(1) Publication number:

0 024 457

A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 79301765.8

(22) Date of filing: 29.08.79

(51) Int. Cl.³: **C** 10 L 1/32 C 10 G 1/00, C 10 L 9/00

(43) Date of publication of application: 11.03.81 Bulletin 81/10

(84) Designated Contracting States: DE FR GB NL

(71) Applicant: GULF RESEARCH & DEVELOPMENT COMPANY P.O. Box 2038 Pittsburgh Pennsylvania 15230(US)

- (72) Inventor: Giannetti, Joseph P. 4307 Winchester Drive Allison Park Pennsylvania 15101(US)
- (72) Inventor: Swift, Harold E. 1410 Woodhill Drive Gibsonia Pennsylvania 15044(US)
- (74) Representative: Huskisson, Frank Mackie et al, 48 St. Vincent Street Glasgow, G2 5TT(GB)

(54) Novel fuel compositions.

(57) Novel fuel compositions comprising: (A) a solid and/or semi-solid material formed by a process for upgrading coal which comprises the steps of: (1) subjecting a slurry composed of coal and a solvent containing donatable hydrogen, together with hydrogen, to catalyst-free hydrogenation conditions in a first hydrogenation zone to form an intermediate coal-solvent slurry; (2) deashing said intermediate coalsolvent slurry to form a coal-solvent solution; (3) subjecting said coal-solvent solution to catalytic hydrogenation conditions in a second hydrogenation zone to obtain a product that can be separated at ambient pressure into (a) a first liquid fraction boiling at a temperature in the range of about 100 to 375°C, (b) a second liquid fraction boiling above said first liquid fraction at a temperature in the range of about 200 to about 525°C and (c) said solid and/or semi-solid material; and then (4) recycling at least a portion of said second liquid fraction to said first hydrogenation zone; and (B) a lightboiling hydrocarbon stock boiling at a temperature in the range of about 100 to 375°C at ambient pressure; wherein the weight ratio of said solid and/or semi-solid material to said light-boiling hydrocarbon stock is about 20:1 to about 1.5:1.

NOVEL FUEL COMPOSITIONS

BACKGROUND OF THE INVENTION

1. Field of the Invention

5

A solvent refined coal product is a solid and/or semisolid material that cannot be converted readily to a fuel of lower
viscosity (ca 220 Saybolt Furol Seconds at 99°C) unless it is
blended with a large amount of light-boiling hydrocarbon stock or
subjected to hydrogenation. The latter has the

disadvantage of requiring large amounts of hydrogen. Both these alternatives are costly.

The present invention is directed to novel fuel composi-(A) a solid and/or semi-solid material formed by a process for upgrading coal which comprises the steps of: (1) subjecting a slurry composed of coal and a solvent containing donatable hydrogen, together with hydrogen, to catalyst-free hydrogenation conditions in a first hydrogenation zone to form an intermediate coal-solvent slurry; (2) deashing said intermediate coal-solvent slurry to form a coal-solvent solution; (3) subjecting said coal-solvent solution to catalytic hydrogenation conditions in a second hydrogenation zone to obtain a product that can be separated at ambient pressure into (a) a first liquid fraction boiling at a temperature in the range of about 100 to about 375°C, (b) a second liquid fraction boiling above said first liquid fraction at a temperature in the range of about 200 to about 525°C and (c) said solid and/or semi-solid material; and then (4) recycling at least a portion of said second liquid fraction to said first hydrogenation zone; and (B) a light-boiling hydrocarbon stock boiling at a temperature in the range of about 100 to about 375°C at ambient pressure; wherein the weight ratio of said solid and/or semi-solid material to said light-boiling hydrocarbon stock is about 20:1 to about 1.5:1.

2. Description of the Prior Art

5

10

15

20

25

30

Applicant is unaware of any prior art relevant to the invention defined and claimed herein.

