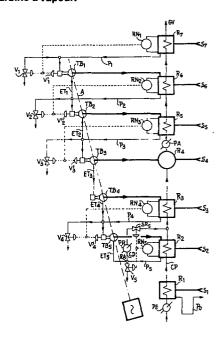
11 Numéro de publication:

0032641 A1

12)

DEMANDE DE BREVET EUROPEEN

21 Numéro de dépôt: 80400077.6


61 Int. Cl.3: F 01 K 7/40

② Date de dépôt: 18.01.80

(3) Date de publication de la demande: 29.07.81
Bulletin 81/30

- Demandeur: HAMON-SOBELCO S.A. Société dite:, 50-58, Rue Capouillet, B-1060 Bruxelles (BE)
- (inventeur: Paquet, André Jules, Avenue du Cor de Chasse 39, B-1170 Watermael-Boltsfort (BE)
- Etats contractants désignés: AT BE CH DE FR GB IT LU NL SE
- Mandataire: Lavolx, Jean et al, c/o Cabinet
 Lavolx 2, Place D'Estlenne D'Orves, F-75441 Paris
 Cedex 09 (FR)
- Système de réchauffage pour installation de production d'énergie à turbine à vapeur.
- © Ce système de réchauffage comprend une série de réchauffeurs R₁-R₇ disposés en cascade et alimentés par des soutirages de vapeur S₁-S₇ à des pressions progressivement décroissantes depuis le côté générateur de vapeur jusqu'au côté condenseur de l'installation.

Pour améliorer le rendement de l'installation à laquelle est associé le système de réchauffage, celui-ci comprend plusieurs turbines biphasiques TB₁–TB₅ disposées en cascade, dont la première TB₁ est alimentée par la purge du réchauffeur R₇ à la pression la plus élevée et dont les suivantes TB₂–TB₅ sont alimentées chacune au moins en partie par le liquide de sortie de la turbine biphasique qui la précède. Ces turbines biphasiques produisent de l'énergie mécanique par récupération de l'énergie cinétique des condensats des réchauffeurs qui les alimentent.

Système de réchauffage pour installation de production d'énergie à turbine à vapeur.

F .5 -

5

La présente invention concerne les systèmes de réchauffage d'eau condensée utilisés dans les installations de production d'énergie à turbine à vapeur telles que les centrales électriques.

Ces systèmes de réchauffage comprennent généralement un certain nombre de réchauffeurs disposés entre le condenseur et le générateur de vapeur de l'installation pour réchauffer l'eau condensée dans le condenseur et alimentés en vapeur à des pressions différentes par des souti-10 rages respectifs sur la turbine. Entre certains des réchauffeurs et le réchauffeur immédiatement adjacent alimenté par un soutirage en vapeur à une pression inférieure est disposé un séparateur de phases recevant le mélange : eauvapeur de la purge du réchauffeur associé au soutirage à pression plus élevée et alimentant le réchauffeur associé au soutirage à pression moins élevée, en parallèle avec ce soutirage à pression moins élevée, avec de la vapeur séparée dudit mélange dans le dispositif séparateur de phase. En outre, dans les centrales nucléaires à eau pressurisée, il 20 est prévu un surchauffeur dont les condensats envoyés au réchauffeur associé au soutirage à pression la plus élevée par l'intermédiaire d'un séparateur de phases.

Grâce à cet agencement, une partie de l'éner-25 gie du mélange eau-vapeur de la purge de certains des échangeurs par condensation, surchauffeurs ou réchauffeurs, est utilisée pour contribuer au réchauffage du fluide du circuit condenseur-turbine dans un échangeur à condensation alimenté en vapeur à une pression moins élevée. Toutefois, 30 une partie de cette énergie est perdue sous forme thermique dans la soupape de régulation principale prévue dans le conduit de purge en amont du séparateur de phase, ainsi que dans ce dernier.

L'invention vise donc à réaliser un système de réchauffage qui permette d'utiliser une partie de cette

énergie perdue dans les systèmes de réchauffage de l'art antérieur de manière à accroître le rendement énergétique global de l'installation de production d'énergie à laquelle le système de réchauffage est associé.

