

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 80104153.4

(51) Int. Cl.³: F 01 D 5/14

(22) Date of filing: 16.07.80

(30) Priority: 18.07.79 JP 9042679

(43) Date of publication of application:
28.01.81 Bulletin 81/4

(84) Designated Contracting States:
CH DE FR LI

(71) Applicant: Hitachi, Ltd.
5-1, Marunouchi 1-chome
Chiyoda-ku Tokyo 100(JP)

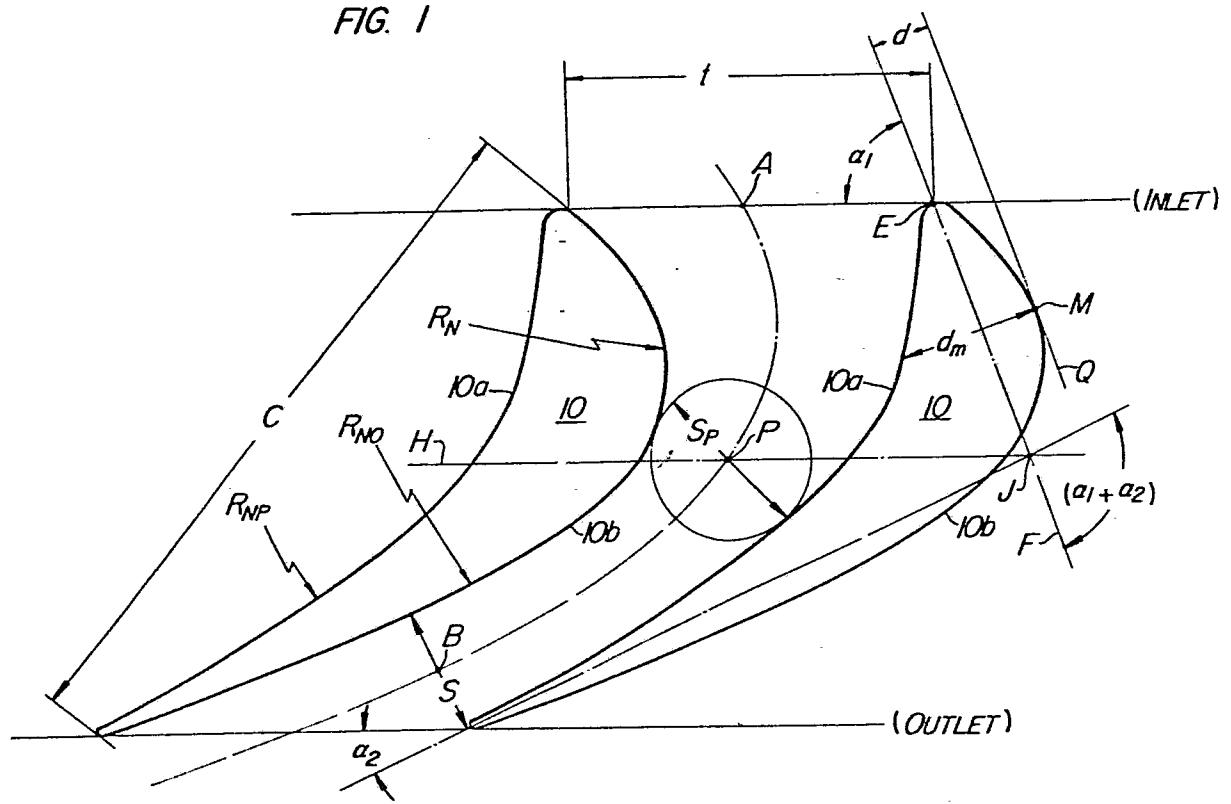
(72) Inventor: Sato, Takeshi
27-9, Nishinarusawacho-1-chome
Hitachi-shi(JP)

(72) Inventor: Uenishi, Akira
990-2, Motoyoshidacho
Mito-shi(JP)

(72) Inventor: Yasugahira, Norio
2672-154, Kanesawacho
Hitachi-shi(JP)

(72) Inventor: Hisano, Katsukuni
29-4, Nishinarusawacho-4-chome
Hitachi-shi(JP)

(74) Representative: Beetz, sen., Richard, Dipl.-Ing.
Patentanwälte Dipl.-Ing. R. Beetz sen., Dipl.-Ing. K.
Lamprecht; Dr. Ing. R. Beetz jr. et al,
Rechtsanwalt Dipl.-Phys. Dr. jur. U. Heidrich Dr.-Ing. W.
Timpe; Dipl.-Ing. J. Siegfried Dipl.-Chem. Dr.rer.nat. W.
Schmitt-Fumian Steinsdorfstrasse 10
D-8000 München 22(DE)


(54) A turbine blade.

