11) Veröffentlichungsnummer:

0 028 314

A2

(12

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 80105795.1

(51) Int. Cl.³: **B** 41 **J** 9/38

(22) Anmeldetag: 25.09.80

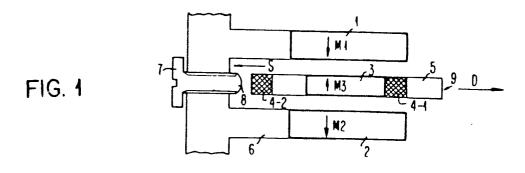
(30) Priorität: 02.11.79 DE 2944287

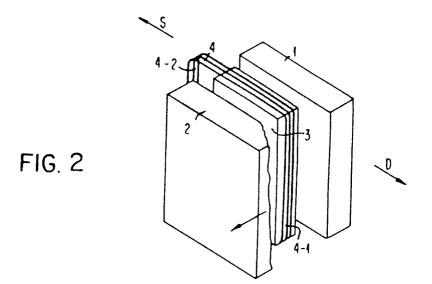
(43) Veröffentlichungstag der Anmeldung: 13.05.81 Patentbiatt 81/19

84) Benannte Vertragsstaaten: DE FR GB IT (71) Anmelder: International Business Machines Corporation

Armonk, N.Y. 10504(US)

(72) Erfinder: Seifert, Hans-Gordon, Dr. Im Troppel 57 D-7031 Weil Im Schönbuch(DE)


(74) Vertreter: Blutke, Klaus, Dipl.-Ing. Schönaicher Strasse 220 D-7030 Böblingen(DE)


[54] Elektromagnetische Auslösevorrichtung, insbesondere für den Antrieb von Druckhämmern.

Elektromagnetische Auslösevorrichtung, insbesondere für den Antrieb von Druckhämmern, bei der zwischen stationären Magneten (1, 2) ein durch Wirkung magnetischer Schneidenkräfte bewegbarer Magnet (3) angeordnet ist.

Dieser Magnet (3) ist derart mit einer Auslösespule (4-1, 4-2) umgeben, daß deren für eine Kraftwirkung in Auslöserichtung wirksamer Spulenteil (4-1) in dem Raum leigt, der von den stationären Magneten (1, 2) eingeschlossen ist.

EP 0 028 314 A2

Elektromagnetische Auslösevorrichtung, insbesondere für den Antrieb von Druckhämmern

Die Erfindung betrifft eine elektromagnetische Auslösevorrichtung, die insbesondere für den Antrieb von Druckhämmern verwendet werden kann.

- 5 Es sind eine Vielzahl von Druckhammerantrieben, so auch aus der Deutschen Patentschrift 1 276 380 (Docket 25 450a), bekannt, bei denen der Druckhammer von zwei parallelen einseitig eingespannten Blattfedern getragen wird. Die im ausgelenkten Zustand des Druckhammers gespeicherte Energie dient der Druckhammerbetätigung. Der Druckhammer wird durch einen Elektromagneten in vorgespannter Lage gehalten. Bei Druckhammerantrieben dieser Art ist jedoch ein relativ hoher Energiebetrag zur Druckhammerbetätigung aufzuwenden.
- Des weiteren sind in der Deutschen Offentlegungsschrift 28 37 550 (Docket GE 978 023) und 28 37 602 (Docket GE 978 024) Anordnungen zur Verwendung in Druckern beschrieben, welche von der Verwendung sog. seltener Erdmagnete Gebrauch machen.
- Die Anordnung gemäß OS 28 37 550 beschreibt ein Verfahren zum Betrieb eines Haltesystems für Auslösevorrichtungen mit einem Bewegungselement, welches dadurch gekennzeichnet ist, daß das ausgelöste Bewegungselement durch Wirkung magnetischer Kräfte oder durch Wirkung einer Feder in Wirkrichtung eine Beschleunigung erfährt, und daß für den Haltezustand durch Überlagerung des Potentialfeldes eine oder mehrere Magnetschneiden mit einem weiteren Potentialfeld, basierend

auf einer mechanischen Vorspannung des Bewegungselementes durch die Feder und/oder auf einem Magneten, eine Gesamtpotentialverteilung mit einer relativ stabilen Halteposition hoher potentieller Energie für das Bewegungselement erzeugt wird, aus der heraus das Bewegungselement durch Aufwendung einer die Halteposition überwindenden Auslösekraft ausgelöst wird.