SUMMARY OF THE INVENTION

We have discovered novel fuel compositions comprising:

(A) a solid and/or semi-solid material formed by a process for upgrading coal which comprises the steps of: (1) subjecting a

10

15

20

25

slurry composed of coal and a solvent containing donatable hydrogen, together with hydrogen, to catalyst-free hydrogenation conditions in a first hydrogenation zone to form an intermediate coal-solvent slurry; (2) deashing said intermediate coal-solvent slurry to form a coal-solvent solution; (3) subjecting said coalsolvent solution to catalytic hydrogenation conditions in a second hydrogenation zone to obtain a product that can be separated at ambient pressure into (a) a first liquid fraction boiling at a temperature in the range of about 100 to about 375°C, (b) a second liquid fraction boiling above said first liquid fraction at a temperature in the range of about 200 to about 525°C and (c) said solid and/or semi-solid material; and then (4) recycling at least a portion of said second liquid fraction to said first hydrogenation zone; and (B) a light-boiling hydrocarbon stock boiling at a temperature in the range of about 100 to about 375°C at ambient pressure; wherein the weight ratio of said solid and/or semisolid material to said light-boiling hydrocarbon stock is about 20:1 to about 1.5:1.

The solid and/or semi-solid component of the novel fuel compositions claimed herein is formed by a process described in our copending application entitled "Improved Solvent Refined Coal Process" (Case A), Serial No. 865,605, filed concurrently herewith. In general, as defined in said application, a slurry composed of coal and a solvent containing donatable hydrogen, together with hydrogen, is subjected to catalyst-free hydrogenation conditions in a first hydrogenation zone under the conditions set forth in Table 1.

Catalyst-Free Hydrogenation Conditions Table 1: Broad Range Preferred Range Temperature, °C 343 - 510399 - 482 Pressure, kPa (psig) 1 3,447 - 34,470 (500 - 5,000)6,894 - 13,888 (1,000 - 2,000) 5 Solvent/Coal Weight Ratio 0.5/1 - 10/1 1/1 - 4/1Hydrogen/Coal Feed Weight Ratio 0.01/1 - 0.30/10.05/1 - 0.10/1Hydrogen Gas Purity, mole % 85 - 100 95 - 9710 Residence Time, hrs 0.1 - 5.00.5 - 2.0

1kilopascals (pounds per square inch gauge)

15

30

After subjecting the slurry to catalyst-free hydrogenation conditions, an intermediate coal-solvent slurry is obtained. Ash and/or other insoluble material is separated from the intermediate coal-solvent slurry and a coal-solvent solution is obtained. The coal-solvent solution formed as the result of deashing is subjected to catalytic hydrogenation conditions in a second hydrogenation zone. The catalytic hydrogenation conditions are set forth in Table 2.

20	Table 2: Catalytic Hydrogenation Conditions			
		Broad Range	Preferred Range	
	Temperature, °C	260 - 538	399 - 454	
	Pressure, kPa (psig)	3,447 - 68,940 (500 - 10,000)	6,894 - 27,576 (1,000 - 4,000)	
25	Liquid Hourly Space Velocity, volume feed/ volume catalyst/hr	0.3 - 10	1.0 - 4	
	Hydrogen Flow Rate, kmol H ₂ /m ³ feed	25 - 190	60 - 90	

Any hydrogenation catalyst suitable for use in coal hydrogenation can be used herein, for example, the catalyst defined and claimed in U. S. Patent No. 3,840,423. The preferred

;

catalyst is comprised of a hydrogenation component selected from the group consisting of Group VI and Group VIII metals, their oxides and sulfides, supported on a non-zeolitic carrier, which catalyst is promoted with a Group IV-B metal. Illustrative of particularly preferred catalysts for use in our invention have metal combinations of nickel-titanium-molybdenum, nickel-cobalt-molybdenum, and nickel-tungsten on an alumina carrier.

Catalytic hydrogenation produces a product that can be separated by any conventional method known in the art, especially by distillation at ambient pressure into (a) a first liquid fraction boiling at a temperature in the range of about 100 to about 375°C, preferably about 150 to about 325°C, (b) a second liquid fraction boiling above said first liquid fraction at a temperature in the range of about 200 to about 525°C, preferably about 250 to about 475°C, and (c) a solid and/or semi-solid material. An elemental analysis for a typical solid and/or semi-solid material obtained by the process described in said copending application and which is a necessary component of the novel fuel compositions claimed herein is set forth in Table 3.

