11) Veröffentlichungsnummer:

0 017 262

A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 80200118.0

(51) Int. Cl.³: A 47 C 9/02

(2) Anmeldetag: 13.02.80

30 Priorität: 29.03.79 DE 2912398

(43) Veröffentlichungstag der Anmeldung: 15.10.80 Patentblatt 80/21

84) Benannte Vertragsstaaten: AT BE CH DE FR GB IT NL SE (7) Anmelder: Christof Stoll GmbH & Co KG Brückenstrasse 15

D-7890 Waldshut-Tiengen 1(DE)

(72) Erfinder: Ziegler, Horst Lärchenweg 18 D-7892 Albbruck(DE)

(72) Erfinder: Bögle, Dagobert Hauensteinerstrasse 30 D-7887 Laufenburg(DE)

Vertreter: Lück, Gert, Dr. Im See 6 D-7891 Küssaberg 1(DE)

(54) Steharbeitssitz.

(5) Bei einem Steharbeitssitz sind die Stützsäule (2) und der Standfuss (1) starr miteinander verbunden, die Stützsäule (2) ist in sich drehbar, der Sitz (3) ist in Sitzrichtung neigbar, und der Sitz (3) weist eine bis zum Beckenrand des Benutzers hochgezogene Hinterkante (5), eine abgerundete Vorderkante (4), und eine abrutschhemmende Gestaltung der Sitzfläche (16) auf.

Ein solcher Steharbeitssitz ermöglicht optimale Aufnahme der Körperlast eines Benutzers an beengten Arbeitsplätzen.

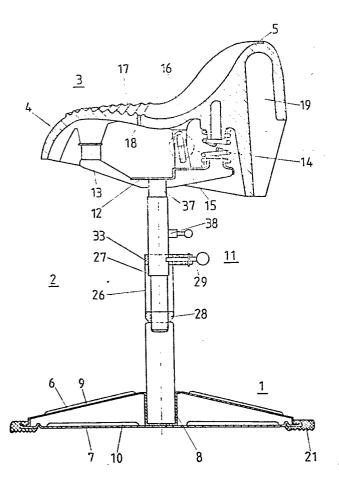


FIG.1

L-S 16 17.12.79 Lü/Kn.

Christof Stoll GmbH & Co KG, 7890 Waldshut-Tiengen 1 (BRD)

Steharbeitssitz

Die Erfindung betrifft einen transportablen Steharbeitssitz mit einem im wesentlichen kreisrunden, flach auslaufenden, wegrutschgesicherten Standfuss, einer Stützsäule und einem am oberen Ende der Stützsäule angeordneten, schalenförmigen Sitz mit hochgezogener Hinter- und nach vorn abfallender Vorderkante.

Steharbeitssitze sind insbesondere dort von grossem Nutzen, wo an einem Arbeitsplatz die Verwendung eines üblichen Sitzmöbels mit im wesentlichen Waagrecht liegenden Oberschenkeln nicht möglich ist. Zum Beispiel, wenn bei einer zu bedienenden Maschine eine besondere Arbeitshöhe, oder ein besonderer Greifbereich notwendig sind, oder wenn der freie Raum für die Oberschenkel, die Knie oder die Füsse des Arbeitenden durch Maschinenteile beengt sind.

An solchen Arbeitsplätzen eingesetzte Steharbeitssitze bewirken eine physische Entlastung des Arbeitenden mit der Folge einer erhöhten Konzentration auf die durchzuführende Arbeit und Vermeidung von muskulären Verkrampfungen und Ermüdungen. Derartige Steharbeitssitze übernehmen einen wesentlichen Teil der Oberkörperlast des Benutzers

und ermöglichen eine weitgehende Streckung der Beine, so dass diese nur eine Stütz- und Stabilisierungsfunktion auszuüben haben und die Beinmuskeln weitgehend entspannt werden können. Darüber hinaus ermöglichen sie einen Wechsel zwischen stehender und sitzender Haltung.