Eine Anordnung zur Durchführung dieses Verfahrens ist da10 durch gekennzeichnet, daß ein mit einem ersten Magneten versehenes Bewegungselement vorgesehen ist, welcher an einem
oder mehreren anderen Magneten vorbeibewegbar ist, und daß
ein weiterer die relativ stabile Halteposition bedingender
Magnet vorgesehen ist.

15

Die Anordnung nach OS 28 37 602 stellt eine Anordnung für eine berührungsfreie Umsetzung von Rotationsenergie in Energie einer translatorischen oder Schwenkbewegung eines Feder-Masse-Schwingers dar, welcher dadurch gekennzeichnet 20 ist, daß auf dem Feder-Masse-Schwinger ein erster Magnet angeordnet ist, daß auf einer drehbaren Welle ein zweiter Magnet angeordnet ist, daß der zweite Magnet oder ein mit ihm verbundenes magnetisch leitendes Element an dem ersten Magneten unter Ausbildung magnetischer Schneidenkräfte vorbeibewegbar ist, wodurch der Feder-Masse-Schwinger auslenkbar ist.

Es ist Aufgabe der Erfindung, eine elektromagnetische Auslösevorrichtung, insbesondere zur Verwendung für Druck-30 hammerantriebe anzugeben, welche bei geringem Platzbedarf und geringer Auslöseenergie, eine relativ große kinetische Energie zu erzeugen erlaubt.

Diese Aufgabe der Erfindung wird in vorteilhafter Weise

35 durch die im kennzeichnenden Teil des Anspruches 1 angegebenen Maßnahmen gelöst.

Vorteilhafte Weiterbildungen der Erfindung sind den Unteransprüchen zu entnehmen.

Ausführungsbeispiele der Erfindung sind in den Zeichnungen 5 dargestellt und werden im folgenden näher beschrieben.

Es zeigen:

- Fig. 1 eine schematische Schnittdarstellung einer elektromagnetischen Druckhammer-Auslösevorrichtung,
- Fig. 2 eine schematische ausschnittsweise perspektivische
 Darstellung eines bewegbaren spulenumwundenen
 Magneten, der zwischen zwei stationären Magneten
 gemäß Fig. 1 angeordnet ist,
 - Fig. 3 eine ausschnittsweise perspektivische Darstellung einer Druckhammerbank mit einer als Druckhammer ausgebildeten Anordnung gemäß Fig. 1,

Fig. 4 eine Aufsicht auf eine Druckhammerbank mit gegeneinander versetzt angeordneten Druckhämmern, die
mit einer gemeinsamen Rückholanordnung verbunden
sind,

Fig. 5 eine auseinandergezogene perspektivische Darstellung dreier Magnetpaare, von denen das eine Paar
mit einer Spule verbunden bewegbar zwischen den
stationären anderen Magnetpaaren angeordnet ist.

In Fig. 1 ist in schematischer Schnittdarstellung eine elektrisch gesteuerte Durckhammerauslösevorrichtung gezeigt. In dieser Vorrichtung ist ein spulenumwundener Magnet 3 bewegbar zwischen zwei stationären Magneten 1 und 2 angeordnet. Der Magnet 3 ist in Bewegungsrichtung D kürzer als die stationären

