[0001] The present invention relates to an electro-pneumatic or electro-hydraulic transducer,
in which there is a pneumatic or hydraulic nozzle-flap system, which flap is controlled
by an electric control signal, as described in the preamble of claim 1.
[0002] A transducer comprising the features of the preamble of claim 1 is known from US-A-3
099 995. In this known transducer, an oscillating control signal with variable duty-cycle
is applied to the flap, and thereby it is ensured that the adjustment drive for the
flap and the flap itself can have a smaller mass, and thus a high response speed can
be achieved. The known transducer operates in the manner that the flap opens and closes
alternatingly the nozzle. In order to ensure that the thus adjusted pressure corresponds
to the duty-cycle of the electric control signal, the pressure in the pressure chamber
upstream of the nozzle shall change between inlet pressure and atmospheric pressure,
and this necessitates an extremely small pressure chamber. Due to the necessity to
have a small pressure chamber, the known transducer is subject to considerable precision
requirements and constructive restrictions. Besides, an increase of the frequency
is limited by the size of the pressure chamber. Moreover, the customary nozzle-flap
systems, i.e. systems with the usual dimensions, cannot be used in the known transducer.
[0003] It is the object of the invention to develop the transducer according to the preamble
in such a way that the precision requirements with view to the nozzle-flap system
are not so strict, in particular, that it becomes possible to structurally use the
same nozzle-flap system commonly used in transducers.
[0004] This object is achieved according to the invention by means of the features in the
characterizing portion of claim 1, i.e. it is achieved mainly by the fact that, during
the operation of the transducer, the range of movement of the flap is limited to a
specific range excluding the positions of completely closed or opened nozzle.
[0005] In the transducer of the invention, the input pressure or the atmospheric pressure
need not be produced in its pressure chamber. Therefore the pressure chamber resp.
the volume between the nozzle and the restricted inlet orifice can be much greater
in the transducer of the invention than in the known transducer (US-A-3 009 995).
An extensive correspondence of the duty-cyle of the applied electric control signal
to the output pressure out is still ensured, namely by limiting the range of movement
of the nozzle flap. The precision requirements to the design of a small pressure chamber
are therefore not as strict as in the case of the known transducer, and the increase
of the frequency is not limited by the volume of the pressure chamber.
[0006] The subclaims specify advantageous developments of the invention.
[0007] Embodiments of the invention will now be described in detail, by way of examples
only.
Figure 1 is an exemplary embodiment of an electro-pneumatic transducer.
Figure 2 is a qualitative representation of the characteristic curve of a pneumatic
nozzle-flap system.
Figure 3 shows three electric control signals.
Figure 4 illustrates a second embodiment of the electro-pneumatic transducer.
Figure 5 illustrates a third embodiment of the electro-pneumatic transducer as provided
to actuate a valve.
[0008] An electro-pneumatic transducer illustrated in Figure 1 comprises a nozzle-flap device,
essentially known as such. This device comprises flap 10 made of flexible material
or supported by bearings at 11. The nozzle-flap device comprises pipe 15 with throttle
16 forming a restricted inlet orifice and, near flap 10, nozzle 14. Nozzle pipe 15
the interior of which is forming a pressure chamber is connected by pipe 17 to variable-
pressure tank (pressure P), where the output pressure Pout of the transducer is taken
from. On the other side of flap 10, opposite to nozzle 14, there is an electromagnetic
coil 12. An electric pulse sequence I(
T), illustrated in Figure 3, oscillating at a certain basic frequence f
o or alternately at a certain variable frequency f, and of an amplitude to as constant
as possible, is conducted to terminals 13 of electromagnetic coil 12. In accordance
with the invention, and as shown in Fig. 3, the duty-cycle
TfT
o of the pulse that raises and lowers the pneumatic or hydraulic pressure proportionally
to input signal l
in is varied within cycle period To corresponding to basic frequency f
o. As illustrated in Figure 3, in its top curve, pulse
Ti whose amplitude is 1
0 is very short compared with the cycle period To; therefore the output pressure Pout
of Figure 1 is rather low. In the middle curve the pressure-raising pulse
T2 is approx. 0,5xT
o and Pout then is in the middle area of its dynamic range. In the bottom curve of
Figure 3, the pressure-raising pulse
T3 is relatively long, and output pressure Pout is in the top area of its dynamic range.
It has been emphasized that pulses can of course be pressure-lowering pulses as well.
[0009] Figure 2 illustrates the ratio of the adjusted pressure P and the input pressure
P as a function of the distance S between the nozzle 14 and the flap 10. A S illustrates
the linear operation range, on which the transducers in accordance with the invention
function. Thus nozzle 14 is never completely closed or opened much enough to enter
the unlinear bottom section of the characteristic curve. In the figure, P/Pg=1 naturally
represents the position in which flap 10 is completely closed, and P/P
s=0 represents the position in which flap 10 is completely open. In a transducer in
accordance with the invention, the flap 10 is made to vibrate, for instance magnetically.
