| (19) |
 |
|
(11) |
EP 0 029 243 B1 |
| (12) |
EUROPEAN PATENT SPECIFICATION |
| (45) |
Mention of the grant of the patent: |
|
22.05.1985 Bulletin 1985/21 |
| (22) |
Date of filing: 17.11.1980 |
|
| (51) |
International Patent Classification (IPC)4: B08B 9/04 |
|
| (54) |
Method for cleaning and sanitizing the interior of pipelines
Verfahren zum Reinigen und Desinfizieren der Innenwände von Rohrleitungen
Procédé pour nettoyer et pour assainir l'intérieur de conduites
|
| (84) |
Designated Contracting States: |
|
DE FR GB NL |
| (30) |
Priority: |
20.11.1979 US 96106 26.12.1979 US 106784 19.02.1980 US 122536
|
| (43) |
Date of publication of application: |
|
27.05.1981 Bulletin 1981/21 |
| (71) |
Applicant: THE DOW CHEMICAL COMPANY |
|
Midland
Michigan 48640-1967 (US) |
|
| (72) |
Inventor: |
|
- Purinton, Robert James, Jr.
Tulsa, Oklahoma (US)
|
| (74) |
Representative: Weickmann, Heinrich, Dipl.-Ing. et al |
|
Patentanwälte
H. Weickmann, Dr. K. Fincke
F.A. Weickmann, B. Huber
Dr. H. Liska, Dr. J. Prechtel, Dr. B. Böhm
Postfach 86 08 20 81635 München 81635 München (DE) |
|
| |
|
| Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] This invention pertains to a novel method for treating the interior surfaces of pipelines
using aqueous, cross-linked gelled pigs.
[0002] Pipeline efficiency and volume of product being conveyed through the pipeline can
be lost by a build-up of scale on the interior surface of the pipe. Mechanical pigs
and/or gelled chemical pigs have previously been used to remove scale from the interior
surface of a pipe. Mechanical pigs are, normally solid bullet-shaped devices which
have wire brushes or abrasive surfaces to physically abrade the scale adhered to the
interior surface of the pipe. Gelled chemical pigs, on the other hand, remove surface
deposits on the interior surface of a pipe by dissolution and/or by picking up loose
debris as they pass through the pipeline.
[0003] In many instances, scale also contains bacteria which attack the product to be conveyed
by the pipeline. For example, sulfate-reducing bacteria can generate copious quantities
of gaseous hydrogen sulfide from certain crude oils, which causes severe corrosion
of pipeline walls and also contaminate the product flowing in the line. Hydrogen sulfide
is also a noxious, toxic gas which makes it difficult and dangerous to handle from
a personnel standpoint and also from a pumping standpoint. Gases in a liquid can cause
pumps to cavitate, lose prime, or to function less efficiently. Bacteria are also
known to consume hydrocarbons, resulting in a loss of the product.
[0004] Because water is an undesirable foreign matter in any oil or gas pipeline, the treatment
of pipelines with gelled pigs also includes their drying. One method of drying a pipeline
is described by G.D.H. Crawford, Gas Journal, vol. 341, No. 5549, 282 (March 18, 1970).
In Crawford, the bulk of the water is removed from a pipeline by a conventional mechanical
pig and then swabbing the interior of the pipeline by passing a quantity of methanol
through the pipeline sandwiched between a pair of pigs. Crawford found it necessary
to use this technique to remove residual water from pipelines carrying natural gas
having a high proportion of methane. Residual water was said to form hydrates with
the methane under certain conditions of temperature and pressure and lead to serious
transmission difficulties.
[0005] From U.S. Patent No. 4,003,393 is known a method of removing residual fluids and
solids by a gel-like mass comprising an organic liquid and a metal salt of an aliphatic
substituted orthophosphate ester.
[0006] From EP-A 15012 it is known to remove fluids and debris from pipelines by pushing
a plug with a scraper through the pipeline.
[0007] A new method of cleaning the interior surfaces of pipelines has been discovered.
The new method comprises passing an aqueous gel-like mass through the line directly
driven by a fluid under pressure, the gel-like mass consisting of an aqueous, cross-linked
gelled galactomannan gum, or derivative thereof.