)		Table 3:	Analysis of the So Semi-Solid Materia	
٠.			Broad Range, wt %	Preferred Range, wt %
	Carbon		87.0 - 93.0	88.0 - 92.0
. –	Hydrogen		5.5 - 9.5	6.5 - 8.0
25	Nitrogen		0.3 - 3.0	0.8 - 2.0 0.1 - 1.0
	Oxygen Sulfur		0.0 - 1.5 $0.0 - 0.5$	0.1 - 1.0

The solid and/or semi-solid material is capable of being blended with a light-boiling hydrocarbon stock boiling at a temperature in the range of about 100 to about 375°C, preferably at about 150 to about 325°C, at ambient pressure. A typical elemental analysis for a light-boiling hydrocarbon stock is set forth in Table 4.

30

5

10

Table 4: Analysis of Light-Boiling Hydrocarbon Stock

		Broad Range, wt %	Preferred Range, wt %
Canbo	n	85.0 - 93.0	88.0 - 91.0
Hydro	gen	7.0 - 12.0	8.5 - 11.0
Nitro		0.0 - 2.0	0.1 - 0.7
Oxyge	-	0.0 - 2.0	0.1 - 0.7
Sulfu		0.0 - 3.0	0.0 - 0.3

10

15

30

In general, suitable light-boiling hydrocarbon stocks that can be employed in the invention can include, for example, #2 fuel oil, kerosene, jet fuel, diesel fuel, gasoline, light shale oil fractions and light fractions obtained from coal hydrogenation. A particularly preferred light-boiling hydrocarbon stock is described in said copending application and in the present invention herein as "a first liquid fraction boiling at a temperature in the range of about 100 to about 375°C, preferably about 150 to about 375°C". An elemental analysis of said first liquid fraction is set forth in Table 5 herein.

Table 5: Analysis of the First Liquid Fraction

			·
		Broad Range, wt %	Preferred Range, wt %
	Carbon	87.0 - 93.0	88.0 - 91.0
25	Hydrogen	7.0 - 12.0	8.5 - 11.0
	Nitrogen	0.0 - 2.0	0.1 - 0.7
	Oxygen	0.0 - 2.0	0.1 - 0.7
	Sulfur	0.0 - 0.5	0.0 - 0.3

The solid and/or semi-solid material is mixed or blended with the light-boiling hydrocarbon stock by means well-known in the art. The ingredients are mixed until a homogeneous product is obtained. The weight ratio of said solid and/or semi-solid material to said light-boiling hydrocarbon stock is about 20:1 to about 1.5:1, preferably about 10:1 to about 2:1.

An elemental analysis of said homogeneous product is set forth in Table 6.

Table 6: Product Analysis

	Broad Range, wt %	Preferred Range, wt %
Carbon	87.0 - 93.0	88.0 - 91.5
Hydrogen	5.0 - 11.0	6.0 - 9.0
Nitrogen	0.5 - 2.0	0.8 - 1.5
Oxygen	0.1 - 3.0	0.2 - 1.5
Sulfur	0.0 - 0.5	0.0 - 0.2

5

1.0

15

30

The product obtained as a result of the invention described herein is useful as a fuel for power generation in place of fuel oil derived from coal and petroleum stocks.

DESCRIPTION OF PREFERRED EMBODIMENT'S

The invention will be further described with reference to the experimental data.

Example 1

An ash-containing coal from the Pittsburg and Midway Coal Company Colonial Mine was used in the experimental work. The coal had the following analysis:

20	Table 7	7: Ash-Containing Coal Analysis (Dry Basis)	
25 N C S	arbon Nydrogen Litrogen Nygen Ulfur sh	<pre>wt % 71.8 5.0 1.3 7.9 3.7 10.3</pre>	

The coal was dissolved in a solvent substantially as defined in Table 6 in our said copending application, together with hydrogen, under catalyst-free hydrogenation conditions set forth in Table 8 in a first hydrogenation zone to form an intermediate coalsolvent slurry.

