(1) Veröffentlichungsnummer:

0 030 309 A2

12

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 80107296.8

(51) Int. Cl.3: C 21 D 8/02

(22) Annieldetag: 22.11.80

30 Priorität: 06.12.79 DE 2949124 08.08.80 DE 3030060 71 Anmelder: Stahlwerke Peine-Saizgitter AG, Gerhardstrasse 10, D-3150 Peine (DE)

(3) Veröffentlichungstag der Anmeldung: 17.06.81 Patentblatt 81/24 © Erfinder: Freier, Klaus, Dipl.-Ing., Marienburgweg 65, D-3340 Wolfenbüttel (DE)
Erfinder: Vlad, Constantin M., Dr.-Ing., Im kleimen Lah 8, D-3321 Nordassel (DE)
Erfinder: Hulka, Klaus, Dipl.-Ing., Oststrasse 77, D-3321 Hohenassel (DE)

84 Benannte Vertragsstaaten: DE FR GB IT NL

Vertreter: Gramm, Werner, Dipl.-ing. et al, Patentanwälte Gramm + Lins Theodor-Heuss-Strasse 2, D-3300 Braunschweig (DE)

- Warmband oder Grobbiech aus einem denitrierten Stahl und Verfahren zu seiner Herstellung.
- Zur Herstellung von Warmband oder Grobblech mit einer hohen Kerbschlagzähigkeit auch bei niedrigen Temperaturen wird ein denitrierter Stahl bestehend aus Kohlenstoff 0,04 bis 0,16%, Mangan 1,25 bis 1,90%, Silizium 0,02 bis 0,55%, Phosphor 0,004 bis 0,020%, Schwefel 0,002 bis 0,015%, Aluminium 0,02 bis 0,08%, Niob 0,02 bis 0,08%, Rest Eisen und etwaige Verunreinigungen verwendet, wobei das Warmband oder Blech beim Warmwalzen das letzte Fertiggerüst mit einer Temperatur von 750°C bis 820°C verläßt, bis auf eine Zwischentemperatur von 450°C bis 570°C mit einer Abkühlgeschwindigkeit von 2 bis 10°C/s abgekühlt wird und danach im Haspel oder im Stapel an Luft langsam auf Raumtemperatur abkühlt.

Sind dem Stahl Zusätze von Molybdän 0,15 bis 0,35%, von Chrom 0,10 bis 0,30% und/oder Nickel 0,30 bis 0,90% allein oder in Kombination zugesetzt, kann die Temperatur am letzten Fertiggerüst 750°C bis 850°C und die Zwischentemperatur 450°C bis 620°C sein.

Patentanwälte GRAMM + LINS

Dipl.-Ing. Werner Gramm Dipl-Phys. (Bd 34) Libs

D-3300 Braunschweig

Stahlwerke Peine-Salzgitter AG Gerhardstraße 10 3150 Peine Telefon:

(05 31) 8 00 79

Telex:

09 52 620

Anwaltsakte

Datum

3904 EPÜ 18.Nov.1980

"Warmband oder Grobblech aus einem denitrierten Stahl und Verfahren zu seiner Herstellung"

Die Erfindung betrifft ein Verfahren zur Herstellung von Warmband oder Grobblech aus einem denitrierten Stahl. Die Erfindung betrifft weiterhin aus denitriertem Stahl hergestelltes Warmband oder Grobblech.

Seit längerer Zeit besteht die Forderung nach der Entwicklung von höherfesten Stählen mit guten Zähigkeitswerten, die in Form von Warmbändern oder Grobblechen beispielsweise für Großrohrfernleitungen Verwendung finden können. Zur Herstellung hat sich das kontrollierte und gesteuerte Warmwalzen als wirtschaftliches Verfahren für die Herstellung von thermo-mechanisch behandelten Warmbändern oder Grobblechen immer mehr durchgesetzt. Unter einer thermo-mechanischen Behandlung von Stählen versteht man eine kontrollierte Umformung des Stahles in einem Temperaturbereich um den Umwandlungspunkt Ar₃ mit einer gleichzeitig gesteuerten Ausscheidung und/oder Umwandlung des Gefüges.

Es ist bekannt, denitrierten Stahl mit einer Zusammensetzung Kohlenstoff 0,04 bis 0,16 %, Mangan 1,25 bis 1,90 %, Silizium 0,02 bis 0,55 %, Phosphor 0,004 bis0,020 %, Schwefel 0,002 bis 0,015 %, Aluminium 0,02 bis 0,08 %, Niob 0,02 bis 0,08 %, Rest

Eisen und etwaige Verunreinigungen zu benutzen. Ggf. können diesem Stahl Zusätze von Molybdän 0,015 bis 0,35 %, Chrom 0,10 bis 0,30 % und/oder Nickel 0,30 bis 0,90 % allein oder in Kombination zulegiert werden.

Bei der mechanisch-technologischen Prüfung dieser Stähle, besonders in Anwesenheit von Kerben in einem breiten Temperaturbereich oberhalb des vollständigen Sprödbruchs (Charpy-Kerbschlagprobe) beobachtet man oft Aufreißungen senkrecht zur Bruchfläche (als "Separation", "Spaltung" oder "Splitting" bezeichnet). Diese Neigung zur Aufspaltung der Bruchflächen von thermo-mechanisch behandelten Stählen ist beispielsweise für die Betreibung von Großrohr-Fernleitungen von Bedeutung, weil die Fähigkeit dieser Stähle, eine Zähbruchfortpflanzung zu stoppen, dadurch vermindert wird. Für die Herstellung von höherfesten Stählen für Großrohr-Fernleitungen, bei denen keine Bruchaufspaltungen bei der Kerbschlagzähigkeitsprüfung mehr auftreten, wurden schon Vorschläge gemacht, die jedoch alle mit hohen Legierungskosten und hohen Herstellungskosten verbunden sind. So wird beispielsweise in der DE-OS 26 53847 empfohlen, dem Stahl Chrom- und Manganzusätze von bis zu 3,5 % bzw. zu 2,5 % zuzulegieren, nachdem der Stahl einer Aufstickung (Stickstoffanreicherung) auf Gehalte von 0,012 % unterworfen wurde. Bei diesem Stahl wird das Warmwalzen kompliziert gestaltet. Das Walzgut wird bei Temperaturen zwischen 950° C und 1100° C einer Verformung von 30 bis 60 %, einer Unterbrechung des Walz- anschließenden/ vorganges und bei Temperaturen zwischen 700° und 900° C einer Verformung von 75 bis 95 % der ursprünglichen Dicke unterworfen. Das verformte Gefüge wird schließlich in der unteren Bainitstufe umgewandelt. Das Zulegieren der Chrom- und Manganzusätze verteuert bekanntlich Stähle erheblich. Durch den komplizierten und aufwendigen Walzvorgang entstehen weiter erhöhte Herstellungskosten.

Der Erfindung liegt die Aufgabe zugrunde, durch eine Steuerung des Auftreten der Separation bei einem warmgewalzten Warmband oder Grobblech eine erhöhte Kerbschlagzähigkeit auch bei niedrigen Temperaturen (d.h. CVN-Übergangstemperatur TÜ₅₀ von mindestens minus 30°C) zu erreichen.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Stahl mit der Zusammensetzung Kohlenstoff 0,04 bis 0,16 %, Mangan 1,25 bis 1,90 %, Silizium 0,02 bis 0,55 %, Phosphor 0,004 bis 0,020 %, Schwefel 0,002 bis 0,015 %, Aluminium 0,02 bis 0,08 %, Niob 0,02 bis 0,08 %, Rest Eisen und etwaige Verunreinigungen, einem Warmwalzvorgang unterworfen wird, bei dem Warmband oder das Blech das letzte Fertiggerüst mit einer Temperatur von 750° bis 820° C verläßt und mit einer Abkühlungsgeschwindigkeit von 2° bis 10° C/s bis auf eine Zwischentemperatur von 450° C bis 570° C abgekühlt und bei dieser Temperatur gehaspelt bzw. im Stapel abgekühlt wird.

Überraschenderweise hat sich herausgestellt, daß nur bei der Einhaltung des beschriebenen, relativ einfachen Warmwalzvorganges der genannte Stahl eine bedeutende Verminderung der Bruchaufspaltungen in den CVN-Kerbschlagproben (CVN-Charpy-V-Notch) bei CVN-Übergangstemperaturen von mindestens -30° C und damit eine erheblich erhöhte Kerbschlagzähigkeit zeigt.

Durch das erfindungsgemäße Verfahren kann also ohne die Notwendig-Legierungszusätzen keit von überhöhten / die Brauchbarkeit des Stahls, beispielsweise für Großrohr-Fernleitungen, erheblich verbessert werden.

Es hat sich herausgestellt, daß eine Zugabe von Vanadin 0,02 bis 0,10 % sich besonders günstig auf die Erhöhung der Festigkeits-eigenschaften eines erfindungsgemäßen Stahls auswirkt, da die Vanadin-Ausscheidungen hauptsächlich im Ferritkorn und nicht an

Korngrenzen stattfindet.

Wenn eine Zwischentemperatur von 450° C bis 500° C eingehalten wird, läßt sich die Entstehung von Separationen vollständig vermeiden. Der Stahl weist ein ferritisch-perlitisches Gefüge auf und das Verhältnis von $C_V^{\rm max}$ zu $C_V^{\rm max}$ 100 liegt zwischen 1,0 und 1,3. Dabei bezeichnet $C_V^{\rm max}$ 20 die Kerbschlaghochlage (höchste Werte), bei der die Probennoch gerade einen 100 %igen Verformungsbruch aufweisen.