[0008] The aqueous gelled cross-linked pigs used in this invention are superior to other
pigs which utilize, for example, polyacrylamides and the like for the gel matrix.
This superiority is shown in their shear stability, ease of hydration in water, and
the convenience with which the gelled pigs are broken when the job is complete. This
facilitates waste disposal and enhances the commercial viability.
[0009] It has also been discovered that pipelines can be cleaned and simultaneously sanitized
by passing an aqueous gelled pig containing at least on bactericide through the interior
of a pipeline. By the term, "sanitize" is meant that the bacteria level of the pipeline
surface in contact with the aqueous gelled pig is reduced. Normally, the bacteria
level is reduced essentially zero or some other very low value.
[0010] The aqueous gelled pigs of the present invention are easily formulated, are easy
to use, and eliminate the need for completely filling a pipeline with an antibacterial
solution and thus represent an advancement in the art of pipeline cleaning.
[0011] The present invention also resides in a method of drying the interior surface of
a pipeline by sequentially passing through the pipeline an aqueous cross-linked gelled
pig, a fluid mobility buffer comprising a non-crosslinked gelled alkanol of from one
to three carbon atoms, and dessicating amount of a liquid alkanol of from one to three
carbon atoms. The mobility buffer permits the user to derive the benefits of both
the gelled aqueous pigs and a liquid desiccating alkanol.
[0012] The aqueous-based pig compositions comprise water, a galactomannan gum or derivative
thereof as a thickening agent, and a crosslinker. The pig compositions may optionally
contain a bactericide as an additive. Other additives may include an abrasive in solid
particulate form (e.g. sand) to promote the cleaning ability of the pig as it passes
through the pipeline, or other conventional additives which stabilize the pig.
[0013] Galactomannan gums and derivatives thereof are well known thickeners for water and
water- based fluids. Examples of such gums include natural gums (e.g. guar gum, locust
beam gum, endosperm seed gums, and the like) and derivatives thereof (e.g. hydroxyalkyl
galactomannans, carboxyalkyl galactomannans, hydroxyalkyl carboxyalkyl galactomannans,
and the like). These are known classes of compounds and essentially any member can
be used in the present invention. The most common commeri- cally employed galactomannan
gums are guar, hydroxypropyl guar, hydroxyethyl guar, hydroxyethyl carboxymethyl guar,
and carboxymethyl guar gums. Because the aforementioned gums are readily commercially
available, these gums are preferred thickeners, and of these, guar gum and hydroxypropyl
guar gum are the most preferred. It should be noted that in some references the galactomannan
gums are referred to as polysaccharide and polysaccharide derivatives. Such thickeners
are normally used in amounts of from 4.8 to 18 kg/m
3 (40 to 150 pounds per 1000 gallons) of water (i.e. from 0.5 to 1.8 percent by wt.).
They are preferably used in amounts of from 4.8 to 9.6 kg/m
3 (40 to 80 pounds per 1000 gallons) of water (i.e. from 0.5 to 1.0 percent by wt.).
The actual amount used, however, can be adjusted to convenience by the practitioner.
[0014] Aqueous compositions containing the above thickeners are normally cross-linked using
a polyvalent metal ion. The cross-linker is normally added as a soluble salt or as
a soluble organometallic compound in an amount sufficient to achieve the desired amount
of cross-linking. Borates, organotitanates, and organo-zirconium salts are commonly
used. The cross-linking ability of such compounds is pH dependent in many instances
(e.g. the borate systems). This factor presents a convenient mechanism for dealing
with the thickened fluids in a non-crosslinked form until the properties of a cross-linked
fluid are desired. In the non-crosslinked state, the thickened aqueous fluids are
normally pumpable at conventional pressures. Substantially elevated pressures are
required to pump the fluids in the cross-linked state.
[0015] The galactomannan gums are cross-linkers are, as noted, known classes of compounds
and are disclosed in U.S. Patent Nos. 3,058,909; 3,974,077; 3,818,991; 3,779,914 and
3,696,035. Reference is also made to the disclosure in the text by Davidson and Sittig,
"Water-soluble Resins" Second Edition (1968) and the test by Smith and Montgomery,
"The Chemistry of Plant Gums and Mucilages", Biograph Series No. 141 (1959).