Ein Steharbeitssitz der eingangs genannten Art ist bekannt zum Beispiel aus der DE-OS 2642 112. Nachteile des bekannten Steharbeitssitzes bestehen u.a. darin, dass die Stützsäule gegenüber dem Standfuss Neigungen ausführen kann, und der Sitz starr mit der Stützsäule verbunden ist. Die Neigbarkeit der Stützsäule erweitert zwar den Greifbereich eines Benutzers, jedoch fördert der sich mitneigende Sitz ein Abrutschen des Benutzers. und wird der Benutzer zu Auffangbewegungen seiner Beine gezwungen, um nicht umzukippen. Dadurch wird eine optimale Entspannung des Benutzers hinsichtlich der Sitzsituation verhindert und die ausschliessliche Konzentration auf die Arbeit gestört. Durch die starre, nicht drehbare Befestigung des Sitzes an der Stützsäule wird des weiteren das Besteigen und Verlassen desselben bei beschränktem Knieraum erschwert. Der Standfuss besteht aus Aluminiumguss und macht damit den Steharbeitssitz nicht nur unhandlich schwer, sondern auch materialaufwendig und damit teuer.

Aus der DE-PS 2618 292 und der DE-OS 2641 242 ist ein Steharbeitssitz bekannt, bei dem ein zusammenklappbares Rohrgestell die Abstützung zum Boden übernimmt und am oberen Ende eines Rohrbügels eine kleine Sitzfläche höhenverstellbar angeordnet ist. Nachteilig an dieser Lösung ist insbesondere, dass der vordere Rohrbügel die Bewegungsmöglichkeit der Beine und Füsse beeinträchtigt und eine Stolpergefahr darstellt. Der Greifbereich ist beschränkt, da der Sitz nicht drehbar ist.

Beiden bekannten Steharbeitssitzen ist der Nachteil gemeinsam, dass die Sitzflächen der Sitze den physiologischen
Bedürfnissen des Gesässes und der Oberschenkel eines Benutzers nicht geeignet Rechnung tragen, so dass sich beispielsweise an hochempfindlichen Körperstellen übermässig grosse Flächenpressungsdrücke ergeben. Diese werden
auch nicht durch die vorgesehene Polsterung vermieden, da
die Sitze aus Integralschaum im rauhen Werkstattbetrieb
widerstandsfähig und deshalb relativ hart ausgeführt werden müssen.

Hier will die Erfindung Abhilfe schaffen. Die Erfindung, wie sie in den Ansprüchen gekennzeichnet ist, löst die Aufgabe, einen ergonomisch und physiologisch vorteil-haften Steharbeitssitz zu schaffen, der unter geringem Materialaufwand relativ preisgünstig herzustellen ist. Denn gerade bei Einrichtungen im Produktionsbereich entscheidet oftmals der Preis über die Anschaffung eines Arbeitshilfsmittels, selbst wenn andere Vorteile desselben evident sind.

Der erfindungsgemässe Steharbeitssitz weist insbesondere die Vorteile auf, dass er eine für den rauhen Werkstattbetrieb geeignete Robustheit besitzt, handlich und leicht transportabel ist, stolpersicher ist, eine grosse Fussfreiheit und einen grossen Greifbereich ermöglicht, trotzdem aber auch vom Benutzer ausgeübte Tangentialkräfte aufzunehmen vermag, die Druckverteilung am Gesäss und die Stützung des Beckens des Benutzers optimiert, und ein Abrutschen des Benutzers und eine Kyphosierung von dessen Wirbelsäule vermeidet, und dass er dennoch preisgünstig und materialsparend herstellbar ist.

Weitere Vorteile und Merkmale der Erfindung ergeben sich aus den nachstehend anhand von Zeichnungen erläuterten Ausführungsbeispielen. Dabei zeigt:

- Fig.l eine Seitenansicht des erfindungsgemässen Steharbeitssitzes im Schnitt,
- Fig. 2 die Ansicht eines Teils des Sitzes aus Fig.l von hinten im Schnitt, und
- Fig. 3 die in Fig. 1 angedeutete Dreharretiervorrichtung der Stützsäule im einzelnen.