C max ist der Wert in Abhängigkeit Von der Temperatur, der den höchsten Kerbschlagzähigkeitswert der gesamten Prüfung aufweist. Der erfindungsgemäß hergestellte Stahl weist ein völliges Fehlen von Bruchaufspaltungen in den CVN-Kerbschlagproben (CVN-Charpy-V-Notch) bei gleichzeitiger Gewährleistung von CVN-Übergangstemperaturen von mindestens -30° C auf.

Bei der Einhaltung einer Zwischentemperatur von 500° C bis 570° C weist der Stahl der genannten Zusammensetzung eine verringerte Anzahl von Separationen auf. Trotzdem weist er noch eine wesentlich erhöhte Kerbschlagzähigkeit auf. Bei der Kerbschlagzähigkeitsprüfung von mit Separationen behaftetem Warmband und/oder Blech hat sich gezeigt, daß mit zunehmender Anzahl von "Separations" in den Bruchflächen der CVN-Proben die Kerbschlagzähigkeit in J/cm² abnimmt. Der Grund für diese Abnahme der Kerbschlagzähigkeit liegt in der Tatsache, daß die Separationen, die senkrecht zur Hauptbruchfläche und parallel zur Probenoberfläche verlaufen, hauptsächlich vor dem Durchlaufen des Hauptrisses entstehen, wie dies aus Bild 1 ersichtlich ist, so daß beim Biegen der Proben während der Kerbschlagprüfung eine geringere Energie für die Einleitung des Einschnürbeginns benötigt wird. Dies ist insofern von Bedeutung, als bei der Erzeugung von Warm-

bändern bzw. Blechen nicht immer "separationsfreies" Material mit höchsten Kerbschlagzähigkeitswerten gefordert wird, so daß auch Material mit etwas geringerer Anzahl von "Separationen", jedoch mit erhöhter Kerbschlagzähigkeit Anwendung findet.

Ein derartiges Material wird mit der Einhaltung einer Zwischentemperatur von 500 bis 570° C erhalten.

Bei der Verwendung eines Stahls mit Zusätzen von Molydän von 0,15 bis 0,35 %, von Chrom von 0,10 bis 0,35 % und/oder von Nickel von 0,30 bis 0,90 % allein oder in Kombination reichen zur Erzeugung eines "separationsfreien" Materials unter Beibehaltung derselben Abkühlbedingungen von 2° bis 10° C/s auch Zwischentemperaturen von 550° C aus, so daß die Abkühlung nur auf diese Temperatur erfolgen muß.

Zur Herstellung eines Stahls mit den Zulegierungen, der eine verringerte Anzahl von Separationen aber eine erhöhte Kerbschlagzähigkeit aufweist, ist es ausreichend, wenn die Zwischentemperatur 550° bis 620° C beträgt, wobei die Temperatur am letzten Fertiggerüst von 750° C bis zu 850° C betragen kann.

Welche Vorteile eine Reduzierung der Anzahl von "Separationen" bei der Kerbschlagprüfung mit sich bringt, geht aus den Bildern 2 und 3 eindeutig hervor.

Nimmt z.B. das Verhältnis C_V max zu C_V 100 von rund 2,0 auf Werte von 1,3 ab, dann steigt die Kerbschlagzähigkeit im Durchschnitt von 150 J/cm² auf 230 J/cm² bei den mit Molybdän-, Chrom- oder (Bild 3) Nickelzusätzen legierten Stählen der Güte X 70/und von 160 J/cm² auf 280 J/cm² bei den niob-vanadinhaltigen Stählen der Güte X 70 (Bild 2) an/, was einer Steigerung der Kerbschlagzähigkeit von 53 bzw. 75 % entspricht.

Die Darstellung der Kerbschlagzähigkeit als Funktion des Verhältnisses $C_V^{\rm max}$ zu $C_V^{\rm 100}$ wurde deshalb für die Bilder 2 und 3 gewählt, weil das Verhältnis von $C_V^{\rm max}$ zu $C_V^{\rm 100}$ empfindlicher auf die Anzahl der Separationen reagiert als alle anderen Parameter.

Im Sauerstoffaufblaskonverter wurden die Stähle der Tabelle 1 und 2 erschmolzen und gemäß den Bedingungen der Tabellen 3, 4 und 5 zu Warmbändern bzw. Grobblechen gewalzt und geprüft.

Die ermittelten Ergebnisse, die zusätzlich in den <u>Bildern 4 und 5 bzw. 6 und 7</u> dargestellt sind, zeigen, daß ein deutlicher Kerbschlagzähigkeitsanstieg gegenüber den herkömmlich gefertigten mikrolegierten Vergleichsstählen erzielt wurde.

Es wurde festgestellt, daß die Temperatur, mit der das Warmband oder Blech beim Warmwalzen das letzte Fertiggerüst verläßt, bei einem separationsarmen Stahl gemäß der Erfindung nicht ganz so eng zu sein braucht wie bei der Herstellung eines separationsfreien Stahls. Ein Temperaturbereich von 750° bis 850° C ist möglich.

Erfindungsgemäß können bei Durchführung des neuen Verfahrens mit einer Zwischentemperatur von 550° bis 620° C auch noch Zusätze von 0,002 bis 0,08 Zirkon und/oder 0,004 bis 0,051 Cer verwendet werden.

Zur Herstellung von separationsfreien Stählen gemäß Anspruch 3 oder Anspruch 7 wurden Versuche an elf Stahlsorten mit verschiedenen Kohlenstoffgehalten und Kombinationen von Mikrolegierungszusätzen an Niob, Vanadin, Nickel und Chrom durchgeführt.

Die Zusammensetzung der Stähle ist der <u>Tabelle 6</u> zu entnehmen, in der die Anteile der im Stahl enthaltenen Bestandteile in

Prozent angegeben sind. Die Nummern der Schmelzen dienen lediglich zur Identifizierung des Stahls.

Die Stähle wurden gemäß der in <u>Tabelle 7</u> angegebenen Parameter hergestellt. Darin sind die Ausgangsdicke, die Dicke des gewalzten Stahlbleches, die Stoßofentemperatur, die Walzendtemperatur und die Temperatur nach der Abkühlung (Haspeltemperatur) angegeben. In allen Fällen mit Ausnahme des Bleches A wurde der Stahl aufgehaspelt. Die letzte Spalte gibt die Abkühlgeschwindigkeit von der Walzendtemperatur zur Haspeltemperatur in °C/s an. Im Haspel kühlt der Stahl dann langsam ab, beispielsweise mit einer Rate von etwa 0,5° C/h.

Die mechanisch-technologischen Eigenschaften der untersuchten und erfindungsgemäßen Stähle sind in der <u>Tabelle 8</u> zusammengefaßt. Die Buchstaben "L" und "Q" charakterisieren die Probenlage in Bezug auf die Walzrichtung, nämlich "L" eine Längsprobe und "Q" eine Querprobe, an der die Kerbschlagprobe vorgenommen worden ist. Die weiteren drei Spalten enthalten die üblichen Angaben zur Streckgrenze und zur Zugfestigkeit. Der a_k-Wert gibt die Energieaufnahme des Stahls bei verschiedenen Punkten der a_k-Kurve in Abhängigkeit von der Temperatur an. C_V100 charakterisiert die tiefste Temperatur, bei der/ein vollständiger Verformungsbruch einsetzt. C_Vmax charakterisiert den Bereich der maximalen Energieaufnahme, während TÜ₅₀ die Temperatur angibt, in der im Übergangsbereich zwischen Sprödbruch und Verformungsbruch die Charpy-V-Kerbschlagproben nach DIN 50.115 50 % Verformungsbruch in den Bruchflächen zeigen.

Die nächsten beiden Spalten geben die Übergangstemperatur für die Punkte C_{V}^{100} und $T\ddot{U}_{50}$ an. Es zeigt sich, daß die $T\ddot{U}_{50}$ immer

beträchtlich unter -30° C liegt, so daß eine hohe Zähigkeit auch bei tiefen Temperaturen gewährleistet ist. Die Stähle zeichnen sich durch eine hohe Energieaufnahme aus. Bei den erfindungsgemäßen separationsfreien Stählen liegt der Quotient $C_V^{\rm max}$ zu $C_V^{\rm 100}$ bei nahe 1, nämlich zwischen 1 und 1,3. Alle diese Stähle sind frei von Aufreißungen senkrecht zur Bruchfläche (separations).

Während also die <u>Tabellen 1 bis 5</u> erfindungsgemäße separationsarme Stähle mit einer höheren Kerbschlagzähigkeit betreffen, charakterisieren die <u>Tabellen 6 bis 8</u> separationsfreie Stähle, die naturgemäß eine sehr hohe Kerbschlagzähigkeit aufweisen.