Due to electrical and mechanical quantities, such as resistance, inductance, and the
masses of the moving springs of the flap and the pneumatic or hydraulic amplifying
unit possibly following it, the flap will not, when vibrating, reach the extreme positions
(Figure 2). According to Figure 2, reaching the extreme positions is avoided, as this
would impair the amplification factor or the system linearity. In practice it has
also been found out that the response speed of a transducer in accordance with the
invention will, to a certain extent, be increased as the basic frequency f
o increases.
[0010] In transducer systems illustrated in Figures 4 and 5, there is an electronic unit
20, which works as a combined signal/pulse converter and as a difference organ (∑).
Because of facts described above, pulses leaving the electronic unit 20 tend to integrate
in mechanical and pneumatic or hydraulic circuits that follow unit 20. A mathematical
representation of this phenomenon is:

where
K=proportionality factor
P=pneumatic or hydraulic pressure
To=basic cycle
T=length of the pulse raising or lowering the pressure
I=electrical pulse sequence leaving the electronic unit (e.g. a constant current of
the magnetic circuit).
[0011] An electro-pneumatic system illustrated in Figure 4 comprises a device 21 comprised
of the above described elements 15, 16, 17 and 18, to which the pneumatic input pressure
P
s is brought. Output pressure Pout of the nozzle-flap system 10,14 operating as described
above is adjusted so to be proportional to input signal l
in. A feedback loop of the system comprises pneumatic bellows 27 and element 37 which
converts the force of the bellows 27 into an electrical feedback signal l
1. Feedback control l
1 is conducted via wire 26 to unit 20. Control signal I(T) illustrated in Figure 3,
is formed according to the difference signal l
in-l
1.
[0012] Figure 5 illustrates an electro-pneumatic transducer in accordance with the invention,
as provided to actuate a valve 23. The system comprises the device 21, whose pressure
Pout is conducted to diaphragm motor 22 actuating the control valve 23. The feedback
loop of the system comprises an element 24 that converts the position of valve 23
into an electrical signal. This element 24 conducts the feedback signal 1
1 via wire 26 to unit 20.
[0013] The output quantity of the system is for instance the flow F
out controlled by valve 23.
[0014] If the electric control signal is a current signal, it should be within range 4...20
mA.
[0015] By using a sufficiently high frequency the nozzle-flap system 10;14 can be made operate
in the linear area AS shown in Figure 2 in such a way that nozzle 14 is never completely
closed or opened. In some cases the lower limit of frequency f
o is approx. 15 Hz. However, the most favourable frequency range from the point of
view of the invention is over 30 Hz, for instance 30...40 Hz. In some cases the frequency
can be of the order of 100 Hz.
[0016] If, for some reason, it is not desired to maintain the flap movement in said linear
range by choosing a sufficiently high frequency f
o, which, however, is usually the best solution, it is possible, in addition to a sufficiently
high frequency, to use mechanical stoppers which limit the vibration amplitude of
flap 10.
[0017] Although a basic frequency f
o has been under consideration, it should be emphasized that the invention can also
be applied in such a way as to make frequency f=1/T variable. Thus it is possible
to maintain pulse τ constant and change the output pressure Pout by varying the cycle
T=1/f and consequently also the duty-cycle

In the framework of the invention both the pulse length τ and cycle To or T can be
varied for control purposes. In some applications amplitude l
o can also be varied for control purposes.
1. An electro-pneumatic or electro-hydraulic transducer comprising a controlled pressure
chamber (15), which is pressurized through a restricted inlet orifice (16) and depressurized
by an electrically operated pneumatic or hydraulic nozzle-flap system (10, 11, 14)
which comprises a flap (10) and a nozzle (14), the movement of said flap (10) being
controlled by an electric control signal, wherein the electrical control signal is
a pulse sequence (I(T)) oscillating at a certain frequency (f or fo) in which pulse sequence the duty-cycle (τ/To) of the pulses is varied proportionally to an input signal (lin) and within the cycle period (To) corresponding to said frequency (f or fo) characterized in that said nozzle-flap system (10, 11, 14) has a characteristic
curve with a linear range (△ s), which curve is defined by the dependency of the relative
adjusted pressure (P/Ps) on the distance (S) between the nozzle (14) and the flap (10), and in that the movement
of said flap (10) during operation of the transducer is essentially limited to said
linear range (Δ S) of said characteristic curve (Figure 2) so that said flap (10)
never completely opens or closes the nozzle (14), which feature is provided by mechanical
stoppers and/or by selecting said frequency (f or fo) sufficiently high.
2. A transducer in accordance with claim 1, wherein said certain frequency (fo) is higher than approx. 30 Hz.
3. A transducer in accordance with claim 1 or 2, wherein said certain frequency (fo) of said pulse sequence (I(T)) is within the range 30...40 Hz.
4. A transducer in accordance with claim 1, 2 or 3, wherein an electromagnetic coil
(12) is provided for oscillating the flap (10).
5. A transducer in accordance with claim 1, 2, 3 or 4, wherein an electric feedback
signal (11) is formed from the output signal (Pout) of the transducer, and that said feedback signal (11) is conducted to an electronic unit (20) which is additionally fed with said input
signal (lin) in analog form and which provides said pulse sequence (I(T)) as difference signal (lin-l1).