25

Magnete 1 und 2. Die Magnetisierungsrichtung der stationären Magnete 1 und 2 ist gleich und mit M1 bzw. M2 gekennzeichnet. Die Magnetisierungsrichtung M3 des bewegbaren Magneten 3 verläuft entgegengesetzt zur Magnetisierungsrichtung der beiden 5 erstgenannten Magnete 1 und 2. Die Magnetisierungsrichtung aller Magnete 1, 2, 3 verläuft senkrecht zur Bewegungsrichtung D des Magneten 3. Zum besseren Verständnis der Form der Magnete und ihrer gegenseitigen Anordnung sei auf die perspektivische Darstellung in Fig. 2 verwiesen. Um den Magneten 3 10 ist eine Spule 4 angeordnet. Die Anordnung dieser Spule unterliegt der Bedingung, daß die für die Kraftwirkung beim Auslösevorgang wesentlichen Windungsteile 4-1 (schwarz ausgezogen) innerhalb des von den Magneten 1 und 2 eingeschlossenen Raumes hoher magnetischer Flußdichte verlaufen. Der außerhalb 15 dieses Raumes verlaufende mit 4-2 gekennzeichnete Spulenteil liegt in einem Gebiet geringerer magnetischer Flußdichte und trägt daher nur geringfügig zur Auslösekraft bei. Als Magnete müssen solche verwendet werden, die sich schwer entmagnetisieren lassen. Diese Bedingungen erfüllen insbesondere Selte-20 ne-Erd-Magnete. Wegen ihrer großen magnetischen Energiedichte werden nur kleine Magnetvolumina benötigt und die Magnete behalten auch in offenen Magnetkreisen mit abstoßenden Magneten ihre Magnetisierung bei. Durch Wirksamwerden sog. magnetischer Schneidenkräfte zwischen den Magneten 1 und 3 bzw. 3 und 2 25 wird das bewegbare Aktionsglied 9 in eine durch den Pfeil S gekennzeichnete Stopp-Position 8 gezwungen. Diese Stopp-Position kann beispielsweise durch eine Stellschraube 7, welche in der Sohle des U-förmigen Trägers 6 für die Magnete 1 und 2 angebracht ist, gebildet werden. Der bewegbare Magnet 30 3 und die Spule 4 sind zu einem Grundkörper mit einem Hammerkopf 5 vergossen (siehe auch Fig. 3), welcher in seiner Gesamtheit das Aktionsglied 9 bildet. Für eine Auslösung des Aktionsgliedes 9 aus seiner Stopp-Position in Richtung des Pfeiles D wird die Spule 4 mit einem Auslösestrom 35 beaufschlagt. Durch den Spulenteil 4-1 im Magnetfeld der

Magnete 1 und 2 wird die wesentliche Kraft zur Wirkung in Pfeilrichtung D erzeugt (diese Kraftwirkung würde aufgehoben, wenn sich der Spulenteil 4-2 ebenfalls im gleichen Feld zwischen den Magneten 1 und 2 befände).

5

Durch diese Kraftwirkung gelangt der Magnet 3 aus dem Gebiet der in Richtung S wirkenden Schneidenkräfte über eine Gleichgewichtsposition in das Gebiet der in Richtung D wirkenden Schneidenkräfte. Durch diese Schneidenkräfte erfährt das Aktionsglied 9 die für den Druckvorgang erforderliche kinetische Energie.

Über magnetische Schneidenkräfte sind genauere Einzelheiten in der Deutschen Offenlegungsschrift OS 28 37 550 ausgesagt.

15 Dort heißt es: "Zur qualitativen Kennzeichnung üblicher Magnetkräfte sei zunächst auf die altbekannte Tatsache hingewiesen, daß beim Annähern zweier gleichartiger Magnetpole hohe Abstoßungskräfte auftreten, welche mit abnehmender Entfernung zwischen beiden Magnetpolen stark abnehmen. Neben diesen Kräften für abstoßende Konfigurationen gibt es natürlich auch solche für anziehende Konfigurationen. Bei den letzteren werden ungleichnamige Magnetpole einander angenähert.

25 Als magnetische Schneidenkräfte werden solche verstanden, die beim Vorbeibewegen sich anander anziehender oder abstoßender Magnete in Bewegungsrichtung auftreten.

Das Rückstellen des Aktionsgliedes 9 in seiner Ausgangsposition kann mit Hilfe mechanischer Rückstellkräfte oder mit
Hilfe eines auf die Spule 4 zu gebenden Rückstellstroms
erfolgen. Für den letzteren Fall müßte sich der Spulenteil
4-2 in ausgelenkter Position des Aktionsgliedes 5 in dem
Bereich starker magnetischer Flußdichte zwischen den Magneten 1 und 2 befinden. Ein Rückstellstrom würde dann eine

Kraftwirkung in Pfeilrichtung S bedingen. Dadurch würden die in Pfeilrichtung D wirkenden magnetischen Schneidenkräfte überwunden bis die in Pfeilrichtung S wirkenden magnetischen Schneidenkräfte zwischen den Magneten 1 und 3 bzw. 2 und 3 das Aktionsglied 9 in seine Stopp-Position zwingen würden.