Chemische Zusammensetzung der untersuchten Stähle in %

Tabelle 1

!		i	;	ŧ	ō	۲	Þ	>		l Remerkingen
Schmelze-Nr.	ວ	21	un U	٦,	Ω	A.1	A .	>	Q.V.	TO GIVE TOWN OF
67649	0,11	0,34	1,61	0,019	0,008	0,039	0,0058	0,09	0,04	
38069	0,10	0,35	1,59	0,021	0,013	0,051	0,0057	0,08	0,04	
38070	0,10	0,39	1,59	0,016	0,012	0,041	0,0072	0,09	0,05	
39907	0,10	0,27	1,54	0,020	0,013	0,037	0,0057	0,07	0,04	
10527	0,09	0,26	1,58	0,015	0,003	0,051	0,0107	0,07	0,03	
44359	0,09	0,24	1,49	0,014	0,004	0,039	0,0108	90.0	0,03	
10381	0,09	0,33	1,58	0,015	0,011	0,059	0,0080	0,09	0,04	-
10179	0,11	0,37	1,55	0,020	600.0	0,055	0,0040	60,0	0,05	
43940	0,11	0,31	1,53	0,017	0,010	0,051	0,0072	0,08	90,0	
43941	0,10	0,29	1,54	0,016	0,012	0,041	0,0057	0,08	0,05	
67008	0,11	0,31	1,59	0,021	0,012	0,028	0,0057	0,08	9,05	
67138	0,12	0,37	1,62	0,016	0,007	0,067	0,0072	60,0	90,0	
11608	0,10	0,38	1,56	0,020	0,003	0,049	0,0106	0,08	0,04	
11798	0,09	0,38	1,56	0,015	0,002	0,037	0,0084	0,08	0,04	
46277	0,09	0,39	1,62	0,018	0,005	0,044	0,0077	0,08	0,04	-
46279	0,10	0,39	1,61	0,020	0,004	0,036	0,0091	0,07	0,04	

BE
in
Stähle
r untersuchten
de
Zusammensetzurg
Chemische

Tabelle 1	Chemi	sche	Zusamme	nsetzun	g der	untersuc	Chemische Zusammensetzurg der untersuchten Stähle in %	lhle in	BR
Schmelz-Nr.	ເ	Si.	Mn	Д	တ	Al	×	Λ	ND
46366	0,08	0,36	1,60	0,020	900,0	0,048	0,0061	0,07	0,04
46368	0,09	0,36	1,60	0,020	0,004	0,045	0,0088	0,07	0,04
71445	0,10	0,37	1,62	0,015	0,002	0,050	0,0089	0,09	0,04
71451	60.0	0,39	1,55	0,019	0,002	0,030	0,0089	0,08	0,04
71548	0,09	0,33	1,57	0,015	0,004	0,037	0,0086	0,08	0,04
71915	0,10	0,38	1,58	0,018	0,003	0,031	0,0092	0,08	0,05
72148	60,0	0,38	1,61	0,018	0,004	0,051	0,0077	0,07	0,04
72255	0,09	0,35	1,65	0,020	0,007	0,039	0,0124	90,0	0,04

Chemische Zusammensetzung der untersuchten Stähle in K

Ę.								Bun	L 0	der	gun g							
Bemerkungen							Die chemische	Zusemmensetzung	der Warmbander S. T. U. C. D	und E ist in der	Patentenmeldung P 2949124.5	110009090				*enth#lt gu-	2	0,69 % N1
Cr	Ŀ	1	,	1	1		ı	ı	ı	1	0,30	1	•	1	ı	ı	1	1
Zr		1	1	•	i	ı	ı	ı	t	i	1	1	ı	0,002		•	0.07	0,07
Cer		ı	1		i	0.051	0.005	0.004	t	ı	t	ı	1				•	ı
Mo	0,16	0,15	0,15	0,21	0,15	0,33	0,33	0,33	0,35	0.34	1	0,33	0,34	0,29	0,34		0,36	0,37
>	0,04	0,04	0,04	90.0	0,04	ı	1	1	ı	ì	90.0	ı	ı	1	ı	1	ı	ı
£	0,07	0,08	0,07	0,10	0,07	0,09	90,0	0,09	60.0	0,10	0,04	90.0	90.0	90.0	90.0	0,03	0,07	0,07
Al	0.036	0,036	0,036	0,034	0,044	0,034	0,033	0,034	0,031	0,048	0,048	0,035	0,028	0,036	0,038	090,0	0,047	0,051
2	9900.0	6900'0	0,0070	0,0072	0,0076	0,0063	0,0058	0,0058	0,0055	0,0059	0,0084	290000	0,0061	0,0082	0,0058	0,0104	0,0074	0,0064
S	0,012	0,013	0,012	0,014	0,011	0,008	900,0	60000	900.0	0,010	0,004	900.0	60000	800.0	600.0	0,002	0,007	900.0
Đ,	970'0	0,029	0,027	0,025	0,016	0,026	0,021	0,023	0,023	0,015	0,019	0,017	0,020	0,014	0,021	0,019	0,013	0,013
Mn	1,53	1,55	1,54	1,50	1,51	1,26	1,23	1,27	1,27	1,76	1,68	1,41	1,46	1,55	1,47	1,60	1,51	1,51
Si	0,32	0,33	0,33	0,32	0,33	0,29	0,29	0,29	0,30	0,35	0,26	0,21	0,22	0,18	0,23	0,35	0,18	0,20
ပ	0,10	0,10	0,10	0,10	0,10	0,04	0,04	0,04	0,04	90,0	0,07	0,07	0,07	0,04	90.0	0,13	0,04	0,04
Warmband	817/21	817/22	817/26	817/27	817/30	886/31	886/33	886/34	93861	93859	907022 bis 907024	995211	995213	995214	995215	0849/03·K*	995219	995225

~	١
•	ı
~	ı
~	ı
9	ı
7	ı
Ë	Į

					i												<u> </u>		
Bemerkungen	11		Schm. 67649					Schm. 38069						-	•			38070	:
Ве			Zchi	_	_			Sch ⊓				<u>-</u>				_		Schm.	_
Abkuhl- geschwin- digkeit oc/s	10	7,20	6919	6,4	7,7	8,9	8,3	3,6	8,0	8,3	8,3	9,5	8,3	8,3	1,6	9.4	8,0	8,3	3,6
A T in oc	6	042	230	220	270	290	590	340	280	290	290	330	290	550	320	350	270	290	340
Haspel-brw. Stapeltemp. in oc	8	540	260	570	520	480	500	760	510	200	200	460	. 009	500.	470	450	510	200	094
Walzend- temperatur in oc	7	790	790	750	750	750	750	800	750	750	750	750	790	790	790	800	780	790	800
Cunax C100	9	1,82	1,78	1,83	1,23	1,07	1,05	1,04	1,18	1,19	1,18	1,16	1,10	1,09	1,14	1,20	1,42	1,29	1,09
rt in J/cm ² bi Hochlage	5	164	155	148	137	134	129	130	145	150	149	140	137	137	143	137	172	173	173
CVN-ak-Wert	4	113	103	104	128	125	123	125	143	126	126	121	124	126	125	- 114	158	155	158
Dicke in mm	3	13,5	13,5	13,5	13,5	13,5	13,5	13,5	13,5	13,5	13,5	13,5	13,5	13,5	13,5	13,5	13,5	13,5	13,5
Warmband und/oder Grobblech	2	691160	\$	2	702339	t	:	\$	702340	3	E	\$	702341	=	= •	=	725534	725535	725536
Lfd. Nr.	-	-	8	2	4	2	9	7	ထ	5	5		2	<u>.</u>	4	15	16	17	18

Tabelle 3

Warmband Dicke CVN-ak-Wert und/oder in - 200C 1	Dicke in mm	CVM-8 _K -	**	Wert in J/cm ² bei Hochlage	cmax cv cv	Walzend- temperatur in oc	Haspel-bsw. Stapeltemp. in oc	A T in oc	Abkuhl- geschwin- dickeit	Bemerkungen
	4 5	5		ı	9	7	8	6	0C/8 10	11
725545 13,5 88 136	88		136	i	2,19	190	959	200	6,00	Sohm 28070
725546 13,5 91 149	91 1		149		2,22	780	590	190	00.9	
749682 13,5 84 132	-	-	132		1,94	052	009	190	5,80	
13,5 80 130			130		1,83	150	064	500	00,9	
			123		1,81	780	009	180	00.9	
749684 13,5 127 149			149		1,41	800	530	270	7,4	> Schm. 39907
13,5 109 131			131		1,39	790	520	270	7.7	
13,5 107 130			130		1,41	800	530	270	7,4	
749685 13,5 110 129			129		1,17	790	500	290	8,3	
13,5 111 132			132		1,19	790	490	300	8,60	
13,5 116 145			145		1,25	790	500	. 290	8,3	
996962 14,8 285 329	<u>~</u>	<u>~</u>	329		1,60	770	540	230	5,95	Schm. 10527
14,8 296 314	14,8 296 314	296 314	314		1,20	780	470	310	7,80	
996963 14,8 247 276			276		1,51	780	530	250	6,20	Schm. 44359
996964 14,8 282 300	282		300		1,15	760	500	560	7,00	
" 14,8 281 250	281		250		1,05	770	480	.590	7,60	Schm. 10527
996966 14,8 266 302	566		302		1,29	780	510	270	6,75	
H 14,8 246 281	246		281		1,31	780	510	270	6,75	
						•				03 '0r h