5

IO

L'invention vise également à réaliser un système de réchauffage pour installation de production d'énergie à turbine à vapeur qui, tout en ayant un meilleur rendement que les systèmes de réchauffage de la technique antérieure, soit de construction plus simple que ces derniers.

Enfin, un autre but de l'invention est de réaliser un système de réchauffage pour installation de production d'énergie à turbine à vapeur qui permette d'éviter au moins partiellement les phénomènes d'érosion que l'on rencontre dans les systèmes de réchauffage classiques à soupape de régulation principale et séparateur de phase dans lesquels le phénomène d'érosion est dû à la grande vitesse du mélange eau-vapeur à la sortie de la soupape de régulation principale.

L'invention, telle qu'elle est caractérisée dans les revendications, permet d'atteindre ces buts grâce au fait que la turbine biphasique produit de l'énergie mécanique par récupération de l'énergie cinétique des condensats de l'échangeur par condensation qui l'alimente. Il en résulte un accroissement du rendement énergétique de l'installation à laquelle le système de réchauffage suivant l'invention est associé et la suppression des phénomènes d'érosion dans la soupape de régulation principale et le séparateur de phases car ceux-ci sont supprimés au profit de la turbine biphasique.

D'autres caractéristiques et avantages de l'invention ressortiront de la description qui va suivre de deux exemples particuliers de sa réalisation illustrés par les dessins annexés sur lesquels :

- la Fig. l est un schéma d'un système de réchauffage conventionnel pour centrale électrique à combustible fossile;
- la Fig. 2 est un schéma d'un système de 5 réchauffage suivant linvention pour centrale électrique à combustible fossile;
 - la Fig. 3 est un schéma d'un système de réchauffage conventionnel pour centrale électrique nucléaire; et
- la Fig. 4 est un schéma d'un système de réchauffage suivant l'invention pour centrale électrique nucléaire.

En se reportant à la Fig. 1, on a représenté le schéma d'un système de réchauffage classique à sept réchauffeurs R₁, R₂, R₃, R₄, R₅, R₆ et R₇. Les réchauffeurs R₁ à R₇ réchauffent l'eau condensée et reprise par une pompe d'extraction PE dans le condenseur (non représenté) de la centrale électrique à combustion fossile et turbine à vapeur à laquelle est associé ce système de réchauffage.

20

Le réchauffeur R_1 est alimenté à partir d'un soutirage S_1 avec de la vapeur à 0,3 bar et à un débit représentant 4,5% en poids du débit total (100% en poids) fourni par le réchauffeur R_7 au générateur de vapeur (non représenté) de l'installation. La vapeur condensée dans le réchauffeur R_1 est renvoyée par une canalisation de purge P_0 vers le condenseur. Le second réchauffeur R_2 disposé en série dans le circuit principale CP d'eau condensée, en aval du réchauffeur R_1 , est alimenté à partir d'un soutirage S_2 en vapeur à une pression de 1 bar, avec un débit de 4,5% en poids. Le troisième réchauffeur R_3 , disposé en aval par rapport à R_2 sur le circuit CP, est alimenté à partir d'un soutirage S_3 en vapeur à une pression de 2 bars, avec un débit représentant 3% en poids du débit total.

Le débit du circuit principal CP à la sortie du réchauffeur R_3 , qui représente 75% en poids du débit

total à la sortie du réchauffeur R_7 , est envoyé dans un réchauffeur par mélange ou bâche dégazante R_{Λ} qui est alimentée à partir d'un soutirage $S_{\underline{A}}$ avec de la vapeur à une pression de 4 bars et à un débit représentant 3,5% en poids du débit total. L'eau provenant du réchauffeur R3 et la vapeur provenant du soutirage \mathbf{S}_4 sont mélangées dans le réchauffeur par mélange R_A et ce mélange est repris par une pompe alimentaire PA qui l'envoie dans le réchauffeur R_5 , lequel est alimenté, à partir d'un soutirage S_5 avec IO de la vapeur à une pression de 9 bars et à un débit représentant 7% du débit total. L'eau sortant du réchauffeur R5 est ensuite envoyée dans un réchauffeur R6 qui est alimenté, à partir d'un soutirage S6, avec de la vapeur à une pression de 18 bars et à un débit représentant 7% du débit **I**5 total.