BAD ORIGINÁL

J.0

30

Table 8: Catalyst-Free C	onditions
Temperature, °C	450
Pressure, kPa (psig)	10,755 (1560)
Solvent/Coal Weight Ratio	2.14/1
Hydrogen/Coal Feed Weight Ratio	0.08/1
Residence Time, hrs	1

Ash and/or other insolubles were separated from the coalsolvent slurry by filtration under the conditions set forth in Table 9 to form a coal-solvent solution. An analysis of the coalsolvent solution is set forth in Table 10.

Filter Temperature, Filter Pressure, kPa		229 1206 (175)
Pressure Drop, kPa		207 (30)
Knife Advance, mil/r		1
Drum Speed, min/revo	olution	1.0 - 1.5
Basecoat		Fibra F10-11C and Celite 545
Precoat		Celite 535

_		
		wt %
	Carbon	89.3
	Hydrogen	6.3
	Nitrogen	1.2
25	Oxygen	2.5
	Sulfur	0.7
	· Ash	0.04
		

The coal-solvent solution was subjected to catalytic hydrogenation by passing the solution over a specific catalyst under specific reaction conditions set forth in Table 11 to form a product.

Catalyst ¹	0.5 wt % nickel
-	0.5 /0 1120,102
	1.0 wt % cobalt
	8.0 wt % molybdenum
Temperature, °C	427
Pressure, kPa (psig)	20,700 (3,000)
Liquid Hourly Space Velocity,	
ml feed/ml catalyst/hr	2.0
Hydrogen Flow Rate, kmol H ₂ /m ³ feed	7
kmol H ₂ /m ³ leed	75.2

volume of 0.66 cc/gm.

15

20

The product was subjected to separation by distillation after catalytic hydrogenation into (a) a first liquid fraction which boiled between about 191 to about 288°C, (b) a second liquid fraction that boiled between about 288 to about 396°C and (c) a solid and/or semi-solid material. An analysis of each of these is set forth in Table 12.

Table 12: Liquid Fractions and Solid and/or Semi-Solid Analyses

		wt %
First Liquid Fraction (191 to 288°C)	Carbon	89.3 9.8
(191 (0 286 ()	Hydrogen Nitrogen	0.4
	Oxygen	0.4
	Sulfur	0.06
		wt %
Second Liquid Fraction	Carbon	90.6
(288 to 403°C)	Hydrogen	8.1
	Nitrogen Oxygen	0.5 0.4
	Sulfur	0.1
		wt %
Solid and/or Semi-Solid	Carbon	89.3
Material	Hydrogen	7.0
	Nitrogen Oxygen	1.3 0.8
	UXVIPII	V.D

The solid and/or semi-solid material defined in Table 12 was blended with a light-boiling hydrocarbon stock which has been defined as the first liquid fraction in Table 12. The blends had the characteristics set forth in Table 13.

Table 13:	Blends of	E Solid	and/or S	emi-Solid
	Material	and Fin	st Liqui	d Fraction

		Blend No. 1	Blend No. 2
	Solid and/or Semi-Solid Material: wt % (A)	82 · · · · · · · · · · · · · · · · · · ·	75
10	First Liquid: wt % Fraction (B) 18	25
	Ratio A/B	4.6	3.0
	Viscosity: Saybolt Furol Seconds at 99°C	180	58
		wt %	<u>wt %</u>
15	Carbon	89.3	89.3
	Hydrogen	7.5	8.2
	Nitrogen	1.1	1.1
	Oxygen	0.7	0.7
	Sulfur	0.1	0.1

20 Example 2

5

25

30

This example is identical to Example 1 except that the catalytic hydrogenation conditions were as follows:

Tempe	erature, °C	427	-
Press	sure, kPa (psig)	10,300	(1,500)
Liqui	d Hourly Space Velocit	ty,	
ml	feed/ml catalyst/hr	2	•
Hydro	gen Flow Rate,	-	
kmc	ol H ₂ /m ³ feed	75.2	

and the weight ratio of solid and/or semi-solid material (boiling above 454°C) to the light-boiling hydrocarbon stock was 2.7:1. The final product obtained had the characteristics set forth in Table 14.