•	1	ĺ
2	9	
-	4	ı
1	Š	ı
É		l

temperatur Stapel temp. A T In OC In OC In OC 780 630 150 780 600 180 780 600 180 770 600 240 770 490 280 770 490 280 770 490 280 770 490 280 770 490 280 770 490 280 770 490 280 770 490 280 770 490 280 770 490 280 770 490 280 770 600 1180 770 600 180 780 600 180 790 580 210 790 560 240 560 240	1n J/om2	CVN-a, -Wert in J/om2	1n J/om2	1n J/om ²	Call	J	Walzend-	Haspel- bzw.		Abkuh1-		
630 150 4,20 Schm. 600 180, 4,70 Schm. 600 180 4,70 Schm. 600 180 4,70 Schm. 500 240, 6,50 Schm. 500 280 7,00 Schm. 500 270 7,00 Schm. 500 280 7,15 Schm. 490 280 7,15 Schm. 600 180 4,70 Schm. 610 180 4,70 Schm. 610 180 4,70 Schm. 550 230 5,30 Schm. 550 240 5,30 Schm.	h mm - 2000 Hooh	- 2000 Hooh	Hooh	Hooh		200	temperatur in oc	Stapeltemp. in oc		geschwin- digkeit od/s	Bemerkunge	g .
780 630 150 4,20 Schm. 780 600 180 4,70 Schm. 790 600 190 4,70 Schm. 780 600 180 4,70 Schm. 780 500 280 7,00 Schm. 770 490 280 7,15 Schm. 780 590 190 4,75 Schm. 780 600 180 4,70 Schm. 790 580 210 4,55 Schm. 790 560 230 5,30 Schm. 790 550 240 5,30 Schm.	2 3 4 5	3 4 5	4 5	5		9	7	8	6	10	11	
780 600 180. 4,70 Schm. 790 600 190 4,70 Schm. 780 600 180 4,70 Schm. 760 520 240. 6,50 Schm. 770 490 280 7,15 Schm. 770 490 260 7,00 Schm. 770 490 280 7,15 Schm. 770 490 280 7,15 Schm. 770 490 280 7,15 Schm. 780 600 190 4,75 Schm. 780 600 180 4,70 Schm. 790 580 210 4,70 Schm. 790 580 210 5,00 Schm. 790 560 230 5,00 Schm. 790 550 240 5,30 Schm.	89 14.8	89		142		1,89	780	630	150	4,20		31
790 600 190 4,70 Schm. 760 520 240. 6,50 Schm. 780 500 280 7,00 Schm. 770 490 280 7,15 Schm. 780 590 190 4,75 \$schm. 780 600 180 4,70 \$schm. 790 580 210 4,50 \$schm. 790 560 230 5,00 5chm. 790 550 240 5,30 5chm.	14.8	1 89		135		2,14	780	009	180.	4.70		6
780 600 180 4,70 Schm. 760 520 240. 6,50 Schm. 780 500 280 7,00 Schm. 770 490 280 7,15 Schm. 770 490 280 7,15 Schm. 770 490 280 7,15 Schm. 780 590 190 4,75 Schm. 780 600 180 4,70 Schm. 790 580 210 4,50 Schm. 790 560 240 5,00 Schm. 790 550 240 5,00 Schm.	14.8 84	. 84		140		1,92	790	009	190	4.70		٠.
760 520 240. 6,50 Schm. 780 500 280 7,15 Schm. 770 490 270 7,00 Schm. 770 490 280 7,15 Schm. 770 490 280 7,15 Schm. 770 490 280 7,15 Schm. 780 590 190 4,75 Schm. 780 600 180 4,70 Schm. 790 580 210 4,50 Schm. 790 560 240 5,00 Schm. 790 550 240 5,00 Schm.	14,8	104		167		1,80	780	009	180	4,70	Schm. 439	2
780 500 280 7,00 Schm. 770 490 280 7,15 Schm. 770 500 260 7,00 Schm. 770 490 280 7,15 Schm. 770 450 280 7,15 Schm. 780 590 190 4,75 Schm. 780 600 180 4,70 Schm. 790 580 210 4,50 Schm. 790 560 230 5,00 Schm. 790 550 240 5,30 Schm.	14.8 152	152		180	!	1,46	1	520	240 .	9,50	Schm. 103	12
770 490 280 7,15 Schm. 770 500 270 7,00 Schm. 760 500 260 7,00 Schm. 770 490 280 7,15 Schm. 780 590 190 4,75 Schm. 780 600 170 4,70 Schm. 790 580 210 4,50 Schm. 790 560 230 5,00 Schm. 790 550 240 5,30 Schm.	14.8	143		191	ĺ	1,34	į	500	280	7,00	Schm. 101	5.
770 500 270 7,00 Schm. 760 500 260 7,00 \$chm. 770 490 280 7,15 \$chm. 770 490 280 7,15 \$chm. 780 590 190 4,75 \$chm. 770 600 180 4,70 \$chm. 780 600 180 4,70 \$chm. 790 580 210 4,55 \$chm. 790 550 240 5,00 \$chm. 790 550 240 5,30 \$chm.	14.8 157	157		185		1,30	770	. 490	280		- 1	=
760 500 260 7,00 \$ Schm. 770 490 280 7,15 \$ Schm. 770 490 280 7,15 \$ Schm. 780 590 190 4,75 \$ Schm. 780 600 180 4,70 \$ Schm. 790 580 210 4,50 \$ Schm. 790 560 230 5,00 Schm. 790 550 240 5,30 Schm.	14.8	201		201	1	1,26	. 022	500	270	7,00		5
770 490 280 7,15 Schm. 770 490 280 7,15 Schm. 780 590 190 4,75 \$chm. 770 600 180 4,70 \$schm. 780 610 180 4,70 \$schm. 790 580 210 4,50 \$schm. 790 560 240 5,00 \$schm. 790 550 240 5,30 \$schm.		163	_	174		1,32	092	200	260	7,00		62
770 490 280 7,15 Schm. 780 590 190 4,75 \$ schm. 770 600 170 4,70 \$ schm. 780 600 180 4,70 \$ schm. 790 580 210 4,50 \$ schm. 790 560 230 5,00 \$ schm. 790 550 240 5,30 \$ schm.	857766 14,8 156 185	156	156 185	185		1,34	770	490	280	7,15	- 1	
780 590 190 4.75 \$ schm. 770 600 170 4.70 \$ schm. 780 600 180 4.70 \$ schm. 790 580 210 4.50 \$ schm. 790 560 230 5.00 \$ schm. 790 550 240 5.30 \$ schm.	<u> </u>	176	176 199	199		1,28	770	450	580	7,15	- 1	=
770 600 170 4,70 J 780 600 180 4,70 J 790 580 210 4,50 Schm. 790 560 230 5,00 Schm. 790 550 240 5,30 Schm.	,	129		188	•	2,09	780	290	96	4.75		81
780 600 180 4,70 \$ schm. 790 580 210 4,50 \$ schm. 790 560 230 5,00 \$ schm. 790 550 240 5,30 \$ schm.	857769 14,8 128 191			191		1,97	770	009	170	4.70	7	ĺ
790 610 180 4,50 790 560 210 4,55 Schm. 790 550 240 5,30 Schm.	827770 14,8 101	·	·	164	:	2,25	780	009	180	4.70		91
16 790 580 210 4,55 Schm. 88 790 560 230 5,00 Schm. 89 790 550 240 5,30 Schm.	857771 14.8 119 184	119	119 184	184		2,52	790	610	180	4,50		
790 560 230 5,00 Schm. 790 550 Schm.	1	0 - 118		145	•	2,16	790	580	. 210	4,55	1	8
790 550 240 5,30 Schm.	16,0 122	122		137	!	1,88		560	230	5,00		5
	.97300 16,0 169	169		199	İ	1,89		550	240	5,30	. 1	7

Tabelle 3

				<u> </u>													
Bemerkungen	11	Schm. 11608	Schm. 71548	1	Schm. 11798	2001E	Scient Paris	Schm. 46279	Schm. 46366	1	11204 • musc .	Schm. 72255	Schm. 46368	1	Schm. 67008		Schm. 67138
Abkuhl- geschwin- digkeit	00/8 10	4,70	5,30	6,40	7,40	5,30	7,0	5,00	4,65	7,00	2,00	5,30	7,00	4,20	4,45	4,65	06.9
A T	6	210	220	280	320	250	300	250	180	300	230	240	290	220	220	230	310
Haspel-bzw. Stapeltemp. in oc	8	570	550	510	480	550	490	560	580	. 490	260	550	490	580	570	960	490
Walzend- temperatur in OC	7	780	770	790	800	800	190	810	760	750	790	062	780	800	790	790	800
C C C	9	1,92	1,73	1,36	1,07	1,89	1,26	1,69	1,74	1,21	1,76	1,83	1,14	1,85	1,86	1,97	1,18
rt in J/cm ² bi Hochlage	5	182	201	277	290	234	253	210	228	237	224	216	280	139	160	159	232
CVN-ak-wert	4	134	175	232	289	165	247	154	176	217	181	137	269	93	107	117	184
Dicke in	3	.16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,0	16,9	16,9	16,9	16,9
Warmband und/oder Grobblech	2	880162	997321	903190	903195	903202	903203	903231	906978	306392	866906	909470	909484	670103	670105	670107	675840
Lfd. Nr.	-	55	56	57	58	5.0	09	61	62	63	54	55	99	57	 86	69	2