(57) A turbine blade (10) having such a profile that (A) a straight line (H) is drawn such that (a) said straight line passes a point of intersection (J) between an extension of a first straight line (F) which, together with a second straight line in parallel with the axis of a circular blade array, defines an inlet angle (α_1) and an extension of a third straight line which, together with a fourth straight line in parallel with said axis, defines an outlet angle (α_2), (b) said straight line (H) is in parallel with said axis, and (c) said straight line (H) is spaced apart from the outlet end of the blade (10) by a distance greater than one half of the chord length (C) thereof; and (B) that at the point of intersection (P) between said straight line (H) and the center line (A) of the flow passage between adjacent blades, said point being the flow direction changing point, the smallest width (S_p) of the flow passage is less than about 0.4 times the width (t) of said flow passage at the inlet thereof.

EP 0 023 025 A1

./...

FIG. 1

- 1 -

A TURBINE BLADE

1 The present invention relates to generally a velocity enhancing blade array of axial flow fluid machines and more particularly a turbine blade.

Various blade profiles which constitute the 5 blade arrays of axial flow fluid machines, such as turbines have been designed and demonstrated. For instance, a turbine blade profile consists of a plurality of successively merging circular arcs whose radii of curvature are gradually decreased from the 10 leading edge to the trailing edge. Blade profiles are in general designed to obtain a desired inlet angle, a desired outlet angle and a desired blade width or chord length, but hydrodynamical conditions in the flow passage between the adjacent blades are not taken into 15 consideration. In addition, understanding of the performance of the blade profiles which can be used in practice is not sufficient. As a result, it has been very difficult to obtain a turbine blade profile which ensures high performance of an axial flow fluid machine.

20 More specifically, the boundary layers are formed over the blade surfaces due to the viscosity of the fluid and flow past the outlet of the flow passage, resulting in the lack of velocity of the fluid at the downstream of the outlet. The degree of the lack of the velocity 25 of the fluid at the downstream of the outlet determin'

1 the performance of the blade profile. The most important factor which must be taken into consideration in design of turbine blade profiles is the thickness of the boundary layer at the outlet of the flow passage between 5 the adjacent blades. In general, the thinner the boundary layer at the outlet, the higher the performance becomes. It has been clarified that the development of the thickness of the boundary layer is closely correlated with the variations in velocity of the fluid passing 10 through the flow passage. However so far the variations in velocity have not been taken into consideration in the design of a flow passage between the blades. As a result, no attempt has been made to suppress the formation of the boundary layer so that the separation of the 15 boundary layer results, causing very serious adverse effects on the performance. Thus it has been difficult to obtain the turbine blade profiles which ensure the high performance.

One of the objects of the present invention 20 is therefore to provide a turbine blade which can stabilize the boundary layers thereon, thus ensuring high performance.

Another object of the present invention is to provide a high-performance turbine blade which 25 enables the fluid to flow through the flow passage defined between the adjacent turbine blades in such a way that the acceleration of the fluid is almost completed before the fluid reaches the flow direction

- 3 -

1 changing point in the flow passage, whereby the
boundary layers can be stabilized and high performance
can be ensured.

To the above and other ends, briefly stated,
5 the present invention provides a turbine blade having
such a blade profile that (A) a straight line is drawn
in such a way that (a) said straight line passes a point
of intersection between an extension of a first straight
line which, together with a second straight line in
10 parallel with the axis of a circular turbine blade
array, defines an inlet angle and an extension of a
third straight line which, together with a fourth
straight line in parallel with said axis, defines an
outlet angle, (b) said straight line is in parallel
15 with said axis and (c) said straight line is spaced
apart from the outlet or discharge end of the turbine
blade by a distance greater than one half of the chord
length thereof; and (B) that at the point of intersection
between said straight line thus drawn and the center
20 line of the flow passage defined between the adjacent
turbine blades, said point being the flow direction
changing point, the smallest width of the flow passage
is less than about 0.4 times the width of said flow
passage at the inlet thereof, whereby the acceleration
25 of the fluid flowing through the flow passage is almost
completed prior to said flow direction changing point
and consequently the boundary layers on the blades are
stabilized to such a higher degree as unattainable by

1 any prior art turbine blade profile.

The above and other objects, features and effects of the present invention will become more apparent from the following description of a preferred 5 embodiment thereof taken in conjunction with the accompanying drawings, in which:-

Fig. 1 is a diagram of a turbine blade profile in accordance with the present invention;

Fig. 2 shows the development of the flow 10 passage between the adjacent blades shown in Fig. 1;

Fig. 3 shows the pressure distributions on the surfaces of the turbine blade in accordance with the present invention;

Fig. 4 is a view used for the explanation of 15 the behaviors of the boundary layer on the back surface of the turbine blade in accordance with the present invention; and

Fig. 5 shows the relationship between the deflection angle and the blade profile loss coefficient 20 of the turbine blade in accordance with the present invention.