Der in Fig.1 dargestellte Steharbeitssitz weist einen extrem flach auslaufenden, leichten und dennoch stabilen, kreisrunden Standfuss 1 auf. Dieser besteht aus einem schalenförmigen Oberblech 6 und einem ebenen Unterblech 7, die an ihrem Aussenrand unmittelbar, und im Zentrum über den Stützring 8 fest miteinander verbunden sind. Die Verbindung wird vorzugsweise durch Punktschweissen hergestellt. Wie ersichtlich, ergibt sich damit im Querschnitt ein Dreiecksverband, in welchem die auftretenden Biegemomente in Druck- und Zugkräfte umgesetzt werden. Dadurch kann kostengünstiges, dünnes Stahlblech verwendet werden, das zwecks Korrosionsfestigkeit bereits mit einem Oberflächenschutz versehen, z.B. verzinkt, sein kann, so dass eine nachträgliche Behandlung entfällt. Die notwendige Beulsteifigkeit der Bleche wird durch Sicken 9 bzw. 10 erreicht.

Ein aussen umlaufender Profilring 21 aus vorzugsweise elastischem Material, z.B. Gummi oder Weich-PVC, endlos verschweisst, ergibt einen wegrutschsicheren und schonenden Bodenkontakt. Durch einen stufenförmigen Absatz des Oberbleches 6, bzw. durch eine Ringsicke im Unterblech 7, in welche eine entsprechende Lippe des Profilringes 21 greift, wird erreicht, dass derselbe formschlüssig fixiert wird. Das ist wichtig, damit der Stuhl verschoben werden kann, ohne dass sich der Ring löst.

Mit dem Standfuss 1 ist die rohrförmige Stützsäule 2 starr verbunden. Sie besteht aus einem Unterrohr 26, einem Oberrohr 27, und einem Spindelrohr 37. Das Unterrohr 26 ist durch Form- oder Stoffschluss mit dem Stützring 8 verbunden. Es umfasst das Oberrohr 27, das seinerseits das Spindelrohr 37 umgreift. Spindelrohr 37 und Oberrohr 27 sind am Tragring 28 drehbar gelagert und durch die Stuhlsäulenführung 33 geführt. Das Spindelrohr 37 ist im Oberrohr 27 axial verschiebbar, wenn der Verriegelungsbolzen 38 gelöst wird, so dass die Höhe des Sitzes eingestellt werden kann. Diese Mechanik ist bekannt und braucht deshalb nicht weiter beschrieben werden.

Am oberen Ende des Unterrohres 26 ist eine Dreharretiervorrichtung 11 vorgesehen. Sie weist einen Betätigungsknopf
22 mit einem Zapfen 29 auf, der in ein Loch 30 (Fig.3) des
Oberrohres 27 einrasten kann. Der Zapfen 29 kann sowohl in
herausgezogener als auch in eingerasteter Stellung fixiert
werden. Bei herausgezogenem Zapfen 29 ist die Säule 2 demnach um ihre Längsachse frei drehbar, andernfalls in ihrer
Drehbarkeit arretiert.

Am oberen Ende des im Oberrohr 27 geführten Spindelrohres 37 ist starr eine Sitzträgerplatte 12 befestigt. Sie trägt den Sitz 3 mit der Sitzfläche 16. Der Sitz 3 ist im dargestellten Beispiel vorn an zwei Gelenkpunkten 13 aufgehängt, von denen in Fig.l einer zu sehen ist. In diesen Gelenkpunkten 13 können entweder übliche Scharniere, oder, wie gezeichnet, handelsübliche Metall-Gummi-Elemente verwendet werden, deren Elastizität ausreicht, um einen Gesamtneigungswinkel des Sitzes 3 von ca. 15° abzudecken. Hinten wird der Sitz 3 über eine in der Symmetrieebene des Sitzes 3 gelegene Feder 14 abgestützt, die an geeignet ausgebildeten Vorsprüngen der Sitzträgerplatte 12 und des Sitzes 3 in unverrückbarer Position festgehalten wird.

Die Neigung des Sitzes 3 kann stufenlos über die in Fig.2 näher dargestellte Neigungsverstellvorrichtung 15 eingestellt werden, die mittels Klemmschluss über den Betätigungsgriff 20 feststellbar und lösbar ist.

