(1) Veröffentlichungsnummer:

0 027 962 A2

	_
-	_
	7

EUROPÄISCHE PATENTANMELDUNG

21) Anmeldenummer: 8	30106290.2
----------------------	------------

(f) Int. Cl.3: C 10 G 1/06, C 10 G 1/08

2 Anmeldetag: 16.10.80

30 Priorität: 27.10.79 DE 2943494

Anmelder: BAYER AG, Zentralbereich Patente, Marken und Lizenzen, D-5090 Leverkusen 1, Bayerwerk (DE)

Weröffentlichungstag der Anmeldung: 06.05.81
Patentblatt 81/18

Erfinder: Krönig, Walter, Dr., Mathildenstrasse 7, D-6200 Wiesbaden (DE) Erfinder: Kottmann, Alfons, Dr., Menchendahler Strasse 51, D-5090 Leverkusen 3 (DE) Erfinder: Swodenk, Wolfgang, Dr., Auf dem Broich 5, D-5068 Odenthal (DE)

84 Benannte Vertragsstaaten: BE DE FR IT NL

54 Verfahren zur Herstellung flüssiger Kohlenwasserstoffe aus Kohle.

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung flüssiger Kohlenwasserstoffe aus Kohle durch spaltende Druckhydrierung, das dadurch gekennzeichnet ist, dass man nach der ersten Hydrierstufe die zwischen und hinter den Wärmetauschern anfallenden Kondensate sammelt, einen Anteil für das Anreibeöl und einen Anteil als Ölgewinn abzieht und beide Anteile ohne zwischengeschaltete Destillation zum Anreiben von Kohle bzw. der Hydrierung in der Gasphase oder Gemischtphase zuführt.

EP 0 027 962 A2

BAYER AKTIENGESELLSCHAFT
Zentralbereich
Patente, Marken und Lizenzen 5090 Leverkusen, Bayerwerk
Gai/MKI

Verfahren zur Herstellung flüssiger Kohlenwasserstoffe aus Kohle

Es ist bekannt, gemahlene Kohle durch spaltende Druckhydrierung in der Sumpfphase, gegebenenfalls unter Zusatz von Katalysatoren, in destillierbare Produkte überzuführen und diese in der Gasphase über fest angeordneten Katalysatoren weiter zu hydrieren.

Dabei wird im allgemeinen die gemahlene Kohle mit einem Gemisch aus Mittelöl und Schweröl angerieben. Der gemahlenen Kohle werden Katalysatoren zugesetzt, wenn derartige Stoffe nicht bereits ausreichend in der Kohle vorliegen. Der so erhaltene Kohlebrei wird dann zusammen mit Wasserstoff und/oder Kreislaufgas unter Druck gesetzt, aufgeheizt und durch einen oder mehrere Reaktionsräume geleitet, in denen die sogenannte Sumpfphasehydrierung (1. Hydrierstufe) stattfindet. Die die Sumpfbhasehydrierung verlassenden Produkte werden in einen etwas unterhalb der Reaktionstemperatur gehaltenen Heißabscheider geführt, wo eine Trennung in ein Sumpfprodukt (Abschlamm) einerseits und gas- und dampfförmige Produkte andererseits stattfindet. Der Abschlamm enthält die schwersten Ölanteile, Asphalte, unumgesetzte Kohleteilchen und gegebenenfalls sonstige Feststoffe. Der Abschlamm kann beispielsweise in einer Entspannungsverdampfung mit anschließender

Vakuumstufe eingedickt (getoppt) werden, z.B. auf einen Feststoffgehalt (unlöslich in Benzol) von ca. 40 bis 60%.

25 Das dabei anfallende Destillatöl kann zum Anreiben der

Le A 19 969 - Ausland

5

10

15

Kohle verwendet werden. Der getoppte Abschlamm kann durch partielle Oxidation in Gegenwart von Wasserdampf bei 1100 bis 1500°C zu einem Gemisch von Kohlenoxiden und Wasserstoff vergast werden, das sich auf Wasserstoff aufarbeiten läßt.