[0016] Normally, the pig is formulated outside of the pipeline as a pumpable mass and the
cross-linker or cross-linker/activator is added to the pumpable mass as it is being
pumped into the pipeline. This "on-the-fly" approach has several procedural advantages,
not the least of which is ease of placement at convenient low pressures. In this manner,
the pig forms a cross-linked gel network after it enters the pipeline and conforms
to the general shape and size of the pipeline. To illustrate, an aqueous pig comprised
of a borate cross-linked polysaccharide (or polysaccharide derivative) gel is a preferred
pig composition where the pig may be subjected to considerable shear. Such pig formations
are conveniently prepared and used by first blending boric acid (from 0.9 to 1.8 kg
(2 to 4 pounds)) with an aqueous slurry or solution of the polysaccharide or polysaccharide
derivative (from 27 to 36 kg (60 to 80 pounds)) to form a pumpable homogenous mass.
Sufficient base (e.g. aqueous NaOh) is then metered in to change the pH to a basic
pH (pH 8.5-10 normally) as the homogenous aqueous mass is being pumped into the pipeline.
The desired quantities of boric acid and polysaccharide or derivative are present
per 3.78 m
3 (1000 galons) of water in each instance in the pipeline. The gel-time of these borate-crosslinked
systems is easily adjusted by the quantity of base added (cross-linking occurs faster
at higher pH values).
[0017] After the gelled pig has been formed in the pipeline, it is normally driven through
the pipeline by the driving force of a fluid under pressure. This fluid may be a gas
or a liquid and will vary depending upon the needs of the user. For example, if the
user wishes to leave the pipeline in a dry, empty state, one would normally use a
dry inert gas such as, for example, nitrogen, carbon dioxide, ethane, propane or liquified
petroleum gas. If the user desires to refill the pipeline with a liquid product such
as, for example, crude oil or gasoline the pig could be driven with the liquid product,
so long as the product does not adversely affect the properties of the pig before
its purpose was complete or substantially complete in the pipeline.
[0018] Normally the pigs are formulated and used at ambient temperatures or below and are
pumped through the pipelines at pressures sufficient to move the pig at a reasonable
rate. Temperatures are therefore normally below about 60°C (140°F). Pressures are
normally below about 140.6 kg/cm
2 (2000 psig). The predominant number of pipelines will normally be cleaned at pressure
less than 35 kg/cm
2 (5000 psig). Linear flow rates of up to about 91.5 m/min. (5 feet/second) are normally
satisfactory, from a commerical cleaning standpoint Rates of from 13.7 to 22.8 m/min.
(0.75 to 1.25 ft/sec.) are preferred.
[0019] The size and shape of the pipeline is basically irrelevant because the gelled pigs
are able to be pumped through the pipe over long distances and their shapes will adjust
to fit the size of the pipeline during use. This makes the gelled pig extremely effective
because stalactites and stalagmites in the pipeline do not cause its destruction by
ripping and tearing it apart as they do solid mechanical pigs.
[0020] The aqueous gelled pigs can be used alone or as an element of a pig train in the
pipeline cleaning process. In the latter instance, the aqueous gelled pig is preceded
and/or followed by other chemical pig segments or mechanical pigs. Such chemical pig
segments could be of the same or different compositions. For example, the pig train
could be formed having an aqueous gelled pig according to the instant invention as
the leading segment to remove loose scale and other debris from the pipe followed
by a bactericide-containing gelled pig for sanitizing the pipe. Accordingly, this
combination would be very effective in cleaning as well as sanitizing pipelines. Segments
of the pig train could likewise include fluids (liquids or gases) or non-cross- linked
gels containing various additives such as corrosion inhibitors, and the like.