Enfin, l'eau sortant du réchauffeur R₆ est encore réchauffée dans le dernier réchauffeur R₇ qui est alimenté, à partir d'un soutirage S₇, avec de la vapeur à une pression de 36 bars et à un débit représentant 7,5% en poids du débit total. L'eau condensée sortant du réchauffeur R₇ représente donc, comme indiqué précédemment, 100% du débit total qui est envoyé sous une pression de l'ordre de 200 à 220 bars au générateur de vapeur GV (non représenté) de l'installation où cette eau est vaporisée pour être renvoyée dans la turbine (non représentée).

La vapeur issue du soutirage S_7 se condense dans le réchauffeur R_7 et les condensats de cette vapeur ainsi formés sont évacués à partir du réchauffeur R_7 par une canalisation de purge P_1 raccordée à un premier séparateur de phases SP_1 par l'intermédiaire d'une soupape de régulation principale SR_1 . Une soupape de régulation motorisée de secours V_1 est branchée en dérivation par rapport à la soupape de régulation principale SR_1 sur la canalisation de purge P_1 pour renvoyer, si nécessaire, les condensats de la canalisation de purge P_1 directement au

condenseur. Les soupapes de régulation SR_1 et V_1 sont commandées par un régulateur de niveau RN_1 destiné à régler le niveau d'eau dans le réchauffeur R_7 . Le mélange à 244°C de la canalisation de purge P_1 est envoyé par 1'intermédiaire de la soupape de régulation principale SR_1 dans le séparateur de phases SP_1 qui sépare l'eau de la vapeur résultant la détente, cette dernière étant envoyée par une canalisation CV_1 côté vapeur dans le réchauffeur R_6 et l'eau étant envoyée par une canalisation CE_1 côté eau dans le réchauffeur R_6 .

Les condensats recueillis dans le réchauffeur R_6 sont envoyés par une canalisation de purge P_2 à un séparateur de phases SP_2 par l'intermédiaire d'une soupape de régulation principale SR, avec laquelle est 15 branchée en parallèle une soupape de régulation motorisée de secours V_2 . Les condensats à 207°C de la canalisation de purge P₂ sont séparés dans le séparateur de phases SP₂ et la vapeur est envoyée par une canalisation CV, côté vapeur du réchauffeur R_5 , tandis que l'eau est envoyée par une cana-20 lisation CE_2 côté eau du réchauffeur R_5 . Le séparateur de phases SP2, ainsi que les soupapes de régulation SR2 et V2 qui sont commandées par un régulateur de niveau RN, qui règle le niveau d'eau dans le réchauffeur R6, fonctionnent de la même manière et jouent le même rôle que le séparateur de phases SP_1 et les soupapes de régulation SR_1 et V_1 décrits précédemment.

Les condensats à 175°C recueillis dans le réchauffeur R₅ sont envoyés par une canalisation de purge P₃ au réchauffeur par mélange R₄, par l'intermédiaire d'une soupape de régulation principale SR₃ avec laquelle est branchée en dérivation une soupape de régulation motorisée de secours V₃. Les soupapes SR₃ et V₃ sont commandées par un régulateur de niveau RN₃ qui règle le niveau dans le réchauffeur R₅. Le mélange circulant dans la canalisation de purge P₃, qui représente 21,5% en poids

du débit total, est mélangé dans la bâche dégazante R_4 avec l'eau provenant du réchauffeur R_3 et la vapeur issue du soutirage S_4 de sorte que la pompe alimentaire PA a un débit représentant 100% du débit total.