ᠳ	
•	
긺	
٦	
E+	

	Schmelg Mr.		16	11606	;	11608		11796	11797	11798		46278	46279		46368		71445		71446	71450	60 67 116
Abkiih1-	geschwin- diekeit	8c/8	15	3,80	4.50	4,75	4 , 60	4,55	5,60	7,30	7,40	5,30	2,00	4,95	4.90	2,0	4,95	7,90	5,10	7,70	
Di cke			14	16,0	16,1	16,0	16,3	15,9	15,9	16,3	16,1			16,1	16,3	15.9	16,1	16,3	15,9	16,1	
	£		13	0,04		0,04		0,04	0,04	0,0	<u>.</u>	0,04	0.04		0,04	:	0.04		0,04	0,04	
	>		12	0,08		0,08		90,0	0,07	0.08		0,07	0,07	:	0,07	:	0,09		0,08	0,08	
* "			11	0,10 0,36 1,60 0,017 0,002 0,038 0,0110 0,08 0,04 16,0		0,10 0,38 1,56 0,020 0,003 0,049 0,0106 0,08 0,04		0,10 0,37 1,55 0,017 0,003 0,042 0,0065 0,08 0,04 15,9	1,57 0,016 0,002 0,029 0,0064 0,07 0,04 15,9	0,09 0,38 1,56 0,015 0,002 0,037 0,0084 0,08 0,04		1,59 0,018 0,004 0,032 0,0092 0,07 0,04	0.10 0.39 1.61 0.020 0.004 0.036 0.0091 0.07 0.04		0,09 0,36 1,60 0,020 0,004 0,045 0,0088 0,07 0,04	•	0,10 0,37 1,62 0,015 0,002 0,050 0,0089 0,09 0,04		0,32 1,60 0,018 0,004 0,033 0,0081 0,08 0,04	1,66 0,020 0,002 0,050 0,0089 0,08 0,04	
Chemische Zusemmensetzung in 6	V1		10	0,038		0,049		0,042	0,029	0.037		0,032	0,036	•	0,045		0.050	:	0,033	0,050	
- Butama	S		9	0,002		0,003		0,003	0,002	0,002		0,004	0,004		0,004	•	0,002	-	0,004	0,002	
70.80	P		8	0,017		0,020		0,017	0,016	0,015		0,018	0,020	!	0,020	* * * * * * * * * * * * * * * * * * * *	0,015		0,018	0,020	
la ch	Ę		7	1,60		1,56		1,55	1,57	1,56		1,59	1,61		1,60		1,62		1,60	1,66	
e de	15		6	0,36		0,38		0,37	0,10 0,36	0,38			0,39		0,36		0,37		0,32	0,38	
L	O		5	0,10		0,10		0,10	0,10	0.09		0,10 0,36	0.10		60,0		0,10		60.0	0,10	
Hagnel-	bzw. Sta-	n oc	4	,620	580	570	570	580	540	480	480	550	560	560	560	490	260	470	560	470	
CVN-Wert	in J/cm ²		3	119	118	134	124	138	191	307	289	175	151	154	167	269	122	252	139	236	
Warmband	und/oder Grobblech		2	878513	878523	880162	=	902083	902058	903195		007001	903231	8	906983	909484	997273	880171	997278	880174	
Lfa.	Nr.		-	-	2	~	4	5	9	7	8	6	9	=	12	£	<u>+</u>	ب	16	17	

Tabelle 4

	Warmband und/oder	CVN-Wert	Hampel- hzw. Sta-		Che	nische	Zusa	Chemische Zusammensetzung	tzung	in &			Dicke	Abkun1-	
	Grobblech	be1 -200C	• •	Ö	31	뒫	<u>е</u> ,	ß	¥1	Z	>_	S S		geschwin- digkeit oc/s	Schmelz Nr.
	2	3	4	5	9	7	8	9	2	=	12	=	14	15	16
	880174	240	490	0,10 0,38	0,38		0,020	0,002	0,050	1,66 0,020 0,002 0,050 0,0089 0,08 0,04 16,0	0,08	0.0	16.0	7.0	71450
	997300	169	550				•						16,1	5,25	
	880160	158	550	0,09 0,39	0,39	1,55	0,019	0,002	0,030	0,019 0,002 0,030 0,0089 0,08	0,08	0,04 16.0	16,0	5,30	71451
		194	520	-						-			16,2	6,10	
 -	880166	134	560	0,10 0,40		1,59	0,017	0,002	0,047	1,59 0,017 0,002 0,047 0,0089 0,08 0,04 16,0	0,08	0,04	16,0	5,0	71452
	997329	149	550	60,0	0,38	1,67	0,018	0,002	0,047	1,67 0,018 0,002 0,047 0,0087 0,08 0,04 16,3	0,08	0.04	16,3	5,15	71514
	997337	149	570	0,10	0,38	1,62	0,019	0,004	0,029	1,62 0,019 0,004 0,029 0,0086 0,08 0,04 15,9	0,08	0,04	15,9	4,75	71516
	997321	175	550	0.09	6, 13	1.57	0.015	0.015 0.004		80.0 800.0 750.0	0	Č	16.1	5.05	71548
	997324	163	540	``							3	15,0	15,9	5,60	2
	697309	204	530	0,09 0,37	0,37	1,55	0,014	0,003	0,043	1,55 0,014 0,003 0,043 0,0085 0,08 0,0415,9	0,08	0,04	15,9	5,85	71549
	880161	141	550	0,10 0,34	0,34	1,55	0,019	1,55 0,019 0,003	0,050	0,050 0,0050 0,08	90,0	0,0416,0	16,0	4,35	71550
	885026	210	500	0,09 0,34		1,60	1,60 0,018	0,003	0,044	0,044 0,0076 0,07	0,07	0,04 16,3	16,3	6,50	71690
	885023	152	570	80.0	0,34	1,61	0,018	0,003	0,030	1,61 0,018 0,003 0,030 0,0089 0,08 0,04 16,	0,08	0,04	16,1	4,70	71691
	50505	127	009	0,10	0,37	1,65	0,020	1,65 0,020 0,003 0,032	0,032	0,0082 0,08	90.0	0,04 16,0	16,0	4,15	71697
	902064	.243	510	0,09 0,36		1,64	0,020	0,003	0,049	1,64 0,020 0,003 0,049 0,0090 0,07	0,07	0,05 16,2	16,2	6,30	71910
:	903214	188	550	0,09 0,38		1,64	0,020	0,004	0,037	1,64 0,020 0,004 0,037 0,0092 0,08 0,04 16,0	0,08	0,04	16,0	5,30	71911
اــــا	903227	131	590	0,10	2,38	1,60	0,016	0,003	0,036	0,38 1,60 0,016 0,003 0,036 0,0109 0,07 0,04 15,9	0,07	0,04	15,9	4,35	71914

Tubelle 4

	•					_	1	;								_	_
60400	Mr.	16		71915	:	71916	72147	72148				10527	•				44359
Abkuhl-	digkeit oc/s	15	5,50	5,20	7,00	4,90	5,60	6,70	6,40	4,75	4,90	7,80	7.0	7,60	6,75		6,20
Dicke		14	16,0	16,2	16,0		15,9	15.9	16,0	14,8	14,7	14,8	14.9	14.7	14,8	14,7	14,8
	æ	13		0,02		0,0	0,05	0.0				0.03					0,03
	>	12		0,08		0,07	0,07	0.07				0.07					90.0
Z u	×	11		0,0092		0,0064	0,0089	7,000				0.0107					0,0108
Chemische Zusammensetzung in 🗲	יו	10		0,10 0,38 1,58 0,018 0,003 0,031 0,0092 0,08 0,05 16,2		1,60 0,020 0,003 0,039 0,0064 0,07	,60 0,018 0,003 0,050 0,0089 0,07	1.61 0.018 0.004 0.051 0.0077 0.07 0.04 15.9				1.58 0.015 0.003 0.051 0.0107 0.07					0,10 0,24 1,49 0,014 0,004 0,039 0,0108 0,06 0,03
menset	Ø	9		0,003		0,003	0000	0.004				0.003					0,004
รันยณา	đ	8		0,018		0,020	0,018	0.018		٠		0.015					0,014
isch	멸	7		1,58		1,60	1,60	1.61				1.58					1,49
Chen	51	9		0,38		0,37	0,35	0.38	}			0.26			•		0,24
	o	5		0,10		0,10 0,37	0,10	0.09	}			0.09 0.26					0,10
Haspel-	peltemp. in oc	4	540	550	490	560	540	500	510	600	590	470	500	480	510	510	530
CVN-Wort	bei -2000	3	176	165	247	151	222	244	232	141	-144	296	282	281	592	246	.247
Warmband	Grobblech	2	903202	:	903203	903218	907018	903190		996961	2	996965	996964	3	996966	2	696963
Lfd.	•	-	35	36	37	88	33	Q	41	42	43	44	45	46	47	48	49

s	
•	
Ξ	
ě	
<u></u>	

Besork un gen	12					Heritine liche Varabilider	oine aarinele Arreit van	Separations bel der	A Maraschistypratially date	-								-	
Abinhi- geachuin- digkoit in ^O C/a	+	3,35	3.35	2,5	2,5	4,2	2,65	3,73	3,75	3,75	4,45		3,80	4,2	2,4	4,5	3,7	4,65	4,65
↑ ∇ ••	2	25	35	140	140	85	130	1.35	175	175	\$	105	₹	د	128	165	2	9	92
thapel- bzv. Stapel- temp. in °C	•	£			ş	e e	•	(\$88		049	į			23	£2		·	<u> </u>
Vel zendtesp. In OC		8.8	28	2	200	00	92	.23	2	8	006	928	929	5	952	01.0	370	8	8
Press Press	1	60° zur fil	90° 28° 14	20 zer 20	90° zur M	80° 24° M	M 272 00	90° zur 14	M - 172 .00	90° 24° PA	90° zur fit	90° 24" M	80° 22° IA	M - ser M	60° zur M	90° zur fA	90° zur fA	90° zur fA.	90° zur R
	٩	2,29	22.2	1	2,3	1.72	₹.	21.2	1.24	1,81	2.	2,40	1,6	1,47	1,01	1,05	1,01	1,78	1,66
t in J/os ² Hechlage	3	183	231	155	214	22	153	ŧ	731	113	138		151	162	314	135	235	178	166
CVM-s _k -Wert in J/ee ² bei - 40°C Mechinge	•	00	104	65	5	2.5	106	86	103	۶	28	S	3	5	=	20	130	101	101
Otcke In	3	15,2	15,2	18,0	18,0	14,3	17,6	15,2	15,2	15,2	14.2	15,2	15,2	14.9	18,5	14,5	16,0	14,3	14,3
Varaband und/oder Grebblech	7	886/31CE/R		93859 CA		817/26CE/R	93661 A/R		886/31CM/R		817/3002/8	66/3/C4/R		817/21CB/R	-	817/26CH/R	, 620/08	817/30CA/R	
3 2	li		i	_	1	2	-	- 1	- 1						i	7			