Referring first to Fig. 1, the features of a blade profile in accordance with the present invention will be described. A line H is first drawn 25 which is in parallel with the axis of blades 10 (that is, the direction in which the blades 10 are mounted in a circular array) and which passes the point of intersection J between a first line F inclined with

- 5 -

1 respect to a second line, which is in parallel with the
axis of a circular turbine blade array, at an inlet
angle α_1 and a third line inclined with respect to a
fourth line in parallel with the above-mentioned axis
5 at an outlet angle α_2 . The position of this line H
corresponds to the point at which the fluid flow is
deflected in direction within the passage between the
back surface 10b of the turbine blade 10 and the front
surface 10a of the adjacent blade 10. As shown in Fig.
10 2, the inlet width of this passage is denoted by t while
the outlet width, by s . The passage width S_p is the
width at the point P at which the center line A of the
flow passage intersects the line H. The distance
between the straight line H which passes the flow
15 direction changing point P and the outlet of the blade
is so selected as to be greater than one half of the
chord length C of the blade 10. The portion of the
blade profile above the straight line H is referred to
as "the upstream portion" while the portion below the
20 straight line H, "the downstream portion". The radius
of curvature R_N of the upstream portion of the back
surface 10b is smaller than that of the prior art blade
profile while the radius of curvature R_{NO} of the down-
stream portion is greater than that of the prior art
25 blade profile. In addition, the radius of curvature
 R_{NP} of the downstream portion of the front surface 10a
is greater than that of the prior art blade profile.

Fig. 2 shows the development of the flow

- 6 -

1 passage between the adjacent blades along the center line APB shown in Fig. 1. It is seen that the width of the flow passage is drastically reduced at the upstream portion from the inlet to the flow direction changing
 5 point P (from A to P in Fig. 1) while the decrease in width is gradual in the downstream portion (from P to B in Fig. 1).

In brief, according to the present invention, the radius of curvature R_N of the upstream portion of
 10 the back surface 10b (from the inlet to the straight line H in Fig. 1) is made smaller than that of the prior art blade profile. That is, $R_N/C < 0.15$ in mathematical terms. The radius of curvature R_{NO} of the downstream portion of the back surface 10b (from the straight line
 15 H to the outlet in Fig. 1) is expressed by $R_{NO}/C > 5.0$. The radius of curvature R_{NP} of the downstream portion of the front surface 10a is expressed by $R_{NP}/C > 1.3$. These conditions are summarized in TABLE 1 below.

TABLE 1

	upstream portion of back surface	downstream portion of back surface	downstream portion of front surface
radius of curvature	$\frac{R_N}{C} < 0.15$	$\infty > \frac{R_{NO}}{C} > 5.0$	$\infty > \frac{R_{NP}}{C} > 1.3$

- 7 -

1 TABLE 2 shows the relationship between the
 passage width S_p at the flow direction changing point P,
 the width S at the outlet and the width t at the inlet.

TABLE 2

Ratio	S/S_p	S_p/t
	< 1.0	< 0.4
	> 0.9	

5 Since the flow passage width at the flow direction changing point P is $S_p/t < 0.4$, the above width is smaller than that of the prior art blade profile at the upstream of the point P. On the other hand, since the flow passage width at the point P is $0.9 < S/S_p < 1.0$, the above width is greater than that of the prior art
 10 blade profile at the downstream of the point P. In summary, according to the present invention, as compared with the prior art blades, the curvature of the back surface above the straight line H, which passes through the flow direction changing point P, is made greater
 15 while the curvatures of the downstream portions of the front and back surfaces are made smaller or made substantially zero. Opposed to the prior art blade profiles consisting of successive merging circular arcs, according to the present invention, a flow passage
 20 profile can be defined in which an optimum acceleration

1 of flow can be ensured. As a result, the acceleration
of the fluid flowing through the flow passage between
the blades can be substantially completed before the
fluid reaches the flow direction changing point P.

5 Next the thickness of the blade profile in
accordance with the present invention will be described
with further reference to Fig. 1. The thickness of the
upstream portion of the blade is very noticeably
different from that of the prior art blade. The dis-
10 tance d between the straight line F passing the tip E
of the blade and the point J and the straight line Q
which is in parallel with the straight line F and
tangential to the back surface 10b is 1.5 to 2.0 times
as compared with the prior art blade. The increase in
15 thickness results from the fact that the radius of
curvature R_N of the upstream portion of the back surface
10b is reduced so that the upstream portion of the blade
is increased in thickness. As a result, the acceleration
of the fluid can be substantially completed before the
20 fluid reaches the flow direction changing point P without
changing the inlet angle α_1 . In addition, the accelera-
tion stabilizes the boundary layers and decreases their
thickness. The fluid flow is deflected along the front
and back surfaces 10a and 10b, which are concave and
25 convex, respectively, so that satisfactory boundary
layers are formed even after passing the flow direction
changing point P. As a consequence, a uniform velocity
distribution can be attained in the flow at the

- 9 -

1 downstream of the outlet.

In summary, according to the present invention, the thickness d_m of the blade is given by the following dimensionless expression or parameter:

$$d_m/C > 0.23$$

5 where d_m is the distance from the point M, at which the straight line Q is tangent to the back surface 10b, to the point at which a straight line constructed at the point M at right angles to the straight line Q intersects the outline profile of the front surface 10a of the 10 blade. It will be apparent that, as compared with the prior art blade in which d_m/C is 0.16, the upper portion of the blade is increased in thickness.