Les condensats recueillis dans le réchauffeur R₃ sont envoyés au moyen d'une canalisation de purge P₄ à un séparateur de phases SP₃, par l'intermédiaire d'une soupape de régulation principale SR₄ avec laquelle est branchée en dérivation une soupape de régulation motorisée de secours 10 V₄ qui, comme les soupapes V₁, V₂ et V₃, renvoie directement les condensats au condenseur en cas d'incident. Les soupapes de régulation SR₄ et V₄ sont commandées par un régulateur de niveau RN₄ qui règle le niveau d'eau dans le réchauffeur R₃. Les condensats à 120°C de la canalisation de purge P₄ sont divisés dans le séparateur de phases SP₃, d'où la vapeur est envoyée côté vapeur du réchauffeur R₂ par une canalisation CV₃ tandis que l'eau est envoyée côté eau du réchauffeur R₂ par une canalisation CE₃.

Enfin, la canalisation de purge P_5 qui recueil-20 le les condensats à $100\,^{\circ}\mathrm{C}$ issus du réchauffeur R_2 est raccordée en RA à une canalisation de dérivation CD qui est branchée entre, d'une part, le condenseur et, d'autre part, la canalisation principlae CP, entre les réchauffeurs R2 et R3. Une soupape de régulation motorisée de secours V_{ς} est dispo-25 sée dans la canalisation de dérivation CD entre le raccord RA et le condenseur, et une soupape de régulation principale SR₅ est disposée dans la canalisation CD entre le raccord RA et le raccord de la canalisation CD avec la canalisation principale CP. Les soupapes de régulation SR5 et V5 sont 30 commandées par un régulateur de niveau RN_5 qui assure la régulation du niveau d'eau dans le réchauffeur R2. Une pompe de reprise de condensat PR est disposée dans la canalisation CD entre le raccord RA et la soupape de régulation SR pour réinjecter les condensats de la canalisation de purge P_5 dans 35 la canalisation principale CP. En cas d'arrêt de la pompe

PR, les condensats sont retournés au condenseur par la soupape de régulation de secours $V_{5}\,.$

En fonctionnement, une partie de l'énergie calorifique du mélange issu des réchauffeurs R_7 , R_6 , R_5 , R_3 5 et R₂ est utilisée pour réchauffer l'eau dù circuit principal, soit par réinjection directe dans ce dernier à partir des réchauffeurs R_5 et R_2 , soit par envoi dans le réchauff feur suivant après séparation de la phase liquide et de la phase vapeur dans les séparateurs de phases SP1, SP2 et 10 SP3. Néanmoins, une partie de l'énergie de ce mélange présente sous forme de pression est perdue dans les séparateurs de phases qui, en outre, ont l'inconvénient d'être érosi*o*n du fait de soumis à une forte vitesse élevée du mélange à la sortie des soupapes de 15 régulation.

Ces inconvénients sont éliminés grâce au système de réchauffage suivant l'invention dont le schéma est représenté à la Fig. 2 sur laquelle les mêmes numéros de référence que ceux employés à la Fig. 1 ont été utilisés pour désigner les éléments similaires. On notera en outre que les débits, pressions et températures en différents points du circuit suivant l'invention sont sensiblement les mêmes que ceux indiqués à propos de la Fig. 1 et ils ne seront pas précisés à nouveau.

Le système de réchauffage suivant l'invention de la Fig. 2 diffère essentiellement de celui de la Fig. 1 en ce que les soupapes de régulation principale SR_1 , SR_2 , SR_3 et SR_4 , ainsi que les séparateurs de phases SP_1 , SP_2 et SP_3 ont été supprimés et remplacés par des turbines biphasiques. C'est ainsi que la turbine biphasique TB_1 remplace la soupape de régulation SR_1 et le séparateur de phases SP_1 , la turbine biphasique TB_2 remplace la soupape de régulation SR_2 et le séparateur de phases SP_2 , la turbine

biphasique ${\rm TB}_3$ remplace la soupape de régulation ${\rm SR}_3$, la turbine biphasique ${\rm TB}_5$ remplace la soupape de régulation ${\rm SR}_4$ et le séparateur de phases ${\rm SP}_3$ et une turbine biphasique supplémentaire ${\rm TB}_4$ est disposée entre les turbines biphasiques ${\rm TB}_3$ et ${\rm TB}_5$.