Die Sitzfläche 16 des Sitzes 3 ist grundsätzlich schalenförmig gestaltet, jedoch so modifiziert, dass sich eine
optimale Druckverteilung an Gesäss und Oberschenkeln des
Benutzers, und eine minimale Abrutschgefahr ergeben: die
Hinterkante 5 des Sitzes 3 ist bis etwa zum Beckenrand
eines durchschnittlichen Benutzers hochgezogen, die Vorderkante 4 ist mit einem Radius von 60 mm bis 100mm, vorzugsweise ca. 80 mm abgerundet, die Seitenkanten sind im
Gesässbereich leicht hoch-

gezogen, in der Mitte, zwischen den Oberschenkeln des Benutzers, ist ein Mittelwulst vorgesehen, und die Oberfläche
weist eine Riffelung 17 auf. Verbindungsbohrungen 18 bewirken eine Entlüftung des Raumes zwischen Gesäss und
Sitzfläche 16.

Hinten ist am Sitz 3 eine Griffmuschel 19 vorgesehen, mittels welcher in einfacher Weise ein Ortswechsel des Steharbeitssitzes vorgenommen werden kann.

Der steife Standfuss 1 des dargestellten Steharbeitssitzes und die starr darin befestigte Stützsäule 2 und der starr auf dieser befestigte Sitz 3 geben dem Benutzer einen stabilen Halt. Wenn die Säule 3 drehbar eingestellt ist, hat der Benutzer beim seitlichen Materialzu- und -abfluss die Möglichkeit einer entsprechenden Oberkörperbewegung. Wird die Säule 3 über die Vorrichtung 11 arretiert, so kann der Benutzer grössere tangentiale Kräfte über den Sitz aufnehmen, ohne sie mit den Füssen abfangen zu müssen. Bei beschränktem Knieraum kann der Sitz 3 zum Besteigen oder Verlassen aus der Arbeitsrichtung herausgedreht werden.

Der Sitz 3 ist durch seine stufenlose Neigbarkeit in Längs- bzw. Sitzrichtung optimal anpassbar an die jeweilige Arbeitssituation, die Konstitution und Körpergrösse des Benutzers. Wird die Neigungsverstellvorrichtung 15 gelöst, so ist dynamisches Sitzen mit wechselnder Sitzneigung möglich, wobei die Feder 14 das anteilige Oberkörpergewicht des Benutzers ausgleicht. Andererseits wirkt die Feder 14 auch als Vorholfeder, d.h. die gewünschte Sitzneigung wird gefunden, indem der Benutzer mit dem Gesäss den Sitz 3 in die gewünschte Stellung drückt und danach die Neigungsverstellvorrichtung 15 feststellt.

Die geschilderte besondere Gestaltung der Sitzfläche 16 des Sitzes 3 bewirkt im einzelnen, dass der grösste Teil der von der Oberkörperlast erzeugten Kräfte im Bereich der Sitzbeinhöcker in die Sitzfläche 16 eingeleitet wird, dennoch aber auch die sehr viel druckempfindlicheren anderen Teile des Gesässes und der Oberschenkel geeignet abgestützt werden. Die Stützung des Beckens des Benutzers verhindert eine nachteilige Kyphosierung der Wirbelsäule, insbesondere im Lendenwirbelbereich. Die Riffelung 17 und der Mittelwulst verhindern ein Abrutschen des Benutzers selbst bei stark nach vorn geneigtem Sitz, während die Abrundung der Vorderkante 4 eine minimale Druckbelastung und allmähliche Druckeinleitung an den Oberschenkeln bewirkt.

Der seitliche und hintere Rand der Sitzfläche 16 geht in eine sich im wesentlichen vertikal nach unten erstrekkende, umlaufende Wandung über. Diese Wandung ergibt auf
Grund ihrer Steghöhe eine hohe Steifigkeit des Sitzes 3,
und lässt darüber hinaus den Sitz in sich geschlossen
erscheinen. Sie wirkt ferner als Sicherheitsabdeckung für
den seitlich eingelassenen Betätigungsgriff 20 (Fig. 2)

sowie der Neigungsverstellvorrichtung 15. Diese Abdeckung ist im rauhen Werkstattbetrieb wichtig. Hinten ermöglicht die Wandung die integrale Einfügung der Griffmuschel 19.