[0021] After the aqueous cross-linked gelled pig has passed through the pipeline, it can
be recovered and disposed of as such or "breakers" can be added to the pipeline causing
the cross-linked gelled pig to break-up and lose its structure and viscosity. As noted
above, this is a very desirable property because it facilitates waste disposal. Additionally,
in many instances the aqueous gelled pig is of essentially inconsequential volume
relative to the volume of the "product" following it and therefore does not adversely
affect the materiai which follows. For example, a few hundred gallons of a pig used
according to the instant invention and discharged into the hold of a ship transporting
crude oil would not adversely affect the properties of the thousands of gallons of
crude oil also present in the tanker. Bactericides which are compatible with water-
based formulations are likewise a known class of compounds. Typically such compounds
are aldehydes, organic quaternary ammonium compounds or water-soluble salts of halogenated
(particularly chlorinated) phenols. Examples of such bactericides include formaldehyde,
gluter- aldehyde, dodecyl trimethyl ammonium chloride, and octadecyl tris (2-hydroxyethyl)
ammonium chloride. Bactericides that are effective against sulfate-reducing bacteria
are particularly useful in the instant invention because of the serious problems such
bacteria can create, particularly in oil pipelines. If the particular thickener used
is subject to bacterial attack, it may be desirable to also include a bactericide
as a preservative for the formulated pig.
[0022] The fluid mobility buffer of the invention used for drying the interior surface of
a pipe comprises a non-crosslinked gelled alkanol of from one to three carbon atoms.
Preferred alkanols are methanol, ethanol, and isopropanol. Mixtures of alkanol can
be used, if desired. The thickening agent for such alkanols can be galactomannan gums
or derivatives thereof but are preferably hydroxy (lower alkyl) celluloses and are
more preferably hydroxyethyl or hydroxypropyl cellulose. Such thickeners may be included
in the alkanol in substantially any concentration that has the effect of gelling the
alkanol and thereby lowering its volatility and enabling the gelled material to be
pumped as a viscous slug through the pipeline. Concentrations of from 6 to 24 kg/m
3 (50 to 200 pounds) of thickener per 3.78 m
3 (1000 (gallons) of alkanol are normally used in making the buffer. Sodium hydroxide
or other strong base can also be added to the buffer as a viscosity enhancer.
[0023] The buffer of the present invention separates the aqueous gelled pig from the liquid
alkanol and prevents interfacial mixing of these two components which would destroy
or substantially reduce the effectiveness of each. The gelled alkanol does not appear
to cause degradation of the gelled aqueous pig, such as by dehydration, even though
the gelled alkanol has the capacity to take up substantial quantities of water as
it passes through the pipeline.
[0024] The desiccant used for drying the interior surface of a pipe comprises a liquid alkanol
of from one to three carbon atoms. Preferred alkanols are methanol, ethanol and isopropanol.
The alkanol(s) is used in an amount sufficient to dry the pipeline to the desired
degree of dryness, i.e. a desiccating amount.
[0025] It is preferred that the alkanol desiccant and the buffer be the same, but they may
be different at the convenience of the user. For example, one would ordinarily prefer
to follow gelled methanol with liquid methanol, but it would likewise be satisfactory
to follow gelled methanol with ethanol or isopropanol.
[0026] It is normally convenient to follow the liquid desiccant with a mechanical swab or
with a crosslinked hydrocarbon gel, such as the gelled hydrocarbon pig described in
U.S. Patent No. 4,003,393 or an ungelled hydrocarbon pig described in U.S. Patent
No. 4,152,289, but the use of an inert gas is also operable.
[0027] The aqueous cross-linked gelled pig; the buffer, and the desiccant are normally driven
through the pipeline by the driving force of a fluid under pressure such as hereinbefore
described. If the user desires to refill the pipeline with a liquid product, the "pig
train" could be driven with the product so long as there was a satisfactory interface
between the product and the alkanol such that the product did not adversely affect
the desiccating ability of the alkanol before the job was complete or substantially
complete in the pipeline.
[0028] The following examples will further illustrate the invention.
Example 1
[0029] A 64.4 km (40 mile) pipeline was cleaned by passing through it sequentially (a) 7.6
m
3 (2000 gallons) of a borate cross-linked aqueous gelled pig (pH 8.5-10) having 45.4
kg (100 pounds) of hydroxypropyl guar per 7.6 m
3 (2000 gallons) water, (b) 3.8 m
3 (1000 gallons) fresh water, (c) 60.8 m
3 (16,000 gallons) of 15 percent hydrochloric acid, (d) 30.4 m
3 (8000 gallons) of a commercial passivator and neutralizer, and (e) several polyurethane
pigs for gas migration control. This train was driven through the pipeline with fresh
water pumped at 340 I (90 gallons) per minute. Samples of the pig were taken as it
passed through the pipeline. Data obtained from such samples showed that the gelled
aqueous pig retained its integrity throughout the 64.4 km (40 mile) journey. An excellent
cleaning job resulted from this treatment.