The features of the present invention will be more clearly understood from Fig. 3 which shows the flow 15 in the passage between the blades is expressed in terms of the pressure acting on the blade surfaces. The pressure acting on the back surface of the blade has a high pressure drop ΔP_s in the upstream portion of the flow passage from the inlet to the point P at which the 20 flow is deflected. Since the pressure drop ΔP_s approaches ΔP which is a pressure drop in the overall portion of the flow passage, the stabilized boundary layers can be formed. At the throat (indicated by S in Fig. 1), a very gentle increase in pressure is observed 25 while a sudden pressure rise is observed in the case of

- 10 -

1 the prior art blade. A sudden pressure rise (or the decrease in velocity) facilitates the formation of the boundary layers. That is, the pressure rise determines the conditions of the boundary layers formed and 5 consequently the performance of the blade.

Shown in Fig. 4 are the velocity distribution V , displacement thickness δ and momentum thickness θ on the back surface 10b of the blade. The thicknesses δ and θ are the measures in determining the thickness of 10 the boundary layer and are calculated (according to "TN D-5681", published by NASA, May 1970) based upon the pressure distributions shown in Fig. 3. As described above, according to the present invention, the acceleration is almost completed before the fluid reaches the 15 flow direction changing point P so that both the displacement thickness δ and the momentum thickness θ can be decreased at the outlet of the blade ($l_x/L = 1.0$), whereby a high performance blade profile can be obtained.

From the data shown in Fig. 4, the blade 20 profile loss coefficient e is obtained by the following equation.

$$e = \frac{1.74 \theta}{1 - \delta}$$

where e is the blade profile loss coefficient;

δ is the displacement thickness; and

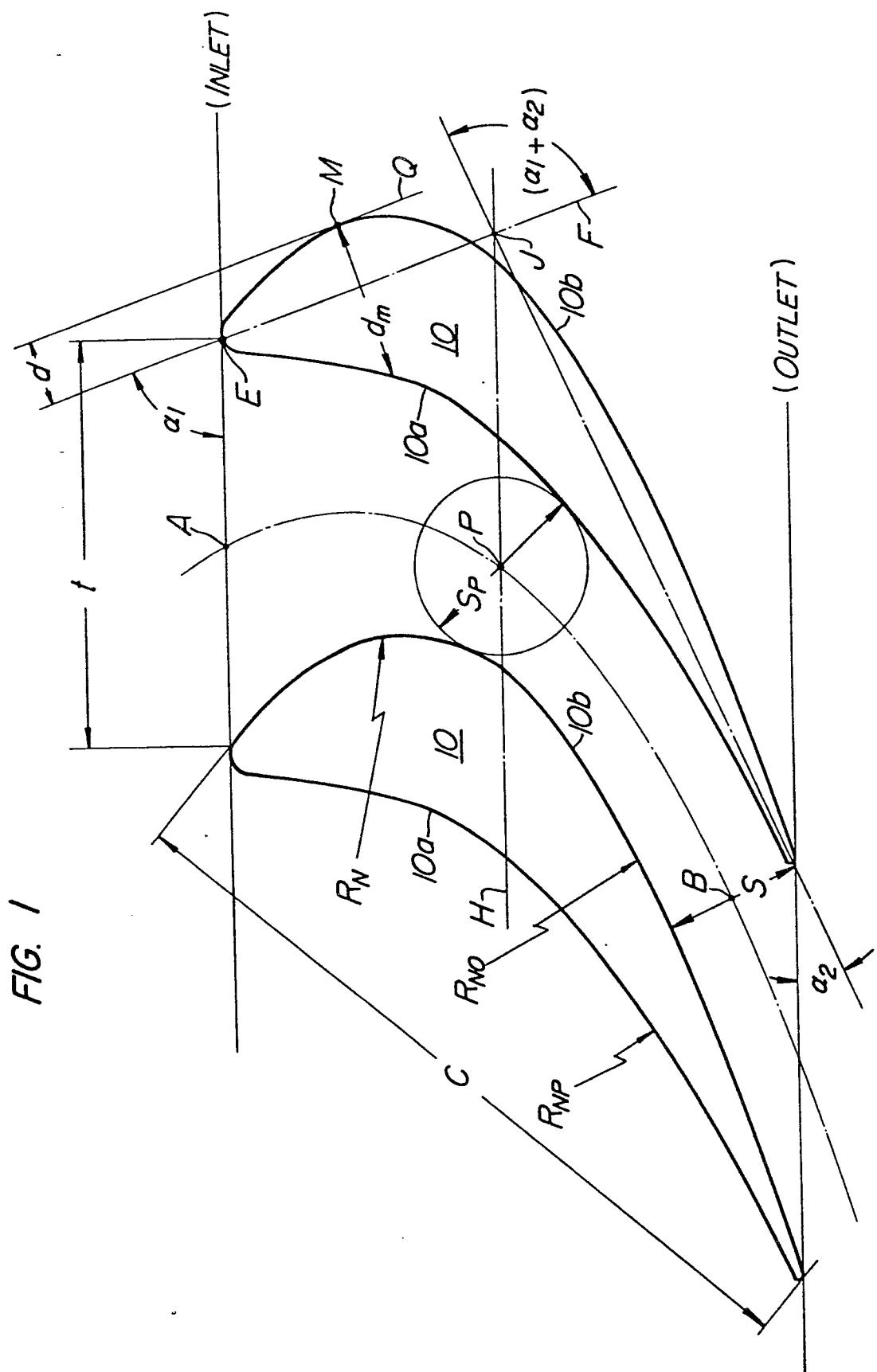
θ is the momentum thickness.