	T																		
geseup mudau	12				Erfledungsgestille Verstilleder bzv.	Grabbleche, die eine geringe Anzabl von Seesrations bei der	Karbachlageräfung als die her-	keesichen Kersbinder ouf-						-					24.4080
Abkühl- geschwin- digkeit in ⁰ C/e	11	4,75	4,60	. 00*↑	00*1	4,05	٠, 00,4	06*∤	3,55	3,55	4.10	4,55	4,55	4,55	4,30	8.7	4,70	3,65	
Δ 1 3° c	10	185	185	160	160	35	195	195	220	220	\$	8	81	2,2	240	340	210	32	
Haspel- bzu, Stapel- teep, in °C	6	519 (610				<u> </u>	98			999	! !			929			
Valzendtesp. In C	8	000	906	280	280	2	900	900	910	610	020	2	07.7	9	2	910	2	55	
Probonlage 1s Robr	,	80° zur fit.	No sur M	30° zur 18	90 zar 34	M rat M	60° zur RA	90° zur RA	BO zur R	90° zur M	80° zur 18	M JR -06	90° 247 Bt	M 182 -06	90e sur 98	M Lat 00	80° zur M	90° zer M	
10 PE-5	9	1,55	1,45	8,	1,50	2.	4°.	1,3	3.	1,34	1,30	1.69	8	2,6	1.72	1.42	2,0	1,32	
CVM-a _k -Vert in J/cm ² bei - 40°C Hochlage	5	160	149	m	212	167	187	114	m	147	259	6	201	278	223	223	346	230	
2004 -	,	103	103	173	171	101	130	82	115	110	186	179	176	25	8	157	, t23	220	
Dicke	3	14,4	14,3	16,0	16,0	14,5	14,5	14,5	18,4	18,4	17.1	16,0	16,0	=	15,5	15,5	18,3	18,2	
Varaband und/oder Grobblach		817/30CN/R	817/23CE/R	704.90		817/27CH/R	847/27C1/B		995219/CM/B		AN CO/880	00,007		\$07022	E86/33 CA		. >	995214CH/R	—
÷ <u>:</u>	-	19	R	2	n	23	22	25	28	12	2	62	8	=	32	٩	=	×	

BAD ORIGINAL

S	
•	
=	
3	
3	

Dicto CVI-a, -Vart			ert in Jan	~_	# _{>} \$	Prebanlage 1s	Val zendteep.	Harpel- bzv. Stapel-	Δ.	Abkah) - geschvin-	
- 40°C Nechi see	- 40°C Nechi see	- 40°C Nechi see		حی		Rohr	ပ္	tons. in oc	<u>ပ</u> <u>=</u>	digkeit in C/s	
9 5 7 6 7	c -	9	9 6	9		1	8	-	Q.	-	21
985214/CU/R 18,2 185 254 1,37 80	18,2 185 254 1,37	75, 457	1,37		*	M zer M	810	85	240	3,85	Erfindungsmaße Verablader bre.
142 200 1,45	142 200 1,45	54°1 902	1,45		2	90° zur 78	029	· •	92	4,80	Grebbleche, die eine geringe
222 300 1,35	222 300 1,35	15. SE	8		8	60° zur M	630	~	230	1,25	Kerbschlagerdfung als die her-
18,2 165 225 1,36	18,2 165 225 1,36	1,38	1,36		8	10° zur Ri	830	• •	2,00	4,25	komilchen Warmbänder auf-
817/21 CL/R 15,0 170 228 1,34 60	15,0 170 228 1,34	228 1,34	1,34		3	60° zur fü	8	I	240	2,00	
T 18,3 131 256 1,85 60	131 256 1,15	520 1,85	1,95		8	60° zur R	920	550	8	6,00	
16,1 197 201 1,02 90	197 201 1,02	204 1,02	1,02		2	90° zur RA	920		230	4,55	
18,1 320 323 1,00	320 323 1,00	323 1,00	1,00		909	60° zur fü	820		2,0	4,55	Harbiter, die seit Bedingsen
322 323 1,00 60	322 323 1,00 60	323 1,00 60	1,00 60	90		zur M	820	• • • • • • • • • • • • • • • • • • •	2,2	4,55	der Stammmeldeng P 2949124,05
18,3 199 215 1,08 90*	199 215 1,08 90*	215 1,08 90°	1,06 90*	è	ģ	zur RA	290	}	9 *2	4,50	Separations bei der Kerbschlag-
244 283 1,16	244 283 1,16	283 1,16	1,16	_	\$	60° zur RA	790		240	4,50	profung aufvolsen
18,3 254 262 1,03	254 262 1,03	262 1,03	1,03		9	60° zur 194	æ		240	4,50	
16,0 215 277 1,29	215 777 1,29	1,29	1,29	\dashv	è	90° zur få	02.	! <u></u>	220	5,30	
145 165 1,14	145 165 1,14	165 1,14	1,14	_	2	60° zur ft.	000		052	6.10	
190 1,06 60	190 1,06 60	190 1,06 60	1,06 60	98		zer få	908		255	6,20	-
14.4 176 198 1.13	176 198 1,13	1,13	1,13		\$	Do zur M		3	255	6,29	
285 317 1,12	285 317 1,12	31,7 1,12	1.12		\$	00° zvr fa	815	<u> </u>	230	5,65	
9 10,3 201 247 1,23 6g ^a	201 247 1,23	247 1,23	1,23	\dashv	3	zur Ri	810		£	5.40	

	_		_		_										
Beschungen	12						Nambinder die genis Be-	dingengen der Stammenseldung	and keine Separations bel der	Karbacki agertiung aufvolson		-			
Abkühl- geschuin- digkeit in ⁶ C/e	11	5,70	. 02'5	2,70	5,2	5.8	3,90	5,90	8.4	5,95	5,95	4,95	4,95	4,5	3,00
Δ T 0• et	10	285	285	285	280	2	082	982	22	8	8	98 98	92	818	2 2
Mapol- brv. Stapel- teep. In °C	6	. (55	} }			<u>.</u>	 	530		l	230	<u>, </u>		
Wal zandtemp. in ^U C	8	21	13	828	8	919	815	55	996	020	929	200	36	96.	008
Prebantage 1s Rohe	1	60° zur 18	We sur M	OF ME M	M Lat M	So rer R	00° zur fü	M and M	20 TET 82	Of ref M	M M M	90° 247 BL	Me rat M	90° zur M	90° zur fM
* P	9	1,00	1,30	1,02	£,7	1,13	1,14	1,7	1,23	1,5	1,19	-	8.	1,10	1,30
CVK-a _k -Nort in J/am² bai - 40°C Machlege	5	206	240	282	306	31.2	326	223	ııı	305	368	952	165	165	241
2007 - 40°C	4	192	101	282	246	878	282	20.7	222	282	922	052	156	149	186
Dicke In	3	15,4	15,4	15,4	18,3	15,3	15,3	15,3	10,3	15,5	15,5	10,0	18,0		16,0
Varaband und/oder Grobblech	7	9/30711/300	ti /wate /ana		U		866/34CA/R			6/20TL/944		965275/Ca/e		995275/CN/R	220108
1/4. Br.	-	35	55	25	25	25	38	2	25	95	=	2	65	3	67

BAD ORIGINAL

24,40,10

Warmband	Schmelze					5	Chemische		Zusammensetzung	trung					
Blech		ပ	31	Ē	Ą	82	A1	×	3	^	Mo	Gr	M1	Sn	Cu
A	11294	٠15	•32	1.59	.012	€00•	.054	8600*	• 02		1	.03	.75	٠.01	• 05
æ	79486	•08	.35	1.76	.015	.010	.048	6500*	.10		.34	•05	.01	*. 01	.03
٥	79639	•04	.30	1.27	.023	800*	.031	• 0055	60°	j	.35	.02	• 05	۰.01	.05
α	55161	ž		47 ,	600	201	0.0	7900	į		;		8		
M	19166	90	•63		•066	3	· ·	9600.	<u>.</u>	•	£.	5	Ŋ.		£0°
£	38070	•10	.34	1.59	.016	.012	.041	.0072	•05	60•		200	.0.	4.01	.04
Đ	38069	.10	•35	1.59	.021	.013	.051	.0057	•04	80°		.03	.03	4.01	.04
н	10381	60*	.33	1,58	.015	110.	•059	.0080	•04	60°	8	.01	• 02	٠.01	.03
I	43941	.10	•29	1.54	.016	.012	.041	.0057	.08	1		• 02	.03	۲۰۰۶	• 05
J	10527	60°	•26	1.58	.015	.003	.051	.0107	•03	. 07	•	• 02	•03	۲0°۶	.03
K	44359	.10	.24	1.49	.014	*00°	•039	.0108	.03	90.		•02	•03	۲۰۰۶	.04
, 1	12078	60 °	.26	1.67	.019	•004	.048	.0084	•04	90•		.30	• 05	۲0°>	.03