[0030] In Example 1 the pig train was driven through the pipeline at a rate of approximately
0.3 m (1 foot) per second. This is a very satisfactory rate from a commercial standpoint,
but rates up to about 1.5 m (5 feet) per second have been used with success. The higher
linear velocity trains normally require somewhat longer pigs or pig segments to achieve
the same degree of cleaning (thought to be primarily a function of contact time) and
to minimize the tendency of pig segments to mix if turbulent flow is encountered.
Example 2
[0031] The effectiveness of a bactericide-gelled pig was evaluated by passing ten gallons
of an aqueous gelled pig containing 250 ppm of a commercial quaternary ammonium bactericide
(Dowell M 76) through a 19.5 m (65 foot) test loop of one inch steel and a section
of one inch polyvinyl chloride pipeline contaminated with river water laden with bacteria.
The gelled pig was driven through the pipeline with fresh water at approximately six
inches per second. The gel discharged from the pipeline and the pipeline was flushed
with approximately 151 I (40 gallons) of fresh water. Samples were taken from the
river water, from the gelled pig, and from the flush water. Culture tests revealed
an extremely high level of bacteria of greater than one million bacteria/cubic centimeter
in the river water; no bacteria were detected in the gelled pig, and less than 10
bacteria per cubic centimeter were detected in the flush water. The gelled pig was
prepared by blending 27 kg (60 pounds) of hydroxypropyl guar and 1.35 kg (3 pounds)
of boric acid and 250 ppm of the bactericide per 3.78 m
3 (thousand gallons) of water and adjusting the pH of the solution to a pH of from
9-10 with aqueous sodium hydroxide. The system cross- linked as the pH became basic.
Example 3
[0032] Approximately 18.3 m (60 feet) of a 2.54 cm (1-inch) steel pipeline, containing 7.6
m (25 feet) of clear polyvinyl chloride sections was filled with water, evacuated
with compressed air, and then dried by passing through it the following pig train:
(1) A crosslinked gelled water pig was added first. It was prepared by mixing 45.4
I (12 gallons) water, 354 grams of hydroxypropyl-guar, 16.5 g. boric acid and 350
milliliters of a 5 percent solution of sodium hydroxide in water. The sodium hydroxide
was added on-the-fly as the pig was being pumped into the line. The pig crosslinked
quickly (2-5 seconds) after entering the line to a firm gel.
(2) A gelled methanol pig-prepared by blending 13.2 I (3.5 gal.) methanol, 191 g of
hydroxypropyl cellulose (average molecular weight of approximately 1 million) and
24 g. solid sodium hydroxide- was then charged.
(3) Methanol-56.7 I (15 gal.)
[0033] The pig train was then driven through the line at 0.3-0.6 m (1-2 feet) per second
with compressed nitrogen (approximately 6.47 m
3; 231 standard cubic feed used).
[0034] Visual inspection of the line prior to drying showed the walls wet with water and
small puddles in low points on the line. After drying with the pig train, the surface
walls had a dew point of -28°C (-19°F) as measured by the Bureau of Mines Dew Point
Tester (manufactured bv Chandler Enqineerinq Company).
1. A method of cleaning the interior of a pipeline by moving a gel-like mass through
the line directly driven by a fluid under pressure, characterized in that the gel-like
mass consists of an aqueous cross-linked, gelled galactomannan gum, or derivative
thereof.
2. The method of Claim 1 wherein said galactomannan gum, or derivative thereof, is
a guar gum or a hydroxypropyl guar gum.
3. The method of Claim 1 or 2 wherein said galactomannan gum, or derivative thereof,
is crosslinked with borate, organotitanate, or organozirconium ions.
4. The method of Claim 3 wherein said galaco- mannan gum, or derivative thereof, is
cross- linked with borate ions.
5. The method of any one of the preceding claims wherein said gum, or dervative thereof,
is present in said gelled pig in an amount of at least about 5.4 kg/1000 1 (45 pounds
per 1000 gallons) of water.
6. The method of Claim 1 wherein said gelled pig comprises hydroxypropyl guar gum
in an amount of from 5.4 to 9.6 kg per 1000 I (45 to 80 pounds per 1000 gallons) of
water crosslinked with borate ions and buffered at a pH of from 8.5 to 10.5.