1. Transducteur électro-pneumatique ou électro-hydraulique comportant une chambre
(15) à pression réglable, qui est mise sous pression à travers un orifice d'entrée
étranglé (16) et décomprimée par un mécanisme tuyère-volet pneumatique ou hydraulique
(10, 11, 14) actionné électriquement qui comprend un volet (10) et une tuyère (14),
le mouvement du volet (10) étant commandé par un signal de commande électrique, lequel
signal est une séquence d'impulsions (l(τ)) oscillant à une certaine fréquence (f
ou fo), séquence dans laquelle le cycle de service (τ/To) des impulsions varie proportionnellement à un signal d'entrée (lin) et à l'intérieur de la période (To) correspondant à ladite fréquence (f ou fo), caractérisé en ce que le mécanisme tuyère-volet (10, 11, 14) présente une courbe
caractéristique comprenant une portion linéaire (Δ S), courbe définie par les variations
de la pression réglée relative (P/Ps) en fonction de la distance (S) entre la tuyère (14) et le volet (10) et en ce que
le mouvement du volet (10) pendant le fonctionnement du transducteur est essentiellement
limité à ladite portion linéaire (Δ S) de la courbe caractéristique (figure 2) de
telle sorte que le volet (10) ne ferme ni n'ouvre jamais totalement la tuyère (14),
ce qui est assuré à l'aide de butées mécaniques et/ou en choisissant la susdite fréquence
(f ou fo) suffisamment élevée.
2. Tranducteur selon la revendication 1, caractérisé en ce que la fréquence (fo) est supérieure à environ 30 Hz.
3. Transducteur selon la revendication 1 ou 2, caractérisé en ce que la fréquence
(fo) de la séquence d'impulsions (I(T)) est comprise entre 30 et 40 Hz.
4. Transducteur selon la revendication 1, 2, ou 3, caractérisé en ce qu'une bobine
électromagnétique (12) est prévue pour faire osciller le volet (10).
5. Transducteur selon la revendication 1,2,3 ou 4 caractérisé en ce qu'un signal de
réaction électrique (11) est formé à partir du signal de sortie (Pout) du transducteur et en ce que ledit signal de réaction (11) est appliqué sur un circuit électronique (20) qui est alimenté additionnelle- ment
par ledit signal d'entrée (lin) sous forme analogique et qui élabore ladite séquence d'impulsions (l(τ)) en tant
qu'un signal de différence (lin-l1),
1. Elektro-pneumatischer oder elektrohydraulischer Wandler, der eine geregelte Druckkammer
(15) aufweist, die durch eine begrenzte Einlaßöffnung (16) unter Druck gesetzt wird
un den Druck abbaut durch ein elektrisch betätigtes pneumatisches oder hydraulisches
Düsenklappensystem (10, 11, 14), daß eine Klappe (10) eine Düse (14) aufweist, wobei
die Bewegung der Klappe (10) von einem elektrischen Steuersignal gesteuert wird, wobei
das Steuersignal eine Pulsfolge (I(T)) ist, die in einer bestimmten Frequenz (f oderfo) schwingt, in welcher Pulsfolge der Abeitszyklus (τ/To) der Impulse proportional zu einem Eingangssignal (lin) und innerhalb der Schwingungsperiode (To) entsprechend der Frequenz (f oder fo) verändert wird, dadurch gekennzeichnet, daß das Düsenklappensystem (10, 11, 14)
eine charakteristische Kurve mit einem linearen Bereich (Δ S) aufweist, wobei die
Kurve bestimmt wird von der Abhängigkeit des relativ eingestellten Druckes (P/Ps) auf der Strecke (S) zwischen der Düse (14) und der Klappe (10), sowie dadurch daß
die Bewegung der Kläppe (10) während des Betriebs des Wandlers im wesentlichen begrenzt
ist auf den linearen Bereich (Δ S) der charakteristischen Kurve (Fig. 2), so daß die
Klappe (10) die Düse (14) nie vollständig öffnet oder schließt, wobei diese Vorteil
durch mechanische Stopper und/oder ausreichend hohe Auswahl der Frequenz (f oder fo) erzielt wird.
2. Wandler nach Anspruch 1, dadurch gekennzeichnet, daß die bestimmte Frequenz (fo) höber ist als ca. 30 Hz.
3. Wandler nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die bestimmte Frequenz
(fo) der Impulsfolge (I(T)) im Bereich von 30 bis 40 Hz liegt.
4. Wandler nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, daß eine elektromagnetische
Spule (12) zum Oszillieren der Klappe (10) vorgesehen ist.
5. Wandler nach Anspruch 1, 2, 3 oder 4, dadurch gekennzeichnet, daß ein elektrisches
rückgeleitetes Signal (11) von dem Ausgangssignal (Pout) des Wandler gebildet wird und daß das rückgeleitete Signal (11) zu einer elektronischen Einheit (20) geführt wird, die zusätzlich mit dem Eingangssignal
(lin) an analoger Form versorgt wird und die die Impulsfolge (l(τ)) als Differenzsignal
(lin-l1) vorsieht.