In Fig. 2 ist die Neigungsverstellvorrichtung 15 näher dargestellt. Sie besteht aus zwei parallel laufenden, senkrecht zur Drehachse stehenden, in der Symmetrieachse des Sitzes 3 gelegenen Metallzungenpaaren 23, 24. Das untere Metallzungenpaar 23 ist fest mit der Sitzträgerplatte 12 verbunden und verläuft von unten nach oben, das andere ist fest unterhalb der Sitzfläche 16 befestigt und verläuft von oben nach unten. Ein Metallzungenpaar - im dargestellten Beispiel das untere - besitzt Langlochschlitze, das andere ein rundes Durchgangsloch. Durch entsprechende Zwischenstücke und eine drehbare Stange, die an ihrem Ende ein Gewinde besitzt, ist es möglich, die Zungen gegeneinander zu verklemmen. Die Klemmkraft kann dabei relativ gering sein, da diese Anordnung die Wirkungsweise einer Mehrscheiben-Kupplung besitzt. Ueber einen festverbundenen Betätigungsgriff 20 in Form eines Handrades am Ende der Gewindestange wird das notwendige Verklemmdrehmoment aufgebracht, bzw. die feste Verklemmung gelöst.

Das Handrad 20 ist seitlich im Sitz 3 eingelassen, also im günstigsten Griffbereich.

In Fig.3 ist die Dreharretiervorrichtung 11 näher dargestellt. Sie besteht aus einer Hülse 31, die am Ende umgebördelt ist und damit als Widerlager für eine Betätigungsfeder 32 dient. Die Hülse 31 ist mit einem Aussengewinde
versehen und in das dazu gehörende Innengewinde der Stuhlsäulenführung 33 eingeschraubt. Position und Festsitz der

Hülse 31 sind durch eine formschlüssige Unterlegscheibe 34 und eine Kontermutter 35 gewährleistet. In der Hülse 31 ist ein abgesetzter Zapfen 29 axial verschiebbar gelagert, dessen freies Ende aus der Endöffnung der Hülse 31 herausragt, und der an diesem Ende einen Betätigungsknopf 22 trägt. Der Absatz des Zapfens 29 dient als zweites Widerlager für die Druckfeder 32. Ein quer verlaufender Schlitz am freien Ende der Hülse 31 nimmt einen Anschlagstift 36 auf, der seinerseits mit dem freien Ende des Zapfens 29 fest verbunden ist. Schlägt der Stift 36 auf dem Grund des Schlitzes an, dann bildet er den Anschlag des Verriegelungszapfens 29 in verriegelter Stellung. Aus dem Schlitz herausgezogen und um 90° gedreht ist der Verriegelungszapfen 29 dauernd entriegelt. Wird der Verriegelungszapfen 29 nur gezogen, der Stift 36 jedoch im Schlitz belassen, dann kann der Sitz 3 zur Seite gedreht werden. Wird er in die alte Position zurückgeschwenkt, so rastet der Verriegelungszapfen 29 selbsttätig wieder ein.

Oberblech 6, Unterblech 7 und Stützring 8 des Standfusses 1 werden bevorzugt aus Stahl- oder Aluminiumblech hergestellt. Alle drei Teile können aus kostengünstig herzustellenden Ronden gefertigt werden. Ober- und Unterblech sind einfache Prägeteile. An den Verbindungsstellen sind Punkt-flansche für kostengünstiges Punktschweissen vorgesehen.

Auch die Sitzträgerplatte 12 wird vorzugsweise aus Stahloder Aluminiumblech hergestellt, wobei das untere Metallzungenpaar 23 einstückig angeformt ist.

Auch der Sitz 3, einschliesslich der Griffmuschel 19, ist so ausgelegt, dass er aus einem einzigen Teil besteht und in einem einzigen Fertigungswerkzeug vorzugsweise aus Kunststoff im Spritzgiessverfahren gefertigt werden kann. Um eine ausreichende Eigensteifigkeit über entsprechend dimensionierte Wanddicken zu erhalten, kann in vorteilhafter Weise Kunststoff mit einer Zellstruktur (TSG oder RSG) angewendet werden.

Der Sitz 3 kann auch aus zwei Teilen bestehen, einem tragenden Kern und einer ihn umgebenden Polsterschicht. Diese Polsterschicht kann vorzugsweise aus sogenanntem PUR-Integralschaum bestehen. In diesem Falle wird eine kompakte Aussenhaut und eine zellartige Kernschicht erzeugt. Der tragende Teil kann mit eingeschäumt werden.

