebreiteter
Form vollständig durchdrucken kann, ist es möglich, beim
Bedrucken von Wollkammzügen die Ausnutzung der bekannten
Vorrichtungen um etwa das 10-fache zu erhöhen.

Die Erfindung wird anhand der folgenden Beispiele näher erläutert. In den Beispielen wurden folgende Farbstoffe verwendet:

20 Farbstoff I:

15

1 : 2 Cr-Komplex des Farbstoffs der Formel

0. Z. 0050/033655

Farbstoff II:

1 : 2 Cr-Komplex von

Farbstoff III:

Farbstoff IV

30 Cl
$$CH_3$$
 CN $NaO_3S-\bigcirc -N=N NHCH_2CH_2OH$ $NHCH_2CH_2OH$

o. z. 0050/033655

Beispiel 1

Ein Wollkammzug wurde in nicht ausgebreiteter Form in 35 Bändern nebeneinander und einer Dicke von 6 cm durch ein wäßriges Bad geführt, das pro Liter 0,5 g einer mit Natronlauge neutralisierten und mit 0,6 % Divinyldioxan, bezogen auf das Polymere, vernetzten Polyacrylsäure und 0,5 g eines mit Natronlauge neutralisierten Mischpolymerisates aus 50 Mol.% Maleinsäure und 50 Mol.% Vinylisobutyläther, das mit 0,8 % Hexamethylpiperazin vernetzt wurde, enthielt, am Foulard auf 100 % Flottenaufnahme, bezogen auf das Gewicht der Textilware, abgequetscht und anschließend ohne Zwischentrocknung mit einer elektrolythaltigen Druckpaste folgender Zusammensetzung nach dem Tiefdruckverfahren bedruckt:

- 10 g/kg des Farbstoffes I
 - 8 " Kernmehläther-Verdickung
 - 5 " Essigsäure 100 %ig
- 10 "Phenylglykoläther
- 20 3 " eines mit 7 Mol Äthylenoxid umgesetzten C₁₆/C₁₈-Fettalkoholgemisches.

Nach dem Drucken wird 30 Minuten bei ca. 102°C im Sattdampf gedämpft, anschließend wie üblich ausgewaschen und getrocknet.

25

30

Da der Wollkammzug nicht wie im Vigoureuxdruck üblich zu einer dünnen Schicht ausgebreitet werden mußte, konnte man vollkontinuierlich arbeiten und dabei die 5- bis 10-fache Produktion gegenüber der bisher notwendigen diskontinuierlichen Arbeitsweise erreichen. Es wurde ein einwandfreier Durchdruck der 6 cm dicken Kammzugbänder erreicht und trotzdem ein Verlaufen der Farbe nach der Seite vermieden, so daß die Drucke scharf standen.

o. z. 0050/033655

Durch die Dicke der durchgedruckten Kammzugbänder und den scharfen Stand der Drucke ergeben sich gegenüber dem bisher üblichen Verfahren erweiterte Musterungsmöglichkeiten.

5

25

35

Beispiel 2

Ein Wollkammzug, der aus 32 Bändern bestand und eine Dicke von 6 cm hatte, wurde in nicht ausgebreiteter Form durch ein wäßriges Bad geführt, das pro Liter 10 2 g einer mit Natronlauge neutraliserten und mit 0,5 % Divinylbenzol vernetzten Polyacrylsäure. 2 g eines mit Ammoniak neutralisierten Mischpolymerisates aus Maleinsäure und Vinyläthyläther im Molverhältnis 1: 1, vernetzt mit 0,6 % Hexamethylpiperazin und 10 g einer 25 %igen Flüssigeinstellung des Farbstoffs II in gleichen Teilen Dimethylformamid und Butyldiglykol enthielt. Es wurde auf eine Flottenaufnahme von 100 %, bezogen auf das Gewicht der Textilware, abgequetscht. Die 20 Ware wurde dann ohne Zwischentrocknung mit einer elektrolythaltigen Druckpaste folgender Zusammensetzung nach dem Tiefdruckverfahren bedruckt:

- 10 g/kg des Farbstoffs der Formel II in Form einer 25% igen Flüssigeinstellung in gleichen Teilen Dimethylformamid und Butyldiglykol
 - 8 g/kg Kernmehläther-Verdickung
 - 5 g/kg Essigsäure 100 %ig
- 10 g/kg Phenylglykoläther
- 3 g/kg eines mit 7 Mol Äthylenoxid umgesetzten C_{16}/C_{18} Fettalkoholgemisches.