Die den Heißabscheider verlassenden gas- und dampfförmigen Produkte werden in Wärmetauschern gegen eingehenden Kohle-// brei und anschließend in einer Schlußkühlung auf nahe Raumtemperatur gekühlt und einem Abstreifer zugeführt, 10 wo die Trennung in flüssige und gasförmige Produkte er/ folgt und die gasförmigen Produkte als Kreislaufgas zurückgeführt werden. Die flüssigen Produkte werden auf, Normaldruck entspannt und nach Abtrennung der wässrige Phase einer Destillation bei Normaldruck unterworfen. wobei Benzin, Mittelöl und Schweröl erhalten werden. Jeweils ein Teil des Schweröls und des Mittelöls im allgemeinen zum Anreiben der Kohle eingesetzt. Die verbleibenden Teile und das Benzin, die zusammen den Ölgewinn darstellen, werden im allgemeinen in der Gasphase an fest 20 angeordneten Katalysatoren weiter hydriert.

Es wurde nun ein Verfahren zur Herstellung von flüssigen Kohlenwasserstoffen aus Kohle durch spaltende Druckhydrierung gefunden, bei dem man gemahlene Kohle, gegebenenfalls zusammen mit Katalysatoren, mit einem in dem Verfahren 25 selbst anfallenden Gemisch aus Mittelöl und Schweröl anreibt und den so erhaltenen Kohlebrei zusammen mit Wasserstoff unter Druck aufheizt und durch einen oder mehrere Reaktionsräume leitet, die Reaktionsprodukte in einen etwas unterhalb der Reaktionstemperatur gehaltenen Heißabscheider trennt in ein Destillatöl zum Anreiben der Kohle und einen Rückstand, der zu Synthesegas umgesetzt wird, und

die am Kopf des Heißabscheiders abziehenden Gase und
Dämpfe gegebenenfalls über einen zweiten Heißabscheider
leitet und dann in hintereinandergeschaltenen Wärmetauschern kühlt, das dadurch gekennzeichnet ist, daß
5 man die zwischen und hinter den Wärmetauschern anfallenden
Kondensate in Abstreifern sammelt, aus diesen Kondensaten
einen Anteil für das Anreibeöl und einen Anteil als Ölgewinn abzieht und beide Anteile ohne zwischengeschaltete
Destillation zum Anreiben von Kohle bzw. der Hydrierung in
10 der Gasphase oder Gemischtphase zuführt.

Bei diesem Verfahren kann man den Kohlebrei beispielsweise herstellen, indem man im Verfahren anfallende praktisch asphaltfreie Mittel- und Schweröle im Verhältnis Kohle: Öl wie 1 : 1 bis 1 : 3 anreibt. Als Katalysatoren eignen 15 sich beispielsweise Eisenverbindungen enthaltende Gemische, wie Bayermasse oder Luxmasse (letztere auch in gebrauchter Form), Eisenerze oder Eisensalze. Bayermasse bzw. Luxmasse sind die beim Aufschluß von Bauxit mit Natronlauge bzw. Soda anfallenden Rückstände, die 20 beispielsweise 48,6 % Fe_2O_3 , 20 % Al_2O_3 , 9,2 % SiO_2 , 6,0 % TiO₂, 0,2 % MnO₂, 1,2 % CaO, 0,5 % MgO, 6,2 % Na₂O, 0,2 % K₂0 und 13 bis 15 % H₂0 enthalten können (s. Ullmann, Enzyklopädie der Technischen Chemie, Band 10, Seite 499 (1958)). Als Eisensalz kommt beispielsweise Ferrosulfat 25 infrage, das in wäßriger Lösung auf die Kohle aufgetränkt werden kann. Die Katalysatoren können beispielsweise in Mengen von 0,5 bis 5,0 Gew.-%, bezogen auf die eingesetzte wasser- und aschefreie Kohle (Reinkohle), zugesetzt werden. Wenn die Kohle solche Katalysatorbestandteile bereits ent-30 hält, kann der Zusatz von Katalysatoren zum Kohlebrei auch unterbleiben.