In Fig. 3 ist eine Druckhammerbank in auseinandergezogener ausschnittsweiser, perspektivischer Darstellung gezeigt. Aus Vereinfachungsgründen entfällt in dieser Darstellung je-10 doch die Stellschraube 7 (siehe Fig. 1) für die Stopp-Position des Aktionsgliedes 9. Das Aktionsglied 9 ist als Druckhammer ausgebildet; es ist in bekannter Weise auf zwei Blattfeder 10 und 11 gelagert. Die Spulenanschlüsse sind mit 12 und 13 gekennzeichnet, sie können den Blattfedern 10 und 15 11 verbunden sein, über die dann die Stromzuführung erfolgen würde. Für die Ausbildung des Aktionsgliedes 9 gibt es eine Vielzahl von Möglichkeiten. So könnte beispielsweise der Grundkörper dieses Gliedes in Kunststoffschalenbauweise unter Einschluß des Magneten 3 und der Spule 4 ausgebildet 20 sein. Der Druckhammerkopf 9 könnte an seiner Schlagfläche eine metallisierte Auflage erhalten. Die Blattfedern 10 und 11 können z. B. durch eine entsprechende Klebverbindung mit dem Aktionsglied verbunden sein. Die Wirkungsweise dieser in Fig. 3 gezeigten Anordnung für den Druckvorgang ist die gleiche wie im Zusammenhang mit Fig. 1 beschrieben. Das Rücksetzen des Aktionsgliedes 9 in seine Ausgangsposition würde durch die Blattfedern 10 und 11 unterstützt werden, denen neben dieser Funktion auch die Führung des Aktionsgliedes 9 zukäme. Die Blattfedern werden durch die Schneiden-30 kräfte gleichzeitig mit der Erzeugung der kinetischen Energie des Aktionsgliedes 9 gespannt. Dadurch wird die Gleichgewichtsposition des Aktionsgliedes 9 in eine Position (in Richtung D) verlagert. In dieser Gleichgewichtsposition würde das Aktionsglied 9 ohne weitere Rückstellkräfte durch 35 die Blattfedern nach erfolgtem Druckvorgang zurückgeholt

werden. Über den in Fig. 3 dargestellten Teil hinaus aber sei bemerkt, daß bei einer solchen Druckhammerbank benachbarte Aktionsglieder immer einen gemeinsamen zwischen ihnen liegenden, festen stationären Magneten (1 bzw. 2) haben. 5 Eine Ausnahme in diesem Zusammenhang bilden lediglich die an den Enden der Druckhammerbank liegenden Aktionsglieder.

In Fig. 4 ist die Aufsicht auf eine Druckhammerbank mit gegeneinander versetzt angeordneten Druckhämmern und mit 10 einer Rückholanordnung gezeigt. Aus Vereinfachungsgründen sind nur zwei übereinanderliegende Druckhämmer 14 und 15 dargestellt. Jeder Druckhammer besteht, wie auch in Fig. 1 und 3, aus einem Grundkörper, in dem ein Magnet und eine ihn umgebende Spule eingebettet ist. Jeder Druckhammer wird von 15 zwei Blattfedern geführt. Die beiden Druckhämmer sind derart gegeneinander versetzt, daß ihre Blattfedern an entgegengesetzten Stellen der Druckhammerbank fixiert sind und daß ihre Hammerköpfe in einer Reihe ausgerichtet sind. Der Grundkörper der Druckhammerbank ist mit 14-5 gekennzeichnet, 20 die beiden Druckhämmer mit 14 und 15. Der Druckhammer 14 enthält den Magneten 14-1 mit der ihn umgebenden Spule 14-2. Er ist über die Blattfeder 14-3 und 14-4 dem oberen Schenkel des Grundkörpers 14-5 verbunden. Entsprechendes gilt für den in der Darstellung nach Fig. 4 unter dem Hammer 14 lie-25 genden Hammer 15, dessen Magnet mit 15-1 und dessen diesen Magneten umgebende Spule mit 15-2 gekennzeichnet ist. Die ihn tragenden Blattfedern 15-3 und 15-4 sind mit dem unteren Schenkel des Grundkörpers 14-5 verbunden. Auf die Darstellung der die Magnet 14-1 bzw. 15-1 einschließenden sta-30 tionären Magnete wurde aus Vereinfachungsgründen verzichtet. Bei entsprechendem Stromfluß der Spulen 14-2 bzw. 15-2 erfährt der entsprechende Druckhammer eine Kraftwirkung in Pfeilrichtung D für den Auslösevorgang. Für das gemeinsame Zurückstellen aller Druckhämmer der Druckhammerbank in ihre Ausgangsposition ist eine gemeinsame Rückholvorrichtung vor-35