Der Standfuss 1 kann dadurch vereinfacht werden, dass der Stützring 8 in der Mitte weggelassen und direkt durch das Standrohr 2 ersetzt wird. Nachteilig kann diese Lösung dann sein, wenn man zwecks Vereinfachung der Lagerhaltung Füsse mit verschieden langen Standrohren kombinieren will.

Schliesslich könnte noch die Sitzträgerplatte 12 drehbar auf dem Oberrohr 27 angeordnet werden, wenn die Stützsäule 2 unverdrehbar ausgeführt werden soll.

Die Möglichkeit, den Sitz 3 um eine Achse in Sitzrichtung kippen zu können, ist ausdrücklich nicht erwünscht, da hierdurch dem Benutzer wiederum das Gefühl einer instabilen Sitzsituation vermittelt wird, das ihn zu unerwünschten Abfangbewegungen der Beine veranlasst.

Bezeichnungsliste

- Standfuss 1
- Stützsäule 2
- 3 Sitz
- 4 Vorderkante
- 5 Hinterkante
- 6 Oberblech
- 7 Unterblech
- 8 Stützring
- Sicke im Oberblech 9
- Sicke im Unterblech 10
- Dreharretiervorrichtung 11
- Sitzträgerplatte 12
- Gelenkpunkt 13
- 14 Feder
- Neigungsverstellvorrichtung 15
- 16 Sitzfläche
- Riffelung 17
- Verbindungsbohrung 18
- 19 Griffmuschel
- Betätigungsgriff 20
- 21 Profilring
- 22 Betätigungsknopf
- 23 unteres Metallzungenpaar
- 24 oberes Metallzungenpaar
- 25 Langloch
- Unterrohr 26
- 27 Oberrohr
- Tragring 28
- 29 Zapfen
- 30 Löcher
- 31 Hülse
- 32 Betätigungsfeder
- 33 Stuhlsäulenführung
- 34 Unterlegscheibe
- 35 Kontermutter
- 36 Anschlagstift
- 37 Spindelrohr
- 38 Verriegelungsbolzen

Patentansprüche

- 1. Transportabler Steharbeitssitz mit einem im wesentlichen kreisrunden, flach auslaufenden, wegrutschgesicherten Standfuss, einer höhenverstellbaren Stützsäule und einem am oberen Ende der Stützsäule angeordneten, schalenförmigen Sitz mit hochgezogener Hinter- und nach vorn abfallender Vorderkante, dadurch gekennzeichnet, dass
 - die Stützsäule (2) und der Standfuss (1) starr miteinander verbunden sind, und
 - der Sitz (3) um die Längsachse der Stützsäule (2) ohne Beeinflussung seiner Höhe drehbar und um eine Achse senkrecht zu dieser Längsachse und senkrecht zur Verbindungslinie Vorderkante (4) / Hinterkante (5) (Sitzrichtung) neigbar ist, und
 - die Hinterkante (5) des Sitzes (3) bis etwa zum Beckenrand eines durchschnittlichen Benutzers hochgezogen ist, und
 - die Vorderkante (4) des Sitzes (3) mit einem Radius von 60 bis 100 mm abgerundet ist, und
 - die Sitzfläche (16) des Sitzes (3) eine das Abrutschen eines Benutzers nach vorn hemmende Gestaltung aufweist.
- 2. Steharbeitssitz nach Anspruch 1, dadurch gekennzeichnet, dass der Standfuss (1) aus einem kreisringförmigen Oberblech (6) und einem kreisringförmigen Unterblech (7) und einem in der Mitte angeordneten, den Standfuss (1) aufnehmenden Stützring (8) besteht, und Ober- und Unterblech an ihrem Aussenrand unmittelbar und in der Mitte über den Stützring (8) miteinander fest verbunden sind, derart, dass sich im Querschnitt ein Dreiecksverband ergibt, und dass Ober- und Unterblech Beulsteifigkeit bewirkende Sicken (9,10) aufweisen.