Als Kohle für das erfindungsgemäße Verfahren sind beispielsweise Stein- oder Braunkohlen verschiedenster

Le A 19 969

Abbaugebiete geeignet. Vorzugsweise wird Braunkohle zusammen mit einem Katalysator eingesetzt.

Der Kohlebrei wird zusammen mit Wasserstoff, der im allgemeinen aus Frischwasserstoff und Kreislaufgas besteht, unter Druck gesetzt. Beispielsweise sind Drücke im Bereich 100 bis 400 bar geeignet. Die Aufheizung von Kohlebrei und Wasserstoff kann beispielsweise auf 380 bis 420°C erfolgen. Der Reaktionsraum oder die Reaktionsräume für die Hydrierung in der Sumpfphase können beispielsweise auf 420 bis 490°C gehalten werden.

Die Reaktionsprodukte aus der Sumpfphasenhydrierung werden einem Heißabscheider zugeführt, der auf einer Temperatur wenig unterhalb der Temperatur der Sumpfphasenhydrierung gehalten wird, beispielsweise 10 bis 50°C unter der Temperatur der Sumpfphasenhydrierung. Der im Heißabscheider abgeschiedene Abschlamm kann nach bekannten Methoden weiterverarbeitet werden. Beispielsweise kann aus ihm durch Entspannungsverdampfung mit nachgeschalteter Vakuumstufe ein Destillat erhalten werden, das zum Anreiben der Kohle (mit-)verwendet werden kann und ein getoppter Abschlamm, der zur Wasserstoffgewinnung geeignet ist.

Dem ersten, zuvor beschriebenen Heißabscheider kann gegebenenfalls ein zweiter Heißabscheider nachgeschaltet sein, der beispielsweise 10 bis 30°C niedriger betrieben werden kann als der erste Heißabscheider. Im zweiten Heißabscheider können mitgerissene kleine Anteile an Feststoffen und Asphalten abgeschieden werden. Die im zweiten Heißabscheider abgeschiedenen Stoffe werden im allgemeinen dem Abschlamm aus dem ersten Heißabscheider zugefügt.

10

15

Die nach dem oder den Heißabscheidern vorliegenden Gase und Dämpfe werden in hintereinandergeschalteten Wärmetauschern gekühlt. Es ist ein wesentliches Merkmal des erfindungsgemäßen Verfahrens, daß man die zwischen und hinter den Wärmetauschern anfallenden Kondensate in Abstreifern sammelt. Man kann beispielsweise 3 oder mehr Wärmetauscher verwenden.

Die Wärmetauscher kann man beispielsweise so betreiben, daß in den ersten Wärmetauschern oder dem ersten Wärme
10 tauscher zwischen den Gasen und Dämpfen aus dem oder den Heißabscheidern einerseits und dem in die erste Hydrierstufe eingesetzten Kohlebrei und/oder dem Kreislaufgas andererseits, ein Wärmeaustausch stattfindet. Den oder die letzten Wärmetauscher betreibt man vorzugsweise mit Wasser oder Luft als Kühlmittel. Vorzugsweise verwendet man zwei Wärmetauscher für den Wärmeaustausch zwischen den abgehenden Gasen und Dämpfen und den eingehenden Einsatzstoffen Kohlebrei und Kreislaufgas und im weiteren Abkühlungsweg einen oder mehrere Luft- und/oder Wasserkühler.

20 Zwischen oder nach einzelnen oder allen Wärmetauschern werden die jeweils anfallenden Kondensate abgetrennt, beispielsweise in Abstreifern.