gesehen. Diese besteht aus einem in einer Führung 23 hin und her bewegbar angeordneten Führungsstück 18, welches über elastische Elemente 16 und 17 mit den rückwärtigen Enden der Druckhämmer 14 und 15 verbunden ist. Diese elastischen Ele-5 mente können Zugfedern sein. Das Führungsstück 18 wird über einen Exzenterantrieb 21/20 angetrieben. Dieser Exzenterantrieb (stationäre Achse 21 mit azentrischer Exzenterscheibe) wirkt in einer Aussparung 19 im Führungsstück 18. Bei einer Drehung des Exzenters führt das Führungsstück 18 innerhalb 10 der Führung 23 eine Hubbewegung aus, wodurch die ausgelenkten Druckhämmer durch die elastischen Elemente über den Bereich der in Richtung D wirkenden magnetischen Schneidenkräfte in den Bereich der in Richtung S wirkenden magnetischen Schneidenkräfte in ihre Ausgangsposition zurückgezogen werden. Die Ausgangsposition ist durch die Anschläge 14-6 bzw. 14-7 festgelegt.

In Fig. 5 ist eine auseinandergezogene perspektivische Darstellung dreier Magnetpaare gezeigt, von denen eines mit 20 einer Spule verbunden bewegbar zwischen den verbleibenden stationären anderen Magnetpaaren angeordnet ist. Bei dieser Anordnung liegen beide Seiten (23-1 und 23-2) der Spule 23 des Aktionsgliedes 24 immer in einem Gebiet hoher magnetischer; Flusdichte, das von dem Magnetpaar 22-2/22-3 bzw. 21-2/21-3 erzeugt wird. Die Magnetpaare 22-2/22-3 und 21-2/21-3 sind benachbart angeordnet und aufeinander ausgerichtet. Die Magnete dieser Magnetpaare sind soweit voneinander beabstandet, daß zwischen ihnen ein in Pfeilrichtung D bewegbares Aktionselement 24 angeordnet werden kann. Dieses Aktionsglied be-30 steht aus der Folge eines Magneten 22-1, einer Spule 23 und eines Magneten 21-1. Der Magnet 22-1 befindet sich zwischen den Magneten 22-2 und 22-3, der Magnet 21-1 zwischen den Magneten 21-2 und 21-3. Die Magnete 22-1 und 21-1 haben (in Bewegungsrichtung des Aktionsgliedes 24 gesehen) eine geringe-35 re Länge als die Magnete 22-2, 22-3, 2,1-2 und 21-3. Auf