7. The method of any one of the preceding claims, including at least one bactericide
in said aqueous gelled pig in an amount sufficient to substantially reduce or eliminate
bacteria within said pipeline.
8. The method of Claim 7 wherein said bactericide is effective against sulfate-reducing
bacteria and is selected from aldehydes, organic quaternary ammonium compounds or
water-soluble salts of halogenated phenols.
9. The method of Claim 7 wherein said bactericide is selected from formaldehyde, gluteral-
aldehyde, dodecyl trimethyl ammonium or octadecyl tris (2-hydroxyethyl) ammonium chloride.
10. The method defined by Claim 1 wherein said gelled pig is passed through said pipeline
at driving pressures of up to about 140.6 kg/cm2 at a rate of up to about 91.5 m/min.
11. The method defined by Claim 1 wherein said pipeline and its contents are at temperatures
of up to about 60°C.
12. The method defined by Claim 7 wherein said pipeline and its contents are at about
ambient temperature.
13. The method defined by Claim 10 wherein said aqueous gelled pig is passed through
said pipeline at a rate of about 13.7 to about 22.8 m/min.
14. The method of any one of the preceding claims wherein said aqueous gelled pig
is at least one element of pig train having a plurality of chemical pig elements.
15. The method defined by Claim 14 wherein at least the leading element of the said
pig train is said aqueous gelled pig.
16. The method defined by Claim 14 wherein at least one of said aqueous gelled pig
elements is preceded and/or followed by an aqueous gel or aqueous liquid.
17. The method of any one of the preceding claims, including the steps of sequentially
passing through said pipeline:
(a) an aqueous crosslinked gelled pig,
(b) a fluid mobility buffer comprising a non-crosslinked gelled alkanol of from one
to three carbon atoms, and
(c) a desiccating amount of a liquid alkanol of from one to three carbon atoms.
18. The method of Claim 17 wherein (b) is an alkanol thickened with hydroxyethyl or
hydroxypropyl cellulose.
19. The method of Claim 17 or 18 wherein (c) is methanol, ethanol, or isopropanol.
20. The method of Claim 17 wherein said alkanol in (b) and (c) is the same in each
instance and is methanol, ethanol, or isopropanol.
21. The method of Claim 17 wherein
(a) is an aqueous crosslinked gelled pig comprising an aqueous gelled guar gum or
hydroxypropyl guar gum crosslinked with borate, titanate zirconium ions,
(b) is a fluid mobility buffer comprising methanol, ethanol, or isopropanol thickened
with hydroxypropyl cellulose, and
(c) is methanol, ethanol or isopropanol.
22. The method of Claim 21 wherein (a) is a hydroxypropyl guar gum crosslinked with
borate ions, (b) is methanol thickened with hydroxypropyl cellulose, and (c) is methanol
1. Verfahren zum Reinigen des Inneren einer Rohreitung durch Hindurchfüren einer gelartigen
Masse durch die Leitung, die direkt von einem unter Druck stehenden Fluid angetrieben
wird, dadurch gekennzeichnet, daß die gelartige Masse aus einem wäßrigen vernetzten,
gelierten Galaktommannangummi oder einem Derivat davon besteht.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Galaktomannangummi oder
das Derivat davon ein Guargummit oder ein Hydroxypropylguargummit ist.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Galaktomannangummi
oder das Derivat davon mit Borat, Organotitanat oder Organozirkoniumionen vernetzt
ist.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Galaktomannangummi oder
das Derivat davon mit Borationen vernetzt ist.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
der Gummi oder das Derivat davon in dem gelierten Reiniger in einer Menge von wenigstens
ca. 5,4 kg/1000 1 (45 pounds per 1000 gallons) Wasser vorhanden ist.
6. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der gelierte Reiniger Hydroxypropylguargummi
in einer Menge von 5,4 bis 9,6 kg pro 1000 I (45 bis 80 pounds per 1000 gallons) Wasser
enthält vernetzt mit Borationen und bei einem pH von 8,5 bis 10,5 gepuffert.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
in dem wäßrigen gelierten Reiniger mindestens ein Bakterizid enthalten ist in einer
Menge, die ausreicht, um Bakterien innerhalb der Rohrleitungen stark zu verringern
orderzu eliminieren.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß das Bakterizid wirksam ist
gegen sulfatreduzierende Bakterien und ausgewählt ist aus Aldehyden, organischen quaternären
Ammoniumverbindungen oder wasserlöslichen Salzen von halogenierten Phenolen.