Chemische Zusammensetsung der untersuchten Stähle

Stahlsorte	Schmelze	Vorbramme Dicke in mm	Stahlblech Dicke in mm	StoBofen- temperatur ^o C	Walzend- temperatur	Haspel-bzw. Stapeltempe- ratur	Abkühlgeschwindigkeit von WET zur $T_{ m H}$ $^{ m OC/8}$
Υ	11294	200	20	1230	750	240	2,50
æ	79486	210	18,3	1180	790	540	5
. ပ	79639	205	18,3	1180	800	540	5,2
D	55161	210	18,3	1180	810	545	5,4
M		203	18,3	1180	800	530	5,4
ĝ.	38070	201	13,5	1220	790	, 684	8,7
ð	38069	200	13,5	1220	800	500	8,5
14	10381	200	14,8.	1180	770	490	7,2
H	43941	205	14,8	1180	770	485	7,5
D.	10527	. 205	14,8	1180	760	460	8,0
M	44359	200	14,8	1180	770	500	7,2
ı,	12078	200	. 16,0	.1180	780	550	5,1

1e 7 Pertigungabedingungen von "separationfreien" Stählen

24.43.80

24.10 to

Elgenehalt	Proben-	Streckerence		\$ 50,000			2-7	4		
Warm- band oder Blach	lage	RpO,2	H M	N.X	C.100	GENT.	TUSOK	C. 100	CV TUSO A	20 3 30 3
٧	1	441	490	28,1	210	258	140	- 35	- 50	1.23
	ď	471	587	29,4	229	259	165	- 80	- 45	1.13
AC.	L	561	756	20,4	102	110	7.3	- 35	- 48	1.08
	o	610	765	18,2	40	48	26	- 30	- 51	1.20
0	J.	499	621	22.0	246	308	94	- 76	- 104	1.25
	ð	539	641	19,1	64	99	58	- 30	- 49	1.03
	Ţ	503	629	22,7	201	247 .	29	- 72	- 108	1.23
7	0	518	651	18,3	80	95	62	- 36	- 58	1.19
M	L	521	634		222	272	125 .	- 65	- 74	1.23
	0	571	099		74	79	55	- 30	- 52	1.06
P.,	L	546	651	24,3	175	187	90	- 30	- 67	1.07
·	0	589	672	.21.3	49	56	34	- 30	- 60	1.14
	L	. 556	099	24.2	119	139	62	- 60	- 77	1.17
	O	. 599	689	21,6	45	50	34	- 30	- 65	1.11
=	L	506	629	2617	160	201	65	- 60	- 93	1.26
	0	551	639	23.7	58	63	30	- 40	- 82	1.09
H	L	505	625		155	189	86	- 60	92	1.22
	o	535	635	22,1	53	. 65	45	- 40	- 57	1.11
I	17	535	632	26,8	246	277	129	- 80	- 90	1.13
	0	560	648	22,8	154	186	80	09 -	- 82	1.21
<u> </u>	Ţ	522	622	27,1	183	227	83	- 80	- 100	1.24
	0	565	637			169	65	09 -	- 95	1.11
<u>,,</u>	L	555	657	25,7	233	303	125	- 90	- 110	1.30
	0	616	692	21,3	140	170	70	69 -	- 100	1.21
•										

Die mechanisch-technologischen Eigenschaften von "separationfreien" Stühlen Tabelle 8

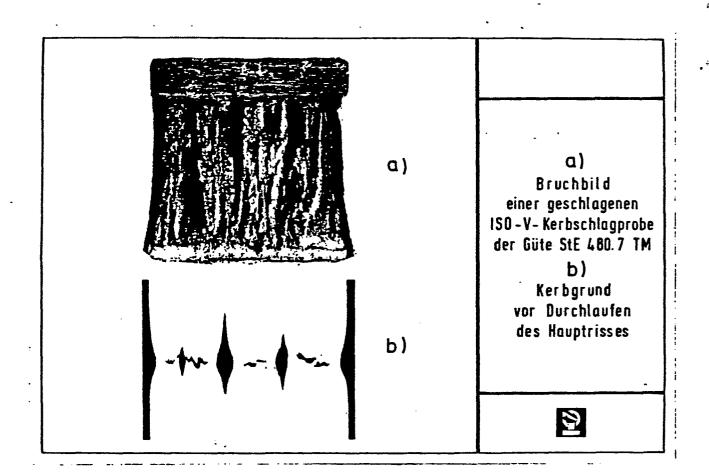
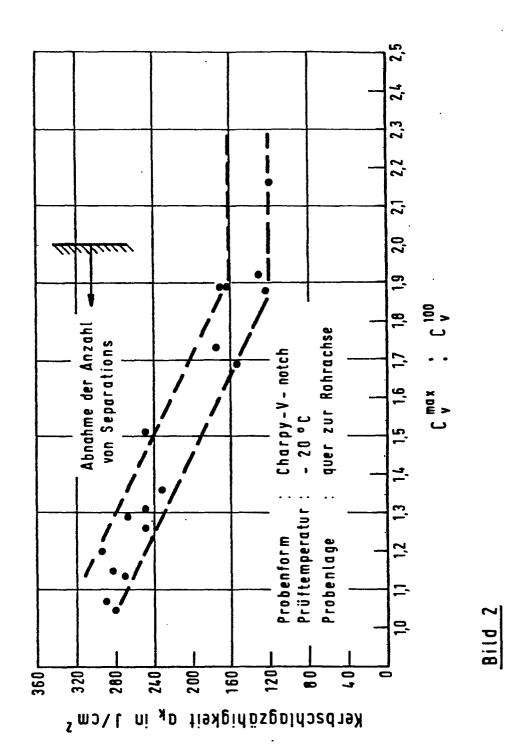
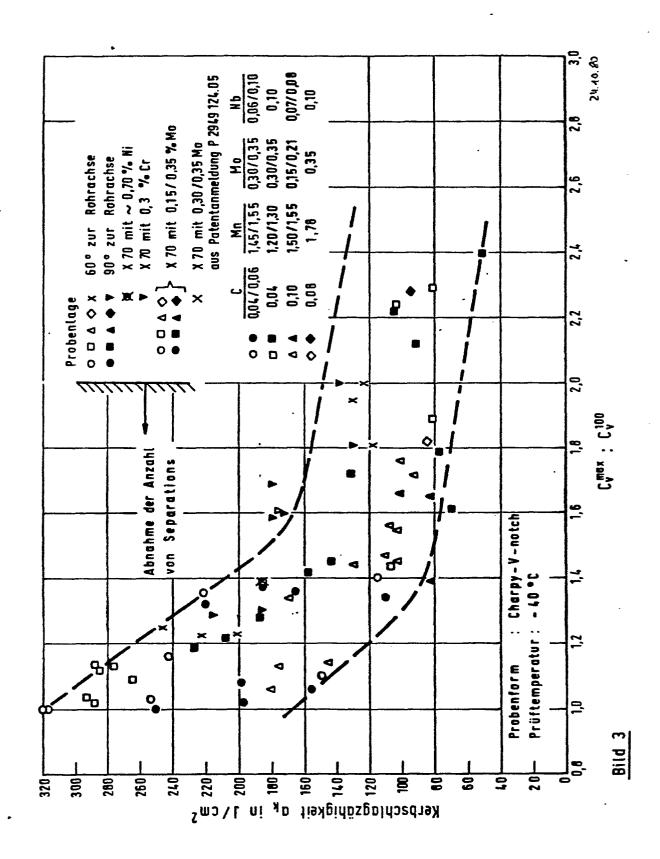