25 As compared with the prior art blade profile, the blade

- 11 -

1 profile loss coefficient e of the blade profile in
accordance with the present invention is reduced by
about 30%.

5 In Fig. 5 is shown the relationship between
the blade profile loss coefficient e and the inlet and
outlet angles α_1 and α_2 . The blade profile loss
coefficient e is plotted along the ordinate while the
deflection angle [$180^\circ - (\alpha_1 + \alpha_2)$], along the abscissa.


10 It is seen that when the deflection angle is close to
100°, the blade profile loss coefficient can be made
as little as about 0.02 as compared with the prior art
blade having a blade profile loss coefficient of higher
than 0.025. Thus the present invention provides a blade
profile with a minimum loss and a higher degree of
15 performance.

20 In summary, according to the present invention,
the acceleration is almost completed before the flow
direction changing point so that the boundary layers can
be highly stabilized and consequently the velocity
enhancing and high performance blade profile can be
provided.

1. A turbine blade characterized by having a blade profile in which drawn is a straight line (H) which passes a point of intersection (J) between an extension of a first straight line (F) which defines an inlet angle (α_1) with a second straight line in parallel with the axis of a circular turbine blade array and an extension of a third straight line which defines an outlet angle (α_2) with a fourth straight line in parallel with said axis of a circular turbine blade array,
5 said straight line (H) being in parallel with said axis of a circular turbine blade array and being spaced apart from the outlet or discharge end of said blade (10) by a distance greater than one half of the chord length (C) of said blade (10); and the smallest width (S_p) of the flow passage between the adjacent blades at the point of intersection (P) between said straight line (H) and the center line (A) of said flow passage, said point (P) being the flow direction changing point, is selected to be less than about 0.4 times as small as the width (t) of the inlet of said flow passage,
10 whereby the acceleration of the fluid flowing through said flow passage is almost accomplished before said flow direction changing point (P) and thereby the boundary layers are stabilized.
15
20
25

2. A turbine blade as set forth in claim 1 further characterized in that.
30 said smallest width (S_p) of said flow passage at said flow direction changing point (P) is about 0.9-1.0 times the smallest width at the outlet of said flow passage.

3. A turbine blade as set forth in claim 1 further characterized in that the radius of curvature (R_N) of the portion of the back surface of the blade (10) at the upstream of 5 said flow direction changing point (P) is less than 0.15 times the chord length (C) of said blade (10).
4. A turbine blade as set forth in claim 1 10 further characterized in that the radius of curvature (R_{N0}) of the portion of the back surface of the blade (10) at the downstream of said flow direction changing point (P) is greater than 5 times the chord length (C) of said blade 15 (10).
5. A turbine blade as set forth in claim 4 further characterized in that the radius of curvature (R_{NP}) of the portion of 20 the front surface of the blade (10) at the downstream of said flow direction changing point (P) is greater than 1.3 times the chord length (C) of the blade (10).