Table 14: Blend of Solid and/or S Material and First Liqu	
·	Blend No. 3
Solid and/or Semi-Solid Material, wt % (A) First Liquid Fraction, wt % (B) Viscosity: Saybolt Furol Seconds at 99°C	73 27 75
	wt %
Carbon	90.8
Hydrogen	7.1
Oxygen	1.3
Nitrogen	1.3
Sulfur	0.1

Example 3

This example is identical to Example 1 except that the 15 catalytic hydrogenation conditions were as follows:

20

Temperature, °C 427 Pressure, kPa (psig) 20,700 (3,000) Liquid Hourly Space Velocity, ml feed/ml catalyst/hr 1 Hydrogen Flow Rate, kmol H₂/m³ feed 75.2

The solid and/or semi-solid material (boiling above 389°C) was blended with the first liquid fraction. The blends had the characteristics set forth in Table 15.

Table 15: Blend of Solid and/or Semi-Solid Material and First Liquid Fraction			
	Blend No. 4	Blend No. 5	Blend No. 6
<pre>Solid and/or Semi-Solid Material, wt % (A)</pre>	89	87	82
First Liquid Fraction, wt% (B)	11	13	18
Ratio A/B	8.1	6.7	4.6
Viscosity, Saybolt Furol Seconds at 99°C	180	70	30
	<u>wt %</u>	wt %_	wt %
Carbon Hydrogen Nitrogen Oxygen Sulfur	89.6 7.6 1.2 0.4 <0.04	89.6 7.6 1.2 0.4 <0.04	89.6 7.8 1.1 0.4 <0.04

Obviously, many modifications and variations of the invention, as hereinabove set forth, can be made without departing from the spirit and scope thereof, and, therefore, only such limitations should be imposed as are indicated in the appended claims.

Claims

- 1. Novel fuel compositions comprising:
 - (A) a solid and/or semi-solid material formed by a process for upgrading coal which comprises the steps of:
 - (1) subjecting a slurry composed of coal and a solvent containing donatable hydrogen, together with hydrogen, to catalyst-free hydrogenation conditions in a first hydrogenation zone to form an intermediate coal-solvent slurry;
 - (2) deashing said intermediate coal-solvent slurry to form a coal-solvent solution;
 - (3) subjecting said coal-solvent solution to catalytic hydrogenation conditions in a second hydrogenation zone to obtain a product that can be separated at ambient pressure into (a) a first liquid fraction boiling at a temperature in the range of about 100 to about 375°C, (b) a second liquid fraction boiling above said first liquid fraction at a temperature in the range of about 200 to about 525°C and (c) said solid and/or semi-solid material; and then
 - (4) recycling at least a portion of said second liquid fraction to said first hydrogenation zone; and
 - (B) a light-boiling hydrocarbon stock boiling at a temperature in the range of about 100 to about

5

3.0

15

20

375°C at ambient pressure.

- 2. Novel fuel composition according to claim 1 wherein a weight ratio of said solid and/or semi-solid material to said light-boiling hydrocarbon stock is about 20:1 to about 1.5:1.
- 3. Novel fuel compositions according to claim 1 wherein a weight ratio of said solid and/or semi-solid material to said light-boiling hydrocarbon stock is about 10:1 to about 2:1.
- 4. Novel fuel compositions according to claim 1 wherein said first liquid fraction boils at a temperature in the range of about 150 to about 325°C; and said second fraction boiling above said first liquid fraction boils at a temperature in the range of about 250 to about 475°C.

5

5

- 5. Novel fuel compositions according to claim 1 wherein said first hydrogenation zone has a temperature ranging from about 343 to about 510°C; a pressure ranging from about 500 to about 5,000 psig; a solvent/coal weight ratio ranging from about 0.5/1 to about 10/1; a hydrogen/coal feed weight ratio ranging from about 0.01/1 to about 0.30/1; a hydrogen gas purity ranging from about 85 to about 100 mole percent; and a residence time of about 0.1 to about 5.0 hours.
- Novel fuel compositions according to claim 1 wherein said first hydrogenation zone has a temperature ranging from about 399 to about 482°C; a pressure ranging from about 1,000 to about 2,000 psig; a solvent/coal weight ratio ranging from about 1/1 to about 4/1; a hydrogen/coal feed weight ratio ranging from about 0.05/1 to about 0.01/1; a hydrogen gas purity ranging from about 95 to about 97 mole percent; and a residence time of about 0.5 to about 2.0 hours.
- 7. Novel fuel compositions according to claim 1 wherein said deashing is by filtration.