9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß das Bakterizid ausgewählt
ist aus Formaldehyd, Glutaraldehyd, Dodecyltrimethylammonium oder Octadecyltris (2-hydroxyäthyl)-ammoniumchlorid.
10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der gelierte Reiniger durch
die Rohrleitung bei einem Treibdruck von bis zu ca. 140,6 kg/cm2 mit einer Geschwindigkeit von bis zu ca. 91,5 m/min hindurchgeführt wird.
11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die rohrleitung und ihr
Inhalt bei Temperaturen von bis zu ca. 60°C sind.
12. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß die Rohrleitung und ihr
Inhalt bei ca. Raumtemperatur sind.
13. Verfahren nach Anspruch 10, dadurch gekennzeichnet, daß der wäßrige gelierte Reiniger
durch die Rohrleitung mit einer Geschwindigkeit von ca. 13,7 bis ca. 22,8 m/min hindurchgeführt
wird.
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
der wäßrige gelierte Reiniger wenigstens ein Element einer Reinigerkette ist, die
eine Vielzahl chemischer Reinigerelemente besitzt.
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, daß wenigstens das vorderste
Element der Reinigungskette der wäßrige gelierte Reiniger ist.
16. Verfahen nach Anspruch 14, dadurch gekennzeichnet, daß mindestens einem der wäßrigen
gelierten Reinigerelemente ein wäßriges Gel oder eine wäßrige Flüssigkeit vorausgeht
und/oder folgt.
17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß
es die Stufen der aufeinanderfolgenden Hindurchführung durch Rohrleitung enthält:
(a) eines vernetzten gelierten Reinigers,
(b) eines fluiden Mobilitätspuffers, der ein nicht vernetztes geliertes Alkanol mit
einem bis drei Kohlenstoffatomen enthält, und
(c) einer trockenden Menge eines flüssigen Alkanols mit 1 bis 3 Kohlenstoffatomen.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß (b) ein mit Hydroxyäthyl-oder
Hydroxypropylzellulose verdicktes Alkanol ist.
19. Verfahren nach Anspruch 17 oder 18, dadurch gekennzeichnet, daß (c) Methanol,
Äthanol oder Isopropanol ist.
20. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß das Alkanol in (b) und
in (c) in jedem Fall das gleiche ist und Methanol, Äthanol oder Isopropanol ist.
21. Verfahren nach Anspruch 17, dadurch gekennzeichnet, daß
(a) ein wäßriger vernetzter gelierter Reiniger ist, der einen wäßrigen gelierten Guargummi
oder Hydroxypropylguargummi enthält, vernetzt mit Borat, Titanat oder Zirkoniumionen,
(b) ein fluider Mobilitätspuffer ist, der Methanol, Äthanol oder Isopropanol enthält,
eingedickt mit Hydroxypropylzellulose, und
(c) Methanol, Äthanol oder Isopropanol ist.
22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, daß (a) ein mit Borationen
vernetzter Hydroxypropylguargummi ist, (b) ein mit Hydroxypropylzellulose verdicktes
Methanol ist, und (c) Methanol ist.
1. Procédé pour nettoyer l'intérieur d'une conduite en faisant passer, à travers la
conduite, une masse du type gel, entraînée directement par un fluide sous pression,
caractérisé par le fait que la masse du type gel consiste en une gomme aqueuse de
galactomannane, gélifiée et réticulée, ou en un dérivé de celle-ci.
2. Procédé selon la revendication 1, dans lequel la gomme de galactomannane, ou son
dérivé, est une gomme de guar ou une gomme d'hydroxypropyl guar.
3. Procédé selon la revendication 1 ou 2, dans lequel la gomme de galactomannane,
ou son dérivé, est réticulée par des ions borate, organotitanate ou organozirconium.
4. Procédé selon la revendication 3, dans lequel la gomme de galactomannane, ou son
dérivé, est réticulée par des ions borate.