0023025

2/5

FIG. 2

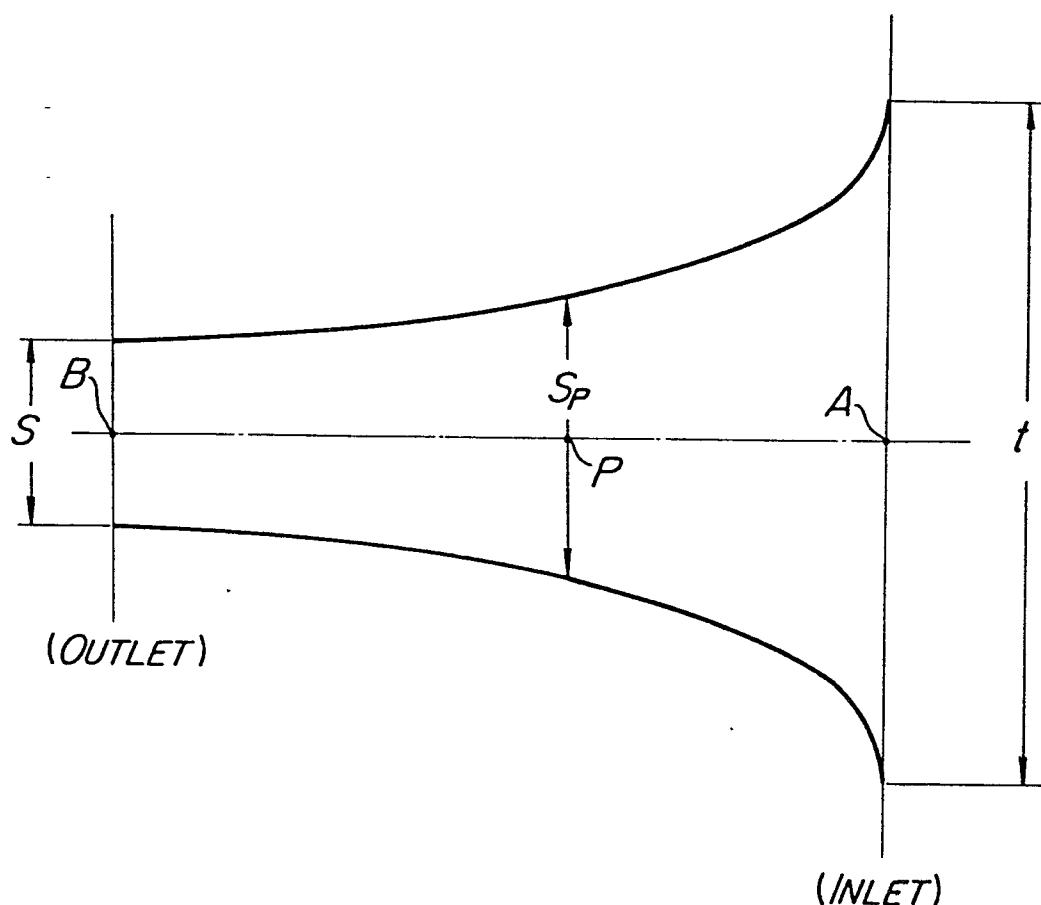


FIG. 3

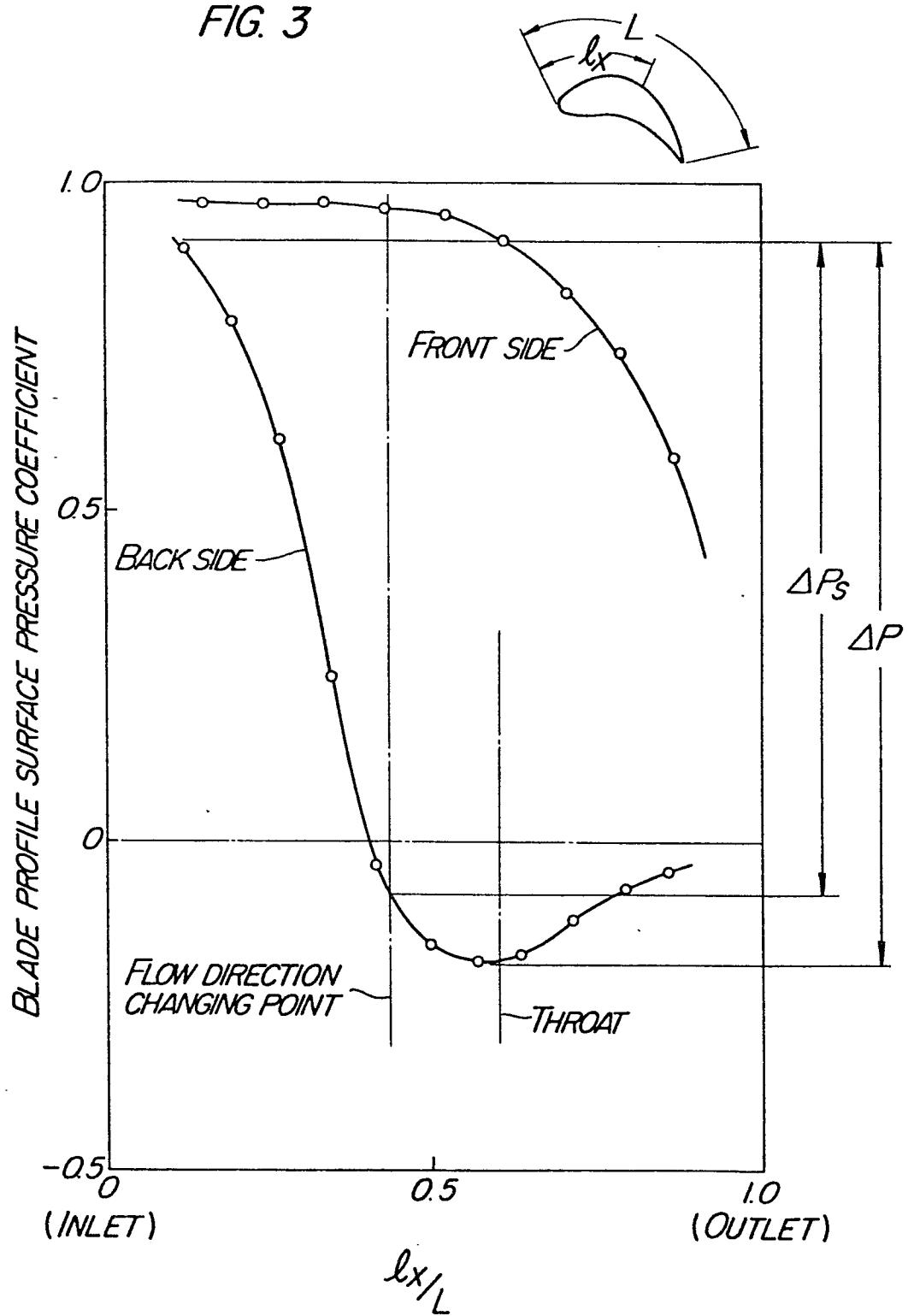