Les turbines biphasiques sont des turbines d'une conception particulière qui sont alimentées au moyen d'un mélange d'un liquide et d'un gaz ou vapeur pour entraîner en rotation un arbre, fournissant ainsi un travail mécanique, tout en assurant une séparation du liquide et du gaz, de sorte que ces derniers peuvent être recueillis séparément à la sortie de la turbine. Etant donné que ce type de turbine est connu, notamment par les brevets US 3 879 949, 3 972 195 et 4 087 261 auxquels on pourra se reporter, il n'en sera pas donné de description détaillée dans le présent mémoire.

Les condensats du réchauffeur R₇ sont introduits dans la turbine biphasique TB, en fonction du niveau dans ce réchauffeur par ajustement de la position du modérateur V'_1 de la turbine biphasique TB_1 commandé par le régulateur de niveau RN_{1} . Ces condensats sont dirigés vers le condenseur par la soupape de régulation de secours V_1 en cas d'indisponibilité de la turbine biphasique TB1.La vapeur séparée dans celle-ci est dirigée vers la zone vapeur du réchauffeur R₆, tandis que l'eau séparée rejoint les condensats du réchauffeur R_6 . Ce mélange est introduit dans la turbine biphasique suivante TB2 en fonction du niveau dans le réchauffeur R₆, par ajustement de la position de son modérateur V'2 commandé par le régulateur de niveau RN2. En cas d'indisponibilité de la turbine biphasique ${\rm TB}_2$, le mélange est dirigé vers le condenseur par la soupape de régulation de secours V2. La vapeur séparée dans la turbine biphasique ${\rm TB}_2$ est dirigée vers la zone vapeur du réchauffeur R_{ς} , tandis que l'eau séparée rejoint les condensats de ce réchauffeur. A nouveau, ce mélange est introduit dans

la turbine biphasique suivante ${\rm TB}_3$ en fonction du niveau dans le réchauffeur $\mathbf{R}_{\mathbf{5}}$, par ajustement de son modérateur V'3 commandé par le régulateur de niveau RN3. En cas d'indisponibilité de la turbine biphasique TB3, le mélange est dirigé vers le condenseur par la soupape de régulation de secours V_3 . La vapeur séparée dans la turbine biphasique ${\rm TB}_3$ est dirigée vers le réchauffeur par mélange ${\rm R}_4$, tandis que l'eau séparée est envoyée directement dans la turbine biphasique suivante TB₄. La vapeur séparée dans celle-ci est dirigée vers la zone vapeur du réchauffeur R3, tandis que l'eau séparée rejoint les condensats de ce réchauffeur. Enfin, ce mélange est introduit dans la dernière turbine ${\tt biphasique} \ {\tt TB}_{\tt S} \ {\tt en} \ {\tt fonction} \ {\tt du} \ {\tt niveau} \ {\tt dans} \ {\tt le} \ {\tt r\'echauffeur}$ R_3 , par ajustement de son modérateur V'_4 commandé par le régulateur de niveau RN_4 . En cas d'indisponibilité de la turbine biphasique TB_{ς} , le mélange est dirigé vers le condenseur par la soupape de régulation de secours $V_{\underline{A}}$. La vapeur séparée dans la turbine biphasique TB_5 est dirigée vers la zone vapeur du réchauffeur \mathbf{R}_2 , tandis que l'eau séparée rejoint les condensats de ce réchauffeur en RA. La partie plus aval de ce système fonctionne ensuite comme la partie correspondante du système de réchauffage conventionnel de la Fig. 1.

En fonctionnement, l'énergie du mélange d'eau et 25 de vapeur dans chacune des turbines biphasiques est recueillie sur un arbre commun A pour entraîner un alternateur auxiliaire, une pompe ou autre. En variante, les turbines biphasiques peuvent ne pas être couplées sur le même arbre.