8. Novel fuel compositions according to claim 1 wherein said second hydrogenation zone has a temperature ranging from about 260 to about 538°C; a pressure ranging from about 500 to about 10,000 psig; a liquid hourly space velocity of about 0.3 to about 10 volume feed/volume catalyst/hr; and a hydrogen flow rate of about 25 to about 190 kmel H₂/m³ feed.

5

5

- 9. Novel fuel compositions according to claim 1 wherein said second hydrogenation zone has a temperature ranging from about 399 to about 454°C; a pressure ranging from about 1,000 to about 4,000 psig; a liquid hourly space velocity of about 1.0 to about 4 volume feed/volume catalyst/hr; and a hydrogen flow rate of about 60 to about 90 kmol H₂m³ feed.
- 10. Novel fuel compositions according to claim 1 wherein said second hydrogenation zone contains a catalyst comprised of a hydrogenation component selected from the group consisting of Group VI and VIII metals, their oxides and sulfides, and combinations thereof; and wherein said catalyst is supported on a non-zeolite carrier and promoted with a Group IV-B metal.
- 11. Novel fuel compositions according to claim 1 wherein said second hydrogenation zone contains a catalyst comprised of nickel-titanium-molybdenum metals, oxides and/or sulfides dispersed on alumina.
- 12. Novel fuel compositions according to claim 1 wherein said second hydrogenation zone contains a catalyst comprised of nickel-cobalt-molybdenum metals, oxides and/or sulfides dispersed on alumina.
- 13. Novel fuel compositions according to claim 1 wherein said second hydrogenation zone contains a catalyst comprised of nickel-tungsten metals, oxides and/or sulfides dispersed on alumina.

- 14. Novel fuel compositions according to claim 1 wherein said liquid product is separated by distillation.
- 15. Novel fuel compositions according to claim 1 wherein a portion of ash obtained from said intermediate coal solvent slurry in step 2 is recycled to said first hydrogenation zone.
- 16. Novel fuel compositions according to claim 1 wherein said light-boiling hydrocarbon stock boils at a temperature in a range of about 150 to about 325°C at ambient pressure.
- 17. Novel fuel compositions according to claim 1 wherein said light-boiling hydrocarbon stock is selected from the group consisting of #2 fuel oil, kerosene, jet fuel, diesel fuel, heavy gasoline, light shale oil fractions and light fractions obtained from coal hydrogenation.

- 18. Novel fuel compositions according to claim 1 wherein said light-boiling hydrocarbon stock is a first liquid fraction boiling at a temperature ranging from about 100 to about 375°C.
- 19. Novel fuel compositions according to claim 1 wherein said light-boiling hydrocarbon stock is a first liquid fraction boiling at a temperature ranging from about 150 to about 375°C.

EUROPEAN SEARCH REPORT

Application number EP 79 30 1765

DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (Int. Cl. 3)	
Category	Citation of document with indica passages	ation, where appropriate, of relevant	Relevant to claim	
	vol. 3, no. 4, 41-44 Arlingtion, Vir	"Coal/Liquid Hydro-		C 10 L 1/32 C 10 G 1/00 C 10 L 9/00
	* Entire arti	.cle *		
	-	• ea		
A	GB - A - 1 251 COAL CO.)	336 (CONSOLIDATION		
A	DE - A - 2 728	569 (GULF)		TECHNICAL FIELDS
A	US - A - 3 997	425 (GATSIS et al.		SEARCHED (Int.Cl. 3)
		- eu eu		C 10 L 1/32 C 10 G 1/00 1/04
				1/08 C 10 L 9/00
				CATEGORY OF CITED DOCUMENTS
				X: particularly relevant A: technological background O: non-written disclosure P: intermediate document T: theory or principle underlyin the invention E: conflicting application
				D: document cited in the application L: citation for other reasons
X		ort has been drawn up for all claims		&: member of the same patent family, corresponding document
Place of	search The Hague	Date of completion of the search 22-04-1980	Examine	DE HERDT