- 3. Steharbeitssitz nach Ansprüchen 1 und 2, dadurch gekennzeichnet, dass der Sitz (3) mit der Stützsäule (2)
 starr verbunden und diese senkrecht zum Standfuss (1)
 ausgerichtet ist, und die Stützsäule (2) in sich um
 ihre Längsachse drehbar ist und eine Dreharretiervorrichtung (11) aufweist.
- 4. Steharbeitssitz nach Anspruch 1, dadurch gekennzeichnet, dass am oberen Ende der Stützsäule (2) eine Sitzträgerplatte (12) befestigt ist, an welcher einerseits an mindestens einem Gelenkpunkt (13) der Vorderteil des Sitzes (3) angelenkt ist, und an welcher andererseits mindestens eine Feder (14) angeordnet ist, die den Hinterteil des Sitzes (3) abstützt, und dass eine zwischen dem Hinterteil des Sitzes (3) und der Sitzträgerplatte (12) wirkende Neigungsverstellvorrichtung (15) vorgesehen ist, die durch Klemmschluss eine stufenlose Einstellung der Sitzneigung ermöglicht.
- 5. Steharbeitssitz nach Anspruch 1, dadurch gekennzeichnet, dass die Sitzfläche (16) des Sitzes (3) hochgezogene Seitenkanten und einen in Sitzrichtung verlaufenden Mittelwulst hat.
- 6. Steharbeitssitz nach Anspruch 1, dadurch gekennzeichnet, dass die Sitzfläche (16) des Sitzes (3) eine quer zur Sitzrichtung verlaufende Riffelung (17), und Verbindungsbohrungen (18) von der Sitzoberseite zur Sitzunterseite aufweist.
- 7. Steharbeitssitz nach Anspruch 1, dadurch gekennzeichnet, dass der Sitz (3) eine sich vom Rand der Sitz-

fläche (16) im wesentlichen vertikal nach unten erstrekkende, umlaufende Wandung aufweist, in welcher auf der Rückseite eine Griffmuschel (19), und seitlich ein Betätigungsgriff (20) für die Neigungsverstellvorrichtung (15) des Sitzes (3) eingelassen sind.

- 8. Steharbeitssitz nach Ansprüchen 2 und 7,dadurch gekennzeichnet, dass der Sitz (3) ein integrales Kunststoff-Spritzgussteil ist, und die Teile des Standfusses (1) aus korrosionsgeschütztem Stahlblech bestehen, und der Standfuss (1) an seinem Aussenrand einen umlaufenden Profilring (21) aus elastischem Material aufweist, welcher im Ober- und Unterblech formschlüssig fixiert ist.
- 9. Steharbeitssitz nach Anspruch 7, dadurch gekennzeichnet, dass der Sitz (3) aus einem Kern und einem Mantel jeweils unterschiedlicher Kunststoffstrukturen besteht, wobei der Kern zellenartig-tragend und der Mantel integralgeschäumt-polsternd ausgebildet ist.
- 10. Steharbeitssitz nach Anspruch 3, dadurch gekennzeichnet, dass an der Stützsäule (2) ein Betätigungsknopf (22) für die Dreharretiervorrichtung (11) vorgesehen ist, welcher in zwei Stellungen fixierbar ist, wobei in der einen Stellung die Stützsäule (2) in ihrer Drehbarkeit arretiert, und in der anderen frei drehbar ist.