On se reportera maintenant à la Fig. 3 qui

montre un système de réchauffage conventionnel pour centrale nucléaire et sur laquelle les mêmes lettres de référence
que celles utilisées sur les Fig. 1 et 2 ont été employées
pour désigner des éléments analogues. Etant donné que le
système de réchauffage de la Fig. 3 est classique et présente en outre de nombreuse similitudes avec celui de la

Fig. 1, il sera décrit plus succinctement que celui-ci. Ce système de réchauffage comprend, sur le circuit principal CP, un sous-refroidisseur SOR et six réchauffeurs R_{11} à R_{16} alimentés en vapeur par des soutirages S_{11} à S_{16} respectivement. Le réchauffeur R_{16} est également alimenté par de la vapeur séparée par un séparateur de phases $\mathrm{SP}_{1\hat{1}}$ des condensats d'un surchauffeur SU (non représenté). Des soupapes de régulation principale SR1, et de secours $V_{1,1}$ commandées en fonction du niveau dans le surchauffeur permettent de diriger les condensats de celuici vers le séparateur de phases SP,, ou vers le condenseur suivant les besoins, comme décrit précédemment. Le réchauffeur suivant \mathbf{R}_{15} est alimenté par de la vapeur séparée des condensats du réchauffeur R_{16} par un séparateur de phases SP₁₂. Des soupapes de régulation principale SR₁₂ et de secours V₁₂ commandées par un régulateur de niveau RN₁₁. sont prévues.

Les condensats du réchauffeur R_{15} sont dirigés vers un réservoir de récupération des purges DRT par l'intermédiaire d'une soupape de régulation principape SR_{13} . En cas d'incident, une soupape de régulation de secours V_{13} permet d'envoyer ces condensats directement au condenseur. Le réservoir DRT reçoit également les condensats d'un sécheur SE (non représenté) par l'intermédiaire d'une soupape de régulation principale SR_{15} . Une soupape de régulation de secours V_{15} , commandée comme la soupape SR_{15} en fonction du niveau dans le sécheur, permet de diriger ces condensats directement vers le condenseur si nécessaire. Le réservoir DRT reçoit enfin les condensats du réchauffeur R_{14} , une soupape de régulation de secours V_{14} commandée par le régulateur de niveau R_{14} étant toutefois prévue pour les envoyer au condenseur si nécessaire.

Le contenu du réservoir DRT est réinjecté par une soupape de reprise des condensats PR dans le circuit principal CP, entre la pompe d'alimentation PA et le réchauffeur R_{14} , par l'intermédiaire d'une soupape de régulation principale SR_{16} commandée par un régulateur de niveau RN_{13} associé au réservoir DRT. Ce régulateur RN_{13} commande également une soupape de régulation de secours V_{16} permettant de renvoyer les condensats du réservoir DRT au condenseur.

Les condensats du réchauffeur R₁₃ sont envoyés, soit à un séparateur de phases SP₁₃ par l'intermédiaire d'une soupape de régulation principale SR₁₇, soit au condenseur par l'intermédiaire d'une soupape de régulation de secours V₁₇, en fonction de la commande du régulateur de niveau RN₁₅ du réchauffeur R₁₃. Enfin, les condensats du réchauffeur R₁₂ sont envoyés, soit directement au sous-réchauffeur SOR et, de là, au condenseur par l'intermédiaire d'une soupape de régulation principale SR₁₈, soit directement au condenseur par l'intermédiaire d'une soupape de régulation de secours V₁₈, en fonctionde la commande du régulateur de niveau RN₁₆ du réchauffeur R₁₂.