5. Procédé selon l'une des revendications précédentes, dans lequel la gomme, ou son
dérivé, est présente dans la racleur gélifié, en une quantité d'au moins environ 5,4
kg/1000 1 (45 livres pour 1000 gallons) d'eau.
6. Procédé selon la revendication 1, dans lequel le racleur gélifié comprend de la
gomme d'hydroxypropyl guar dans une proportion de 5,4 à 9,6 kg pour 1000 1 (45 à 80
livres pour 1000 gallons) d'eau, réticulé par des ions borate et tamponné à un pH
de 8,5 à 10,5.
7. Procédé selon l'une des revendications précédentes, comportant dans le racleur
gélifié aqueux au moins un bactéricide en une quantité suffisante pour réduire sensiblement
ou éliminer les bactéries que se trouvent à l'intérieur de la conduite.
8. Procédé selon la revendication 7, dans lequel le bactéricide est efficace contre
les bactéries réductrices de sulfates et est choisi parmi les aldèhydes, les composée
organiques d'ammonium quaternaire et les sels solubles dans l'eau des phénols halogénés.
9. Procédé selon la revendication 7, dans lequel le bactéricide est choisi parmi le
formaldèhyde, le glutaraldéhyde, le chlorure de dodécyl triméthyl ammonium et le chlorure
d'octadécyl tris (2-hydroxyéthyl) ammonium.
10. Procédé défini par la revendication 1, dans lequel on fait passer à travers la
conduite le racleur gélifié à des pressions d'entraînement allant jusqu'à environ
137,9 bars (140,6 kg/cm2- 2000 psig) et à une vitesse allant jusqu'à environ 91,5 m/minute.
11. Procédé définit par la revendication 1, dans lequel la conduite et son contenu
sont à des températures allant jusqu'à 60°C environ.
12. Procédé défini par la revendication 7, dans lequel la conduite et son contenu
sont à une température voisine de la température ambiante.
13. Procédé défini par la revendication 10, dans lequel on fait passer le racleur
gélifié aqueux à travers la conduite à une vitesse d'environ 13,7 à environ 22,8 m/minute.
14. Procédé selon l'une des revendications précédentes, dans lequel le racleur gélifié
aqueux constitue au moins un élément d'un train de racleurs comportant une pluralité
d'éléments racleurs chimiques.
15. Procédé défini par la revendication 14, dans lequel au moins l'élément de tête
du train de racleurs est constitué par le racleur gélifié aqueux.
16. Procédé défini par la revendication 14, dans lequel au moins un des éléments racleurs
gélifiés aqueux est précède et/ou suivi par un gel aqueux ou un liquide aqueux.
17. Procédé selon l'une des revendications précédentes, comportant les étapes qui
consistent à faire passer successivement à travers la conduite:
(a) un racleur gélifié réticulé aqueux,
(b) un tampon de mobilité de fluide comprenant un alcanol gélifié non réticulé ayant
de un à trois atomes de carbone, et
(c) une quantité desséchante d'un alcanol liquide ayant de un à trois atomes de carbone.
18. Procédé selon la revendication 17, dans lequel (b) est un alcanol épaissi par
de l'hydroxyéthyl cellulose ou de l'hydroxypropyl cellulose.
19. Procédé selon 'la revendication 17 ou 18, dans lequel (c) est du méthanol, de
l'éthanol ou de l'isopropanol.
20. Procédé selon la revendication 17, dans lequel l'alcanol de (b) et (c) est le
même dans chaque cas et est du méthanol, de l'éthanol ou de l'isopropanol.
21. Procédé selon la revendication 17, dans lequel:
(a) est un racleur gélifié réticulé aqueux comprenant une gomme de guar ou d'hydroxypropyl
guar, gélifiée, aqueuse, réticulée par des ions borate, titanate ou zirconium,
(b) est un tampon de mobilité de fluide comprenant du méthanol, de l'éthanol ou de
l'isopropanol épaissi par de l'hydroxypropyl cellulose, et
(c) est du méthanol, de l'éthanol ou de l'isopropanol.
22. Procédé selon la revendication 21, dans lequel (a) est une gomme d'hydroxypropyl
guar, réticulée par des ions borate, (b) est du méthanol épaissi par de l'hydroxpropyl
cellulose, et (c) est du méthanol.