FIG. 4

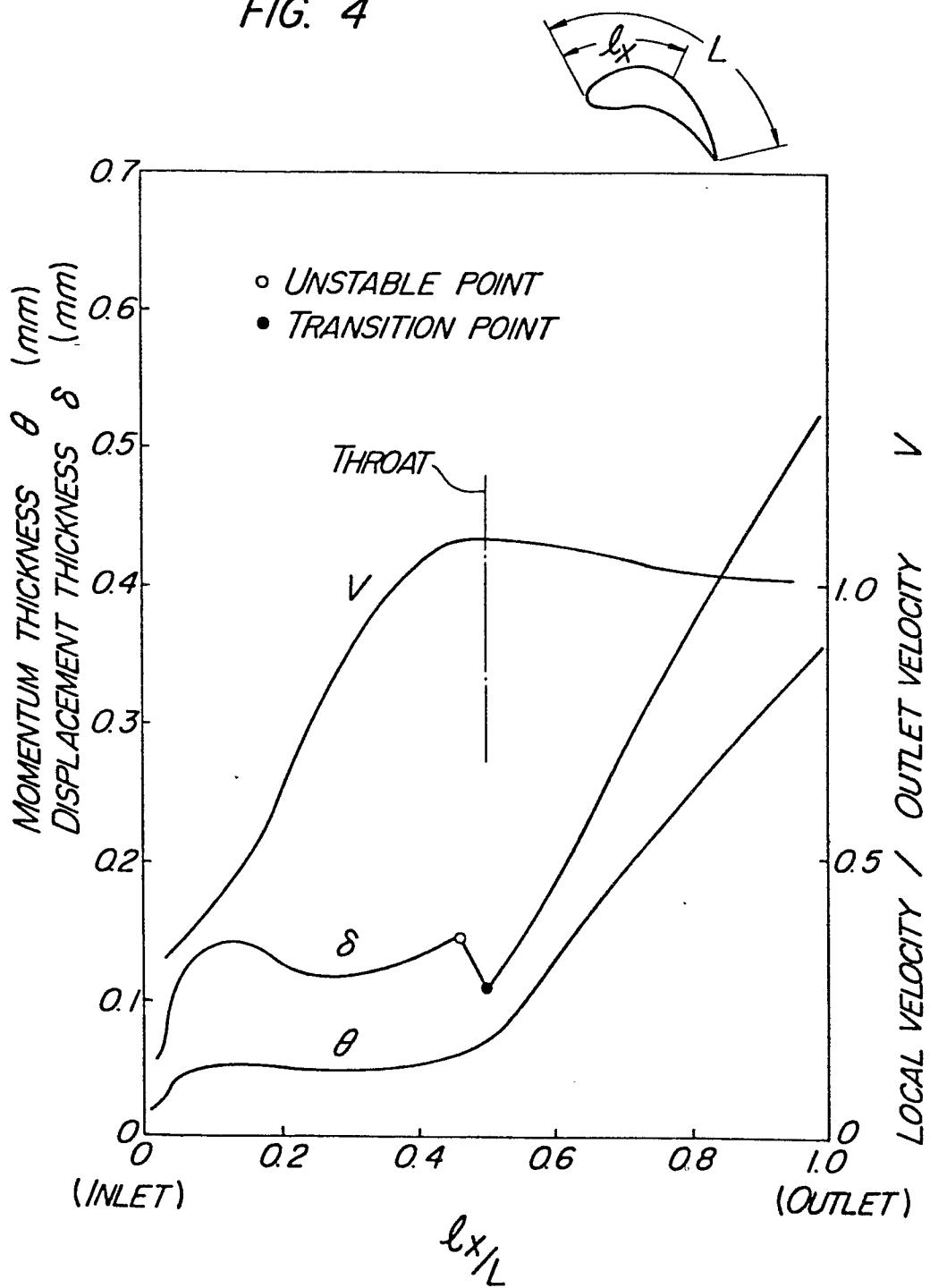
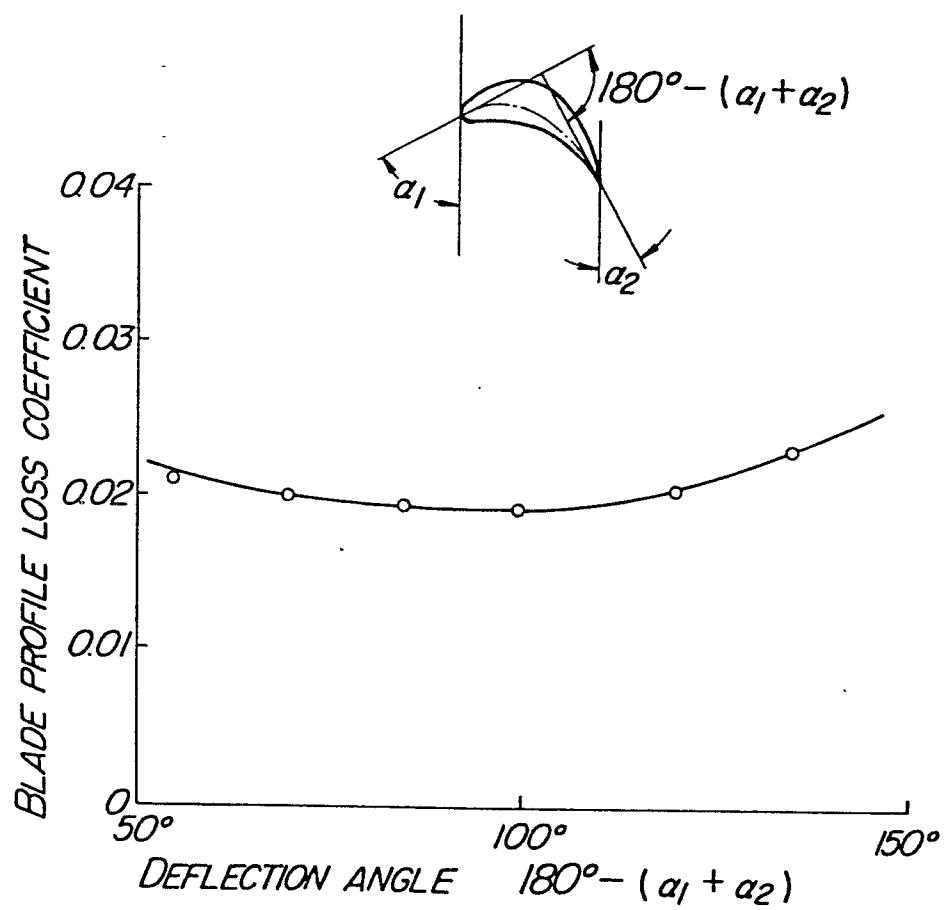