Die Wärmetauscher werden vorzugsweise so betrieben, und die Abtrennung der Kondensate so durchgeführt, daß man 25 mindestens drei verschiedene Kondensate sammelt. Vorzugsweise arbeitet man so, daß man ein Schwerölkondensat, das im wesentlichen über 325°C siedet, ein Mittelölkondensat, das im wesentlichen zwischen 180 und 325°C siedet und ein Benzinkondensat, das im wesentlichen zwischen 30 und 180°C siedet, sammelt. Selbstverständlich ist es auch möglich, mehr als die drei vorgenannten Kondensate abzutrennen, beispielsweise zwei Schwerölkondensate, zwei Mittelölkondensate und/oder zwei Benzin-

kondensate. Die vorstehend angegebenen Siedebereiche für einzelne Kondensate beziehen sich auf Normaldruck und stellen Richtwerte dar, von denen auch größere Abweichungen möglich sind.

Die nach der Abtrennung der Kondensate verbleibenden gasförmigen Anteile, die wesentliche Mengen Wasserstoff enthalten, werden vorzugsweise als Kreislaufgas vor die Sumpfphasenhydrierung zurückgeführt. Wasser fällt fast ausschließlich im Benzinkondensat an, scheidet sich dort 10 als untere unlösliche Phase ab und kann getrennt von der Kohlenwasserstoffphase abgezogen werden. Gegebenenfalls kann die Abtrennung der wässrigen Phase auch in einem nachgeschalteten Absetzbehälter vorgenommen werden. Die Regulierung der Siedegrenzen der Kondensate kann auf 15 verschiedene Weise erfolgen. Beispielsweise kann man die Siedegrenzen der Kondensate durch die Auslegung der Wärmetauscher beeinflussen. Weiterhin kann man die abgetrennten, hochsiedenden und noch heißen Kondensate oder Teile davon, beispielsweise das Schwerölkondensat, durch Wärmeaustausch 20 gegen Wasserstoff kühlen und den so erhitzten Wasserstoff in Mengen, die auf die Erfordernisse abgestimmt sind, dem Kohlebrei zuführen, beispielsweise bevor dieser die ersten Wärmetauscher oder den ersten Wärmetauscher passiert. Vorzugsweise wird für die Erhitzung des Kreislaufgases derjenige Anteil des Schwerölkondensats verwendet, der zum Anreiben der Kohle zurückgeführt wird.

Die Trennschärfe zwischen den einzelnen Kondensaten kann erhöht werden, wenn man die Kondensate in Abscheidern abtrennt und anschließend einzeln in Rückflußkühlern gegen Kreislaufgas kühlt. Wenn der Wärmeaustausch zwischen dem Schwerölkondensat oder Teilen davon und dem Kreislaufgas das Schwerölkondensat oder Teile davon für die weitere Verwendung, z.B. als Anreibeöl für die Kohle, noch nicht

Le A 19 969

genügend abgekühlt hat, so kann das Schwerölkondensat oder Teile davon, beispielsweise durch Luftkühlung, weitergekühlt werden.

Aus den wie vorstehend beschrieben erhaltenen Schweröl-5 und Mittelölkondensaten entnimmt man im allgemeinen die vorgesehenen Anreibeölmengen. Die verbleibenden Anteile des Schweröl- und Mittelölkondensats stehen zusammen mit dem Benzinkondensat als Ölgewinn zur Weiterverarbeitung zur Verfügung. Der Ölgewinn kann ohne wesentliche Druck-10 entlastung und Temperaturerniedrigung der Hydrierung in der Gasphase oder Gemischtphase zugeführt werden. Im allgemeinen wird man den vereinigten Ölgewinn als Ganzes in die weitere Hydrierung einsetzen. Soll diese unter aromatisierenden Hydrierbedingungen betrieben werden, 15 ist es vorteilhaft, das Benzinkondensat getrennt raffinierend zu hydrieren.

In besonderen Fällen kann es vorteilhaft sein, einzelne Kondensate, insbesondere das Benzinkondensat, auf Normaldruck zu entspannen und damit zu entgasen.

Die Hydrierung in der Gasphase oder Gemischtphase (zweite Hydrierstufe) wird vorzugsweise an fest angeordneten Katalysatoren durchgeführt. Diese Hydrierung kann beispielsweise bei 100 bis 400 bar und als raffinierende Hydrierung bei 340 bis 420°C oder als spaltende Hydrierung bei 420 bis 480°C durchgeführt werden.