Bild 1

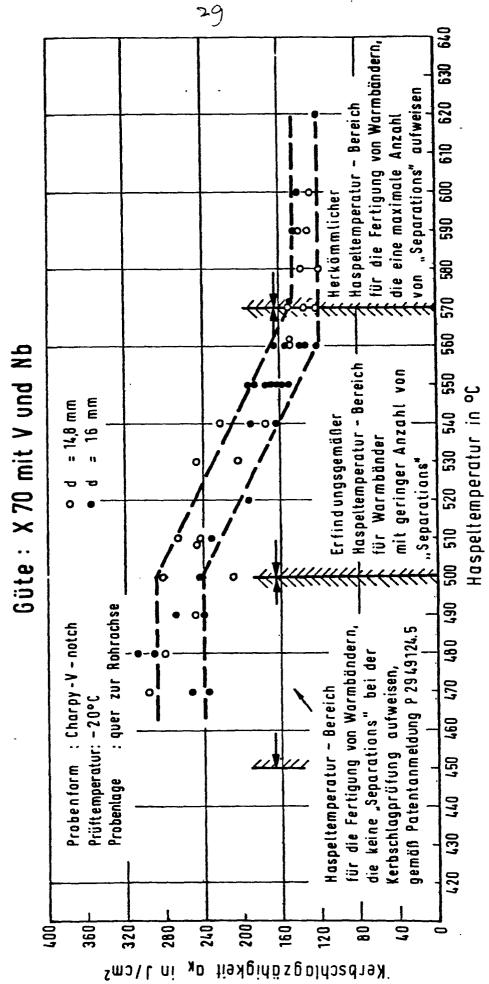
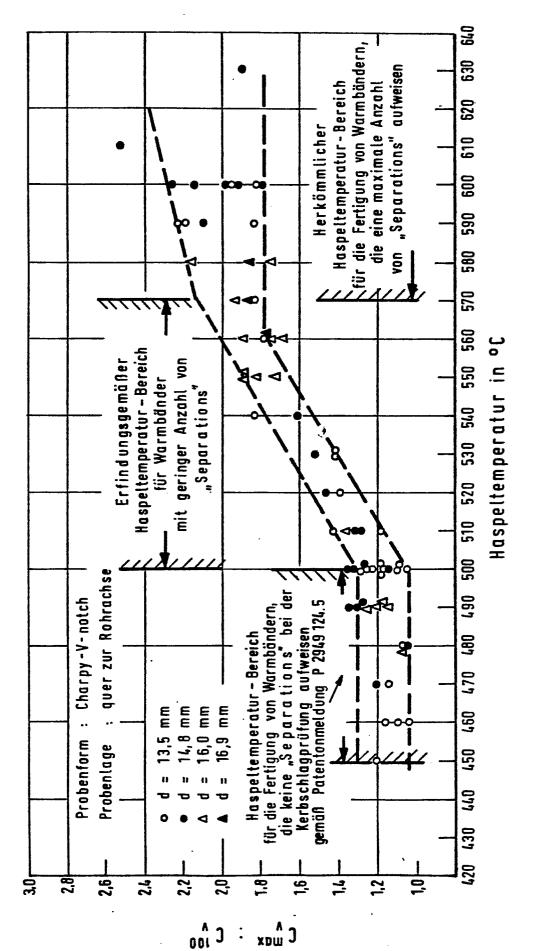
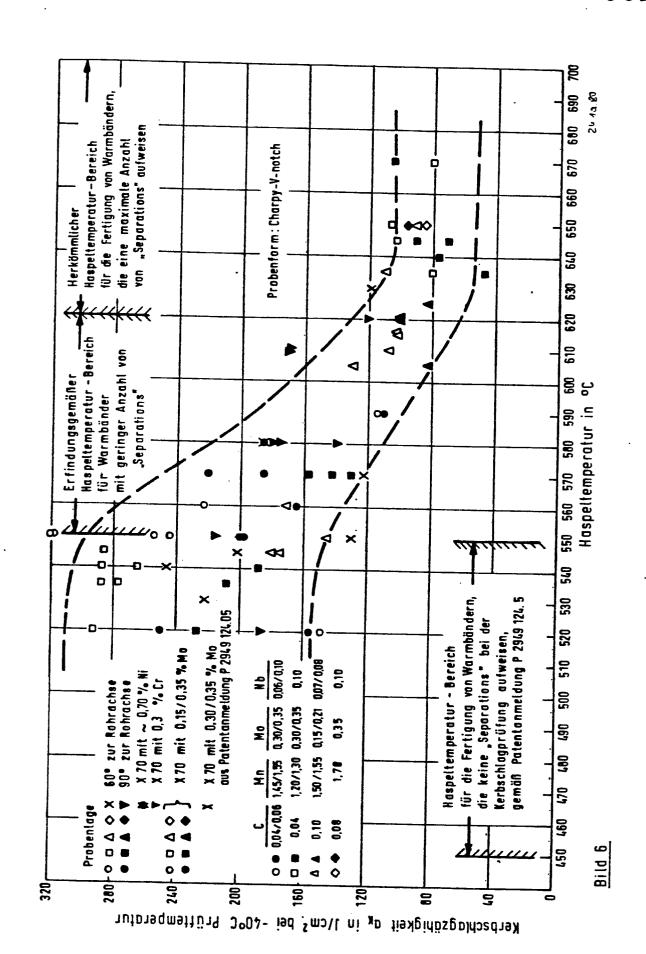
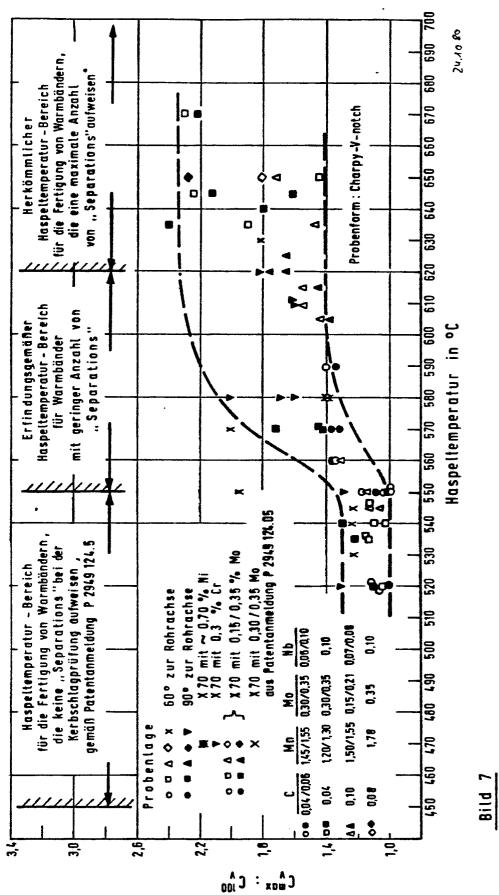


Bild 4


Bild 5

-

. . .

.

Patentanwälte GRAMM + LINS

Dipl.-Ing. Werner Gramm Dipl-Phys. Edgar Line

D-3300 Braunschweig

Stahlwerke Peine-Salzgitter AG Gerhardstraße 10 3150 Peine

Telefon:

(05 31) 8 00 79

Telex:

09 52 620

Anwaltsakte

3904 EPÜ

Datum

18.Nov.1980

Patentansprüche:

- 1. Verfahren zur Herstellung von Warmband oder Grobblech aus einem denitrierten Stahl bestehend aus Kohlenstoff 0,04 bis 0,16 %, Mangan 1,25 bis 1,90 %, Silizium 0,02 bis 0,55 %, Phosphor 0,004 bis 0,020 %, Schwefel 0,002 bis 0,015 %, Aluminium 0,02 bis 0,08 %, Niob 0,02 bis 0,08 %, Rest Eisen und etwaige Verunreinigungen, d a d u r c h g e k e n n-z e i c h ne t, daß das Warmband oder Blech beim Warmwalzen das letzte Fertiggerüst mit einer Temperatur von 750° C bis 820° C verläßt, bis auf eine Zwischentemperatur von 450° C bis 570° C mit einer Abkühlgeschwindigkeit von 2 bis 10° C/s abgekühlt wird und danach im Haspel oder im Stapel an Luft langsam auf Raumtemperatur abkühlt.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß dem Stahl Vanadinzusätze von 0,02 bis 0,10 % zulegiert werden.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Zwischentemperatur zwischen 450°C und 500°C liegt.
- 4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Zwischentemperatur zwischen 500° C und 570° C liegt.

- 5. Verfahren zur Herstellung von Warmband oder Grobblech aus einem denitrierten Stahl bestehend aus Kohlenstoff 0,04 bis 0,16 %,Mangan 1,25 bis 1,90 %, Silizium 0,02 bis 0,55 %, Phosphor 0,004 bis 0,020 %, Schwefel 0,002 bis 0,015 %, Aluminium 0,02 bis 0,08 %, Niob 0,02 bis 0,08 %, sowie Zusätzen von Molybdän 0,15 bis 0,35 %, von Chrom 0,10 bis 0,30 % und/oder Nickel 0,30 bis 0,90 % allein oder in Kombination, Rest Eisen und etwaige Verunreinigungen, d a d u r ch g e k e n n z e i c h n e t, daß das Warmband oder Blech beim Warmwalzen das letzte Fertiggerüst mit einer Temperatur von 750° C bis 850° C verläßt, auf eine Zwischentemperatur von 450° C bis 620° C mit einer Abkühlgeschwindigkeit von 2 bis 10° C/s abgekühlt wird und danach im Haspel oder im Stapel an Luft langsam auf Raumtemperatur abkühlt.
- 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß dem Stahl Vanadinzusätze von 0,02 bis 0,10 % zulegiert werden.
- 7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Zwischentemperatur zwischen 450° C und 550° C liegt und daß das Warmband oder Grobblech beim Warmwalzen das letzte Fertiggerüst mit einer Temperatur von 750° C bis 820° C verläßt.
- 8. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, daß die Zwischentemperatur zwischen 550°C und 620°C liegt.
- 9. Verfahren nach Anspruch 8, gekennzeichnet durch einen Zusatz von 0,002 bis 0,08 Zirkon.
- 10. Verfahren nach Anspruch 8 oder 9, gekennzeichnet, durch einen Zusatz von 0,004 bis 0,051 % Cer.

- 11. Warmband oder Grobblech, hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß der Stahl ein ferritisch-perlitisches Gefüge aufweist.
- 12. Warmband oder Grobblech, hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 10 oder nach Ansprüch 11, dadurch gekennzeichnet, daß das Verhältnis von C_V^{max} zu C_V^{100} zwischen 1,0 und 1,3 liegt.
- 13. Warmband oder Grobblech, hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 10 oder nach Ansprüch 11, dadurch gekennzeichnet, daß das Verhältnis von C_V^{max} zu C_V^{100} zwischen 1,3 und 2,0 liegt.
- 14. Warmband oder Grobblech, hergestellt nach einem Verfahren gemäß Anspruch 3 oder nach Anspruch 11 oder 12, gekenn-zeichnet durch Kerbschlagzähigkeitswerte von max.280 J/cm² bei einer Prüftemperatur von -20° C.
- 15. Warmband oder Grobblech, hergestellt nach einem Verfahren gemäß Anspruch 7, 8 oder 9 oder nach Anspruch 11 oder 12, gekennzeichnet durch Kerbschlagzähigkeitswerte von max.

 230 J/cm² bei einer Prüftemperatur von -40° C.

\ Patentanwälte

amm + Lins

Li/Gru.