FIG. 5

European Patent
Office

EUROPEAN SEARCH REPORT

0023025

Application number
EP 80 10 4153

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (Int. Cl.)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	TECHNICAL FIELDS SEARCHED (Int. Cl.)
	<p><u>DE - B - 1 272 305</u> (SIEMENS)</p> <p>* In its entirety *</p> <p>--</p> <p><u>US - A - 3 475 108</u> (SIEMENS)</p> <p>* Column 1, line 67 - column 2, line 67; figure 3 *</p> <p>--</p> <p><u>FR - E - 616 250</u> (BROWN, BOVERI)</p> <p>* Page 2, left-hand column, line 50 - page 3, right-hand column, line 67 *</p> <p>--</p> <p><u>GB - A - 550 393</u> (WIBERG)</p> <p>* Page 2, right-hand column, line 70 - page 3, left-hand column, line 35 *</p> <p>--</p>	1	F 01 D 5/14
A	<p>VDI-ZEITSCHRIFT, vol. 93, no. 27, 21st September 1951, pages 872-873 Düsseldorf, DE.</p> <p>A. FRERICHS: "Über Gestaltung und Systematik neuerer Schaufelprofile für Dampf- und Gasturbinen".</p> <p>--</p> <p>BROWN BOVERI MITTEILUNGEN, vol. 51, no. 12, December 1964, pages 752-761 Baden, CH.</p> <p>H.E. IMBACH: "Berechnung der kompressiblen, reibungsfreien Unter- schallströmung durch ebene Schaufel- gitter"</p> <p>--</p>	1-5	F 01 D B 23 P
A		1-5	<p>CATEGORY OF CITED DOCUMENTS</p> <p>X: particularly relevant A: technological background O: non-written disclosure P: intermediate document T: theory or principle underlying the invention E: conflicting application D: document cited in the application L: citation for other reasons</p> <p>&: member of the same patent family, corresponding document</p>
	<p> The present search report has been drawn up for all claims</p>		
Place of search	Date of completion of the search	Examiner	
The Hague	16-10-1980	BONVIN	

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (Int. Cl. ³)
Category	Citation of document with indication, where appropriate, of relevant passages	Relevant to claim	
A	SIEMENS ZEITSCHRIFT, vol. 5, May 1954, pages 189-196 Erlangen, DE. VON WALDEMAR ZICKUHR: "Ermittlung der zweckmässigsten Hauptabmessungen von Überdruckdampfturbinen" --	1-5	
A	BROWN BOVERI MITTEILUNGEN, vol. 63, no. 6, June 1976, pages 339-346 Baden, CH. A. SPECHTENHAUSER: "Modern Industrial Turbine Blading" --	1-5	TECHNICAL FIELDS SEARCHED (Int. Cl. ³)
A	SIEMENS ZEITSCHRIFT, vol. 41, 1967, Beiheft "Dampfturbinen grosser Leistung", pages 113-119 Erlangen, DE. VON OTTO-ADALBERT VON SCHWERDTNER: "Strömungsuntersuchungen an Turbinenschaufeln" --	1-5	
A	SIEMENS ZEITSCHRIFT, vol. 8, August 1959, pages 516-520 Erlangen, DE. VON WALDEMAR ZICKUHR: "Ein vereinfachtes Verfahren zur angenäherteren Bestimmung der Dicke der Schaufelprofile von Turbomaschinen" -----		