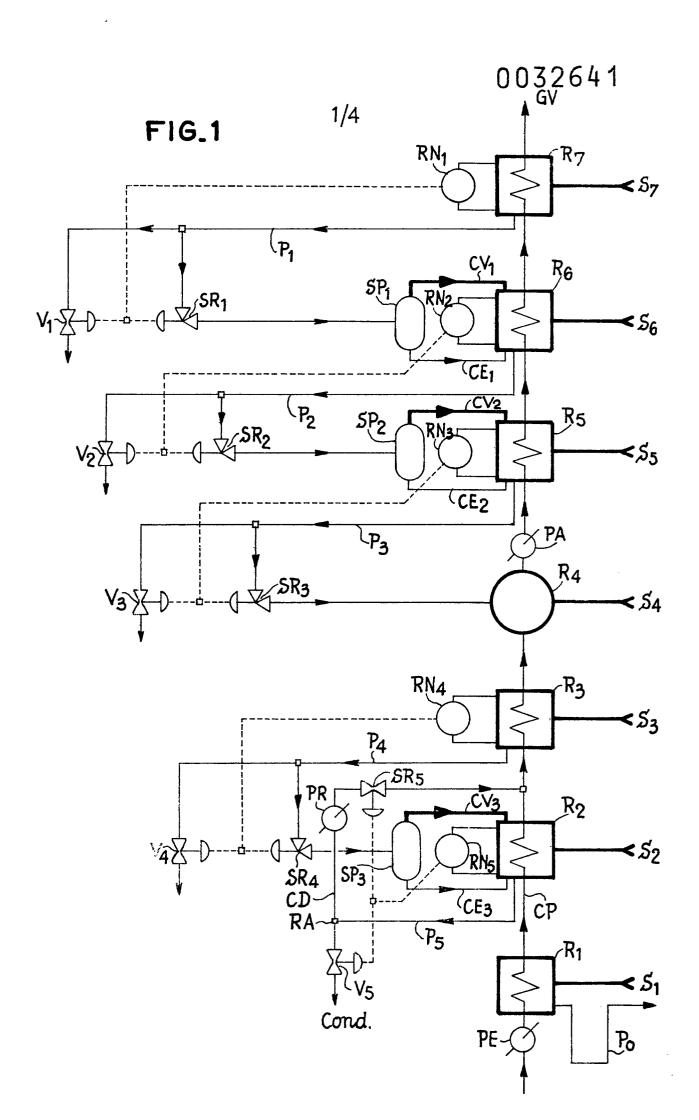
Dans le système de réchauffage suivant l'in-vention pour centrale nucléaire, comme représenté à la Fig. 4, des turbines biphasiques ${\rm TB}_{11}$, ${\rm TB}_{12}$, ${\rm TB}_{13}$, ${\rm TB}_{14}$ et ${\rm TB}_{15}$ sont substituées respectivement aux soupapes de régulation principales ${\rm SR}_{11}$, ${\rm SR}_{12}$, ${\rm SR}_{13}$, ${\rm SR}_{17}$ et ${\rm SR}_{18}$, et aux séparateurs de phases ${\rm SP}_{11}$, ${\rm SP}_{12}$ et ${\rm SP}_{13}$ supprimés.

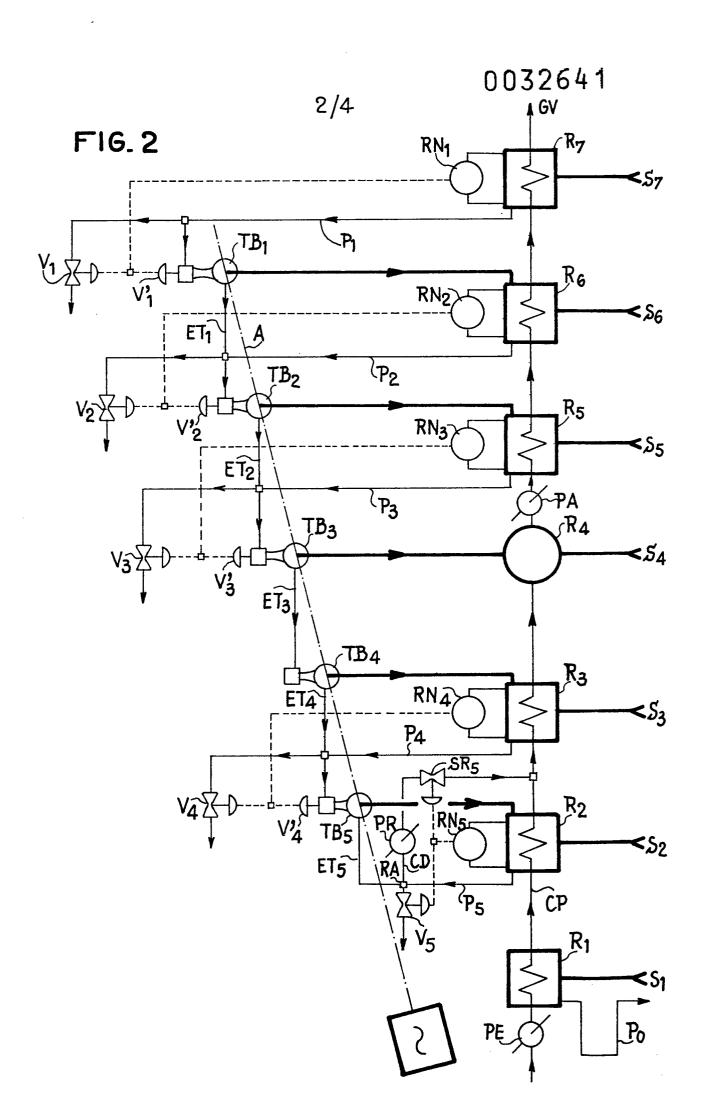
TB₁₂ alimente respectivement les réchauffeurs R₁₆ et R₁₅, tandis que l'eau rejoint les condensats respectifs de ces réchauffeurs pour alimenter les turbines suivantes TB₁₂ et TB₁₃ respectivement. La vapeur séparée par la turbine biphasique TB₁₃ est dirigée vers le réservoir DRT, tandis que l'eau est envoyée en amont de la pompe de reprise des condensats PR pour être réinjectée avec les purges du réservoir DRT dans le circuit principal CP.