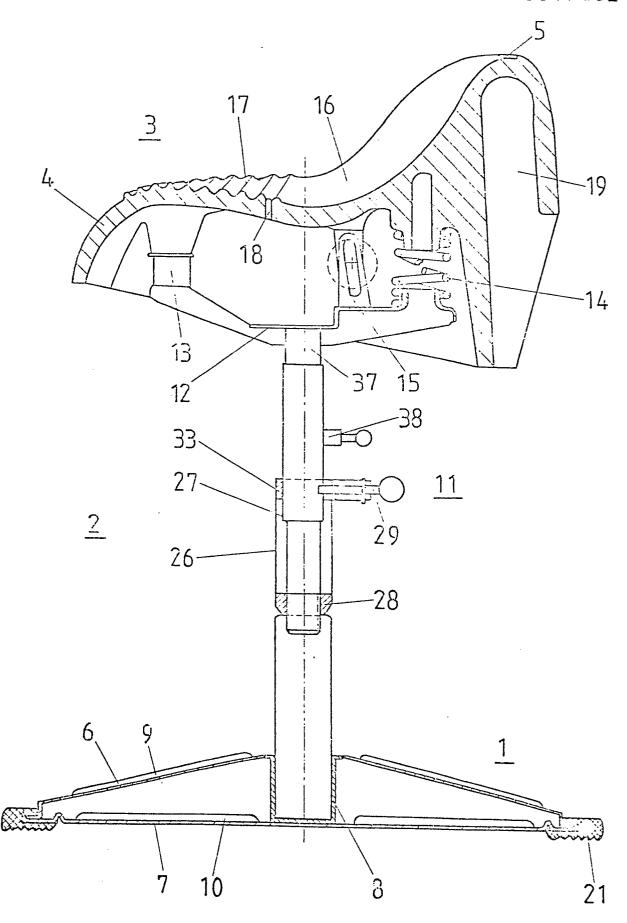


FIG.1

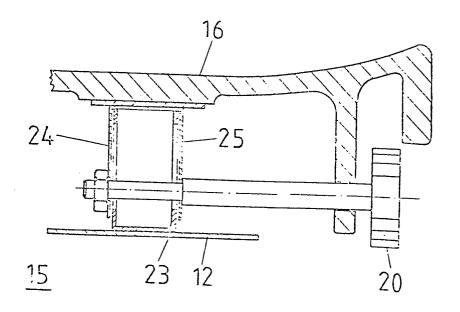


FIG. 2

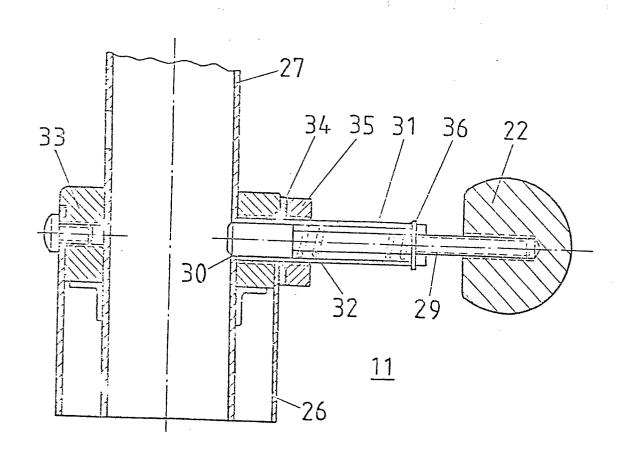


FIG.3

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung EP 80 20 0118

EINSCHLÄGIGE DOKUMENTE			KLASSIFIKATION DER ANMELDUNG (Int.Cl. 3)
Kategorie	Kennzeichnung des Dokuments mit Angabe, soweit erforderlich, der maßgeblichen Teile	betrifft Anspruch	A 47 C 9/02
	FR - A - 1 333 156 (LELOUP) * Seite 1, Spalte 1, Absatz 7 - Spalte 2, Absatz 2; Figur 1 *	1,3	,, 6 3,02
	FR - A - 1 480 037 (FABRE) * Seite 1, Spalte 2, Absatz 9 - Seite 2, Spalte 1, Absatz 7; Figuren 1,2 *	1,4	. డేనిపు మెళ్ళు పట్టాలునికో
	DE - A - 2 657 538 (DREYER) * Seite 4, Absatz 3 - Seite 5, Absatz 3; Figuren 1,2 *	1,5,6, 7	RECHERCHIERTE SACHGEBIETE (Int. Ci. 3) A 47 C
	DE - A - 2 421 896 (PANTON) * Seite 13, Absatz 3 - Seite 15, Absatz 2; Figuren 5,6,7 *	2	
			KATEGORIE DER GENANNTEN DOKUMENTE X: von besonderer Bedeutung A: technologischer Hintergrund O: nichtschriftliche Offenbarung P: Zwischenliteratur T: der Erfindung zugrunde liegende Theorien oder Grundsätze E. kollidierende Anmeldung D: in der Anmeldung angeführtes Dokument L: aus andern Gründen angeführtes Dokument &: Mitglied der gleichen Patent-
X	Der vorliegende Recherchenbericht wurde für alle Patentansprüche erst		familie, übereinstimmendes Dokument
Recherci	Den Haag 04-07-1980	Prüfer V A N	NDEVONDELE