diese Weise bleibt der zwischen den Magneten 22-1 und 21-1 angeordneten Spule 23 ausreichend Platz, um mit ihren für die Kraftwirkung in Pfeilrichtung D maßgebenden Spulenteilen 23-1 und 23-2 einerseits zwischen den Magneten 22-2 und 22-3 5 und andererseits zwischen den Magneten 21-2 und 21-3 zu liegen. Die Magnetisierungsrichtung M22-2 und M22-3 der Magnete 22-2 und 22-3 ist gleich und der Magnetisierungsrichtung M22-1 des zwischen ihnen angeordneten Magneten 22-1 entgegengerichtet. Ebenso ist die Magnetisierungsrichtung 10 M21-2 und M21-3 der Magnete 21-2 und 21-3 gleich und zu der M21-1 des zwischen ihnen liegenden Magneten 21-1 entgegengerichtet; jedoch verlaufen die Magnetisierungsrichtungen M22-1 und M22-2 einander entgegengesetzt. Durch eine derartige Anordnung ergibt sich beim Fließen eines Stroms in 15 den Spulenteilen 23-1 und 23-2 eine Kraftwirkung in Pfeilrichtung D. Durch die besondere Konfiguration dieser Anordnung gemäß Fig. 5 ist es möglich, am Auslösevorgang des Aktionsgliedes 24 beide Spulenteile 23-1 und 23-2 gleichwertig teilnehmen zu lassen (im Gegensatz zu der Anordnung 20 nach Fig. 1). Diese Möglichkeit erfordert jedoch einen höheren konstruktiven Aufwand.

PATENTANSPRÜCHE

- Elektromagnetische Auslösevorrichtung mit einem mit 1. mindestens einem ersten Magneten versehenen Bewegungs-5 element, welcher zwischen anderen Magneten unter Wirkung magnetischer Schneidenkräfte bewegbar angeordnet ist, dadurch gekennzeichnet, daß der erste Magnet (3) durch die magnetischen Schneidenkräfte in eine durch einen Anschlag (8) gebildete 10 Ausgangsposition bringbar ist, daß der erste Magnet (3) mit einer Auslösespule (4) umgeben ist, deren für eine Kraftwirkung in Auslöserichtung (D) wirksame Spulenteil (4-1) in dem Raum liegt, der von den Magneten (1, 2) gebildet wird, zwischen 15 denen sich der erste Magnet (3) befindet, und daß durch die durch die Spulenerregung bedingte Auslösekraft der erste Magnet (3) gegen Wirkung der magnetischen Schneidenkräfte aus der Ausgangsposition in eine Lage bringbar ist, von der ab die magnetischen Schneidenkräfte das Bewegungselement (9) in eine Rich-20 tung (D) entgegengesetzt zur Ausgangsposition beschleunigen.
- Anordnung nach Anspruch 1,
 dadurch gekennzeichnet,
 daß das Bewegungselement (9) mit einer oder mehreren
 Federn (10, 11, 16, 17) verbunden ist, durch die es aus ausgelenkter Position in seine Ausgangsposition ganz oder teilweise zurückführbar ist.

Anordnung nach Anspruch 1,
 dadurch gekennzeichnet,
 daß Spulenteile (4-2) der Auslösespule (4) bei ausgelenkter Position des Bewegungselementes (9) in dem Raum
 zwischen den Magneten (1, 2) liegt,

und daß bei entsprechender Erregung der Auslösespule (4) auf das Bewegungselement (9) eine Kraft in Richtung (S) zu seiner Rückführung in die Ausgangsposition (8) ausgeübt wird.

- Anordnung nach Anspruch 1,
 dadurch gekennzeichnet,
 daß das Bewegungselement zwei in Bewegungsrichtung nacheinander angeordnete Magnete (22-1, 21-1) und eine zwischen diesen angeordnete Auslösespule (23) aufweist,
 daß der erste (22-1) dieser Magnete zwischen einem stationären Magnetpaar (22-2, 22-3) und der zweite
 (21-1) dieser Magnete zwischen einem zweiten stationären Magnetpaar (21-2, 21-3) bewegbar ist,
 und daß die für die Auslösekraft des Bewegungselementes wirksamen Teile der Spule (23-1, 23-2) in dem Raum des vom ersten stationären (22-2, 22-3) und zweiten (21-2, 21-3) stationären Magnetpaar liegen.
- 20 5. Anordnung nach einem der vorstehenden Ansprüche 1 bis 4 zur Anwendung für Druckhammerantriebe.
- Anordnung nach einem der Ansprüche 1 bis 5,
 dadurch gekennzeichnet,
 daß das Bewegungselement mittels zweier Blattfedern (10,
 11; 14-4, 14-5; 15-3, 15-4) gelagert ist.
- Anordnung nach einem der Ansprüche 5 bis 6,
 dadurch gekennzeichnet,
 daß mehrere jeweils einen Druckhammer darstellende Bewegungselemente (14, 15) derart zu einer Druckhammerbank zusammengefaßt sind, daß die Bewegungselemente für
 nebeneinanderliegende Druckhämmer entgegengesetzt angeordnet sind und daß die Druckhämmer über eine Feder (16,
 17) mit einem gemeinsamen exzentergetriebenen Rückstellglied (18) verbunden sind.