Als Katalysatoren für die zweite Hydrierstufe eignen sich beispielsweise Oxide, Sulfide oder Phosphate der Metalle der VI. oder VIII. Gruppe des periodischen Systems, wie Wolfram oder Molybdän, gegebenenfalls im Gemisch mit

Oxiden oder Sulfiden der Eisengruppe, zweckmäßigerweise aufgebracht auf Träger, wie Aluminiumoxid und dessen Spinellen, natürlichen oder synthetischen Bleicherden, insbesondere Zeolithen. Auch Platin und Rhenium sind als 5 Hydrierkatalysatoren geeignet. Vorzugsweise werden in dieser Hydrierung hochaktive Katalysatoren verwendet, beispielsweise Nickel/Wolfram-Sulfid auf Trägern. Um derartigen Katalysatoren die hohe Aktivität über längere Zeiträume zu erhalten, ist ein gewisser H₂S-10 Partialdruck während dieser Hydrierung nötig. Die Einsatzprodukte in die Hydrierung sollten deshalb einen Schwefelgehalt in der Größenordnung von etwa 0,1 bis 1 % aufweisen. Ein solcher Schwefelgehalt kann gegebenenfalls auch durch Zugabe von Schwefel oder 5 Schwefelverbindungen aufrecht erhalten werden.

Die Aufarbeitung der Reaktionsprodukte aus dieser Hydrierung kann auf übliche Weise erfolgen, insbesondere durch Zerlegung in die gewünschten Fraktionen durch eine Destillation bei Normaldruck. Die Produkte bestehen aus 20 wasserstoffreichen Kohlenwasserstoffen frei von Nebenbestandteilen wie Sauerstoff-, Stickstoff- oder Schwefelverbindungen. Sie können als Fertigprodukte verwendet werden, sind aber auch voll geeignet zum Einsatz zur Weiterverarbeitung in den in der Erdölindustrie üblichen Verfahren, wie katalytisches Kracken und Reformen, Hydrocracking, thermisches und pyrolytisches Kracken.

Die Vorteile des erfindungsgemäßen Verfahrens liegen vor allem darin, daß man nach der ersten Hydrierstufe die Destillation der kondensierten Gase und Dämpfe, die 30 gemäß dem Stand der Technik bei Normaldruck durchgeführt wird, vermeidet. Außerdem kann das Pumpen auf Reaktionsdruck für diejenigen Fraktionen aus der ersten Hydrierstufe eingestufe entfallen, die in die zweite Hydrierstufe eingesetzt werden. Indem die Schweröl- und Mittelölkondensate noch heiß in die Hydrierung mit fest angeordnetem Katalysator eingebracht werden, treten wesentliche Energieeinsparungen beim Aufheizen auf Reaktionstemperatur ein. Es sei auch erwähnt, daß nach der Sumpfphasenhydrierung bei getrenntem Anfall des Benzinkondensats die Abtrennung der wässrigen Phase wegen der größeren Dichteunterschiede wesentlich einfacher ist als bei der einstufigen Kondensation der kondensierbaren Produkte aus den Gasen und Dämpfen des Heißabscheiders.

Beim Einsatz von Braunkohle können nach der Gasphasenhydrierung Produkte erhalten werden, die praktisch frei

von Stickstoff, Sauerstoff und Schwefel sind und bei
denen die Benzinfraktion über 13,4, die Mittelölfraktion
über 12,6 und die Schwerölfraktion über 11,8 Gew.-%
Wasserstoff enthalten. Solche Produkte sind besonders
geeignet für das pyrolytische Kracken zur Herstellung
von chemischen Grundstoffen, vornehmlich Olefinen und
Aromaten.