Die Ware wird nach dem Drucken 30 Minuten bei 102°C im Sattdampf gedämpft, dann wie üblich ausgewaschen und getrocknet. Man erhält mehrfarbige Effekte bei gutem Stand und Durchdruck.

O.Z. 0050/033655

Beispiel 3

Ein Strickschlauch aus Polyamid-Teppichgarnen wurde auf einer Space-Dye-Anlage durch ein Bad geführt, das im Liter Wasser 2 g eines mit Natronlauge neutralisierten Mischpolymerisates aus 50 Mol. Maleinsäure und 50 Mol. Athylen, das mit 0,8 Mol. Diallylphthalat vernetzt wurde, sowie 10 g einer elektrolytarmen 20 %igen Flüssigeinstellung des Farbstoffes C.I. 15 675 in gleichen Teilen Dimethylformamid und Butyldiglykol enthielt, am Foulard auf ca. 100 % Flottenaufnahme, bezogen auf das Gewicht der Textilware, abgequetscht und anschließend ohne Zwischentrocknung mit einer elektrolythaltigen Druckpaste folgender Zusammensetzung nach dem Tiefdruckverfahren bedruckt:

- 15 1 g/kg des Farbstoffes III
 - 3 g/kg Glaubersalz
 - 6 g/kg Guaranat-Verdickung
 - 5 g/kg Essigsäure 100 %ig
 - 3 g/kg eines mit 4 Mol Athylenoxid umgesetzten c_{16}/c_{18} Fettalkoholgemisches
 - 1 g/kg 2-Athylhexanol

Nach dem Drucken wird das voluminöse textile Material 5 Minuten bei ca. 102⁰C mit Sattdampf gedämpft, anschlie-25 Bend wie üblich ausgewaschen und getrocknet.

Man erhält einen Strickschlauch, der neben scharfem Stand der Drucke einen für die spätere Musterung wichtigen ausgezeichneten Durchdruck aufweist und grauschleierfrei ist.

Wie beim üblichen Space-Dye-Verfahren können statt einer auch mehrere Druckfarben hintereinander aufgebracht werden, wodurch die Variationsmöglichkeiten der charakteristischen Space-Dye-Musterung noch erheblich erweitert werden.

35

30

O.Z. 0050/033655

Beispiel 4

5

Eine Polyamid-Tufting-Teppichware wurde mit einer Flotte vorgeklotzt, die im Liter Wasser 0,5 g einer mit Natron-

- lauge neutralisierten und mit 0,8 % Divinylbenzol vernetzten hochmolekularen Polyacrylsäure enthielt, auf eine Flottenaufnahme von 80 % abgequetscht und anschließend ohne Zwischentrocknung eine schwach verdickte elektrolythaltige Färbeflotte folgender Zusammensetzung nach dem Spritzdruck-
- 10 verfahren mustergemäß aufgetragen:
 - 3 g/l des Farbstoffes IV
 - 1 " Glaubersalz
 - 3 " Guarmehl-Verdickung
 - 5 " · 2-Athylhexanol
- 15 3 " eines handelsüblichen Äthylenoxid-Propylenoxid-Block-copolymerisates vom Molgewicht 6.800.

Der pH-Wert der Flotte wurde mit Essigsäure auf 4 eingestellt.

Anschließend wurde die Ware 8 Minuten bei ca. 102°C mit Satt-20 dampf gedämpft, ausgewaschen und getrocknet.

Man erhielt eine bedruckte Teppichware, die sich durch scharfe Konturen und guten Durchdruck bis zum Boden der Faserschlingen auszeichnete.

25

Beispiel 5

Ein Strickschlauch aus Polyamid-Teppichgarnen wurde auf einer Space-Dye-Anlage durch ein Bad folgender Zusammensetzung geführt:

10

15

0.2. 0050/033655

- 3 g/l des Farbstoffes IV
- 5 " Guarmehl-Verdickung
- 10" Essigsäure 60%ig
- 10" eines handelsüblichen mit 4 Mol 4 thylenoxid umgesetzten 6 C $_{18}$ -Fettalkoholgemisches und
- 2 " 2-Athylhexanol.