8. Anordnung nach Anspruch 5,
dadurch gekennzeichnet,
daß benachbarte Bewegungselemente jeweils ein oder
mehrere stationäre Magnete gemeinsam haben.

1/2 M2

FIG. 1

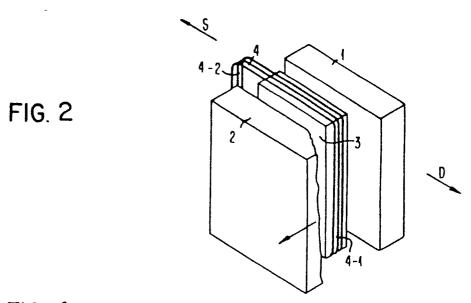
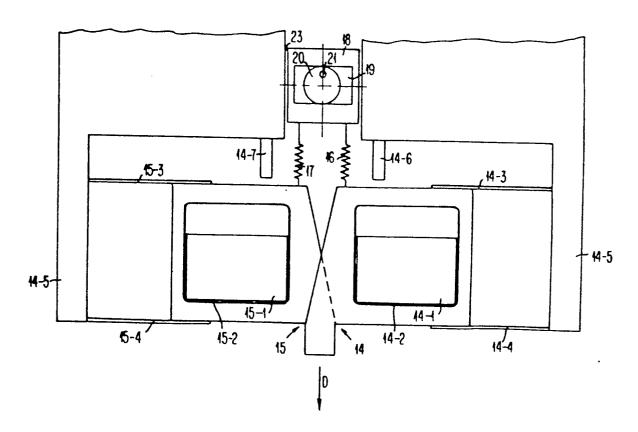
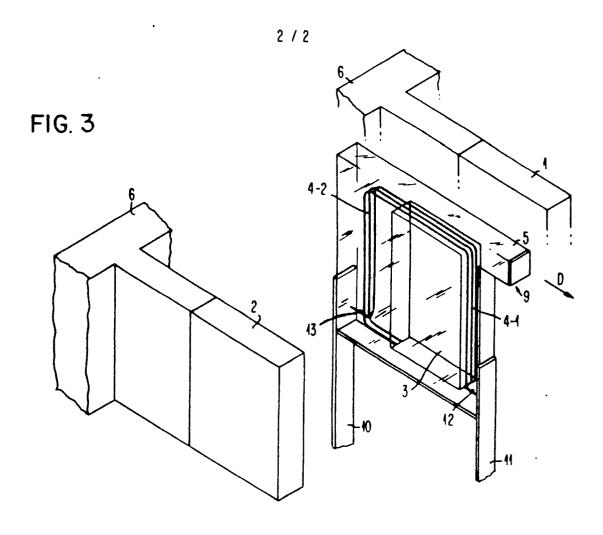
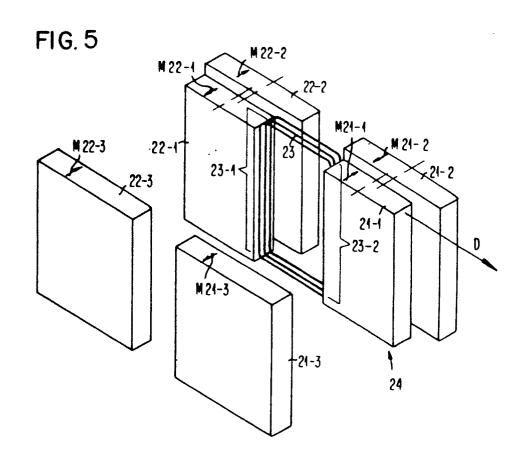





FIG. 4