5

Beispiel 1

106,5 t getrocknete Rheinische Braunkohle, entsprechend 100,0 t Reinkohle (wasser- und aschefrei) werden mit 3 t Bayermasse der Zusammensetzung 48,6 % Fe₂0₃, 20 % Al₂0₃, $9,2 \% SiO_2$, 6,0 % TiO_2 , 0,2 % MnO_2 , 1,2 % CaO, 5 0,5 % Mg0, 6,2 % Na₂0, 0,2 % K₂0 und 13 - 15 % H₂0 versetzt und mit 150 t Öl aus der ersten Hydrierstufe, bestehend aus 20 t Vakuumdestillat (aus der Abschlammdestillation), 45,1 t Mittelölkondensat und 84 t Schwerölkondensat, zu einem Kohlebrei angerieben. Der Kohlebrei 10 wird auf den Betriebsdruck von 300 bar gebracht und zusammen mit Frischwasserstoff und Kreislaufgas über Wärmetauscher und einen Vorheizer auf 430°C aufgeheizt und in den Hydrierreaktor eingebracht, wo die Hydrierung bei 470°C erfolgt unter Wasserstoffaufnahme 15 von 4,5 t. Aus dem Reaktor gelangen die Reaktionsprodukte in einen auf 435°C gehaltenen Heißabscheider, wo die Trennung erfolgt in ein Sumpfphaseprodukt (Abschlamm) einerseits, das durch Entspannungsverdampfung in Vakuumdestillat und getoppten Abschlamm übergeführt wird, und 20 den aus dem oberen Teil abziehenden Gasen und Dämpfen, die einen Teil ihrer latenten Wärme in zwei hintereinander geschalteten Wärmetauschern an das eingehende Gemisch von Kohlebrei, Kreislaufgas und Frischwasserstoff abgeben. In dem ersten Wärmetauscher werden die Gase und Dämpfe auf 350°C abgekühlt, wobei 96,2 t Schweröl kondensieren, die in einem ersten Abstreifer aufgenommen werden. In dem zweiten Wärmetauscher erfolgt die Abkühlung auf 225°C, wobei 72,3 t Mittelöl kondensieren, die in einem zweiten Abstreifer aufgenommen werden. In der Schlußkühlung wird 30 die Temperatur auf 40°C erniedrigt, wobei 7,5 t Benzin kondensieren, die in einem dritten Abstreifer aufgenommen

werden. Außerdem entstehen 10 t gasförmige Kohlenwasser-

stoffe C_1 bis C_{L} . Von dem Schwerölkondensat werden 84 t entnommen und nach Abkühlung in einem Wärmetauscher gegen Kreislaufgas sowie anschließende Luftkühlung auf Normaldruck entspannt und als Teil des Anreibeöls eingesetzt. 5 Vom Mittelölkondensat werden 45,1 t nach Abkühlung und Entspannung als Anreibeölkomponente verwendet. Als Ölgewinn werden aus den drei Abstreifern abgezogen: 12,2 t Schweröl, 27,2 t Mittelöl und 7,5 t Benzin und ohne Druckentlastung und Temperaturerniedrigung der zweiten Hydrierstufe mit 10 fest angeordnetem Katalysator zugeführt. Die Hydrierung des vereinigten Ölgewinns (46,9 t) in der zweiten Hydrierstufe erfolgt im Wasserstoffkreislaufgas bei 420°C und 290 bar über Nickel-/Wolfram-Sulfid auf Aluminiumoxid unter einer Wasserstoffaufnahme von 1,6 t. Nach Abkühlung 15 auf 40°C und Abtrennung des Kreislaufgases in einem weiteren Abstreifer werden erhalten: 12,1 t Benzin, 21,7 t Mittelöl und 10,7 t Schweröl.