Anschließend wurde die Ware am Foulard auf ca. 80 % Flottenaufnahme, bezogen auf das Gewicht des Textilgutes, abgequetscht und dann ohne Zwischentrocknung mit einer Druckpaste folgender Zusammensetzung nach dem Tiefdruckverfahren bedruckt:

20 g/kg einer ca. 25%igen Flüssigeinstellung des Farbstoffes C.I. 12 195 gelöst in gleichen Teilen Dimethylformamid und Butyldiglykol sowie

5 g/kg einer auf pH 5 mit Ammoniak teilneutralisierten, mit 0,5 % Dimethylbenzol vernetzten Polyacrylsäure.

Die Ware wurde nach dem Drucken 6 Minuten bei ca. 102°C mit 20 Sattdampf gedämpft, anschließend wie üblich ausgewaschen und getrocknet.

Man erhielt einen bedruckten Strickschlauch, der neben scharfem Stand der Drucke einen für die spätere Musterung wichtigen ausgezeichneten Durchdruck aufwies, was besonders bei
doppelt gestrickten Polyamid-Teppichgarnen von Bedeutung
ist.

Wie beim üblichen Space-Dye-Verfahren können statt einer auch mehrere Druckfarben hintereinander aufgebracht werden, wodurch die Variationsmöglichkeiten der charakteristischen Space-Dye-Musterung noch erheblich erweitert werden.

0. z. 0050/033655

Beispiel 6

Das Beispiel 5 wird mit der Ausnahme wiederholt, daß in der Druckpaste kein Farbstoff mitverwendet wird. Dadurch erhält man sogenannte "Negativdrucke", die sich durch eine Aufhellung an den bedruckten Stellen auszeichnen.

Beispiel 7

5

- 10 Eine Polyamid-Tufting-Teppichware wurde mit einer Flotte folgender Zusammensetzung vorgeklotzt:
 - 10 g/l des Farbstoffes III
 - 3 g/l Guarmehl-Verdickung
 - 5 g/l Essigsäure 100 %ig
- 3 g/l eines mit 4 Mol Äthylenoxid umgesetzten C₁₆/C₁₈-Fettalkoholgemisches
 - 1 g/l 2-Athylhexanol

(Die Flotte kann auch mit Hilfe eines Farbauftraggerätes 20 auf die Ware aufgegossen werden.)

Nach dem Klotzen bzw. Aufgießen dieser Flotte wurde sofort durch Aufspritzen oder Aufgießen eine verdickte Flotte aufgebracht, die im Liter Wasser 1 g einer mit Natronlauge neutralisierten und mit 0,8 % Divinylbenzol vernetzten hochmolekularen Polyacrylsäure enthielt. Anschließend wurde 8 Minuten bei 102°C mit Sattdampf gedämpft, ausgewaschen und getrocknet. Man erhielt eine Teppichware, die im Grund dunkel und in den Faserspitzen heller angefärbt 30 ist. Es handelt sich dabei um besonders gewünschte Effekte.

10

15

Patentansprüche

- 1. Verfahren zum Bedrucken von voluminösen textilen Materialien mit Druckpasten, dadurch gekennzeichnet, daß man die voluminösen textilen Materialien zunächst mit
 - a) einem synthetischen Verdickungsmittel auf Basis hochmolekularer Polycarbonsäuren,
 - b) einem Bad, das ein synthetisches Verdickungsmittel auf Basis hochmolekularer Polycarbonsäuren und einen Farbstoff enthält, oder
 - c) einer elektrolythaltigen Klotzflotte oder einer elektrolythaltigen Druckpaste

 präpariert und sie anschließend, im Fall der Anwendung der Maßnahmen (a) und (b) mit einer elektrolythaltigen Druckpaste und bei Anwendung der Maßnahme (c) mit einer Druckpaste bedruckt, die mit einem synthe-
- 20 2. Verfahren nach Anspruch 1, <u>dadurch gekennzeichnet</u>, daß die auf das voluminöse textile Material aufgebrachte Präparation 0,05 bis 1,0 Gew.%, bezogen auf trockenes textiles Material, beträgt.

tischen Verdickungsmittel verdickt ist.

- Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß 1000 g der elektrolythaltigen Druckpasten 1 bis 20 g einer organischen Säure, eines Alkali-, Ammonium- oder Aminsalzes von organischen oder anorganischen Säuren oder von anionischen Dispergiermitteln als Elektrolyte enthalten.
 - 4. Verfahren nach Anspruch 3, <u>dadurch gekennzeichnet</u>, daß die elektrolythaltigen Druckpasten mit natürlichen Verdickungsmitteln verdickt sind.