Beispiel 2

Die nach Beispiel 1 erhaltenen 12,1 t Benzin, 21,7 t
20 Mittelöl und 10,7 t Schweröl werden getrennt der Pyrolyse (steam cracking) unterworfen, und zwar in getrennten Kracköfen und gemeinsamer Kondensation. Die Pyrolysebedingungen sind folgende:

	Bedingungen	Benzin	Mittelöl	Schweröl	
25	Gewichtsverhältnis Wasserdampf : Einsatzöl	0,5	0,6	0,7	
	Pyrolysetemperatur (°C)	830	820	810	
	Verweilzeit auf Temperatur (Sekunden)	0,20	0,17	0,15	

Le A 19 969

Die erzielten Ausbeuten aus der Pyrolyse (steam cracking) sind folgende (für den gesamten Einsatz von 44,5 t):

	Produkt	Tonnen
	Wasserstoff	0,44
5	Methan	6,34
	Äthylen	13,26
10	Propylen	6,25
	Butadien	2,22
	C ₆ -C ₈ -Aromaten	5,45
	andere Kohlenwasserstoffe im Bereich C ₄ bis 200°C	4,68
	- im Bereich über 200°C	5,89
	Summe	44,53

Das Verhältnis der Olefine zu den Aromaten läßt sich zu Gunsten der Aromaten verschieben, wenn man die Benzin15 fraktion aus der Hydrierung zuvor katalytisch reformiert, die Aromaten aus dem Reformat durch Extraktion gewinnt und das Raffinat in die Pyrolyse einbringt. Es empfiehlt sich, zusätzlich die Kohlenwasserstoffe Äthan, Propan und n-Butan aus beiden Hydrierstufen durch steam cracking 20 in bekannter Weise in Olefine zu spalten.

Patentansprüche:

- 1) Verfahren zur Herstellung flüssiger Kohlenwasserstoffe aus Kohle durch spaltende Druckhydrierung, bei dem man gemahlene Kohle, gegebenenfalls zusammen mit Katalysatoren, mit einem bei dem Verfahren selbst anfallenden Gemisch aus Mittelöl und Schweröl anreibt und den so 5 erhaltenen Kohlebrei zusammen mit Wasserstoff unter Druck aufheizt und durch einen oder mehrere Reaktionsräume leitet, die Reaktionsprodukte in einen etwas unterhalb der Reaktionstemperatur gehaltenen Heißabschei-10 der führt, das Sumpfprodukt aus dem Heißabscheider trennt in ein Destillatöl zum Anreiben der Kohle und einen Rückstand, der zu Synthesegas umgesetzt wird, und die am Kopf des Heißabscheiders abziehenden Gase und Dämpfe gegebenenfalls über einen zweiten Heißabscheider 15 leitet und dann in hintereinander geschalteten Wärmetauschern kühlt, dadurch gekennzeichnet, daß man die zwischen und hinter den Wärmetauschern anfallenden Kondensate in Abstreifern sammelt, aus diesen Kondensaten einen Anteil für das Anreibeöl und einen Anteil als Ölgewinn abzieht und beide Anteile ohne zwischenge-20 schaltete Destillation zum Anreiben von Kohle bzw. der Hydrierung in der Gasphase oder Gemischtphase zuführt.
 - 2) Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man mindestens 3 verschiedene Kondensate sammelt.

- 3) Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, daß man ein Schwerölkondensat, das im wesentlichen oberhalb 325°C siedet, ein Mittelölkondensat, das im wesentlichen zwischen 180 und 325°C siedet und ein Benzinkondensat, das im wesentlichen im Bereich zwischen 30 und 180°C siedet, sammelt.
- 4) Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das heiße Schwerölkondensat im Wärmeaustausch gegen Wasserstoff gekühlt und der so erhitzte Wasserstoff dem Kohlebrei zugeführt wird.
- 5) Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß man den abgezogenen Ölgewinn ohne Wesentliche Druckentlastung und Temperaturerniedrigung der Hydrierung in der Gasphase oder Gemischtphase zuführt.
- 15 6) Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß man die Hydrierung in der Gasphase oder Gemischtphase an fest angeordneten Katalysatoren durchführt.
- 7) Verfahren nach Anspruch 6, dadurch gekennzeichnet,
 daß der Katalysator ein hochaktiver Hydrierkatalysator
 20 ist, dessen Aktivität gegebenenfalls durch Zugabe von
 Schwefel oder Schwefelverbindungen aufrecht erhalten
 wird.

5