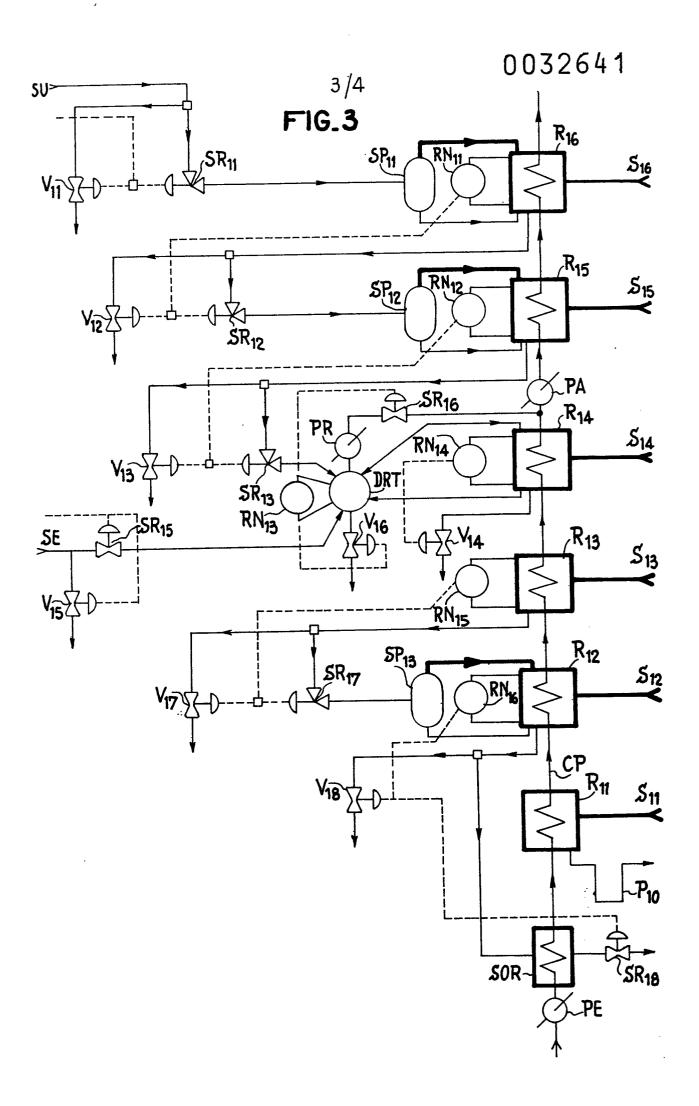
La turbine biphasique ${\rm TB}_{14}$ sépare la vapeur 35 des condensats du réchauffeur ${\rm R}_{13}$ et envoie celle-ci côté

vapeur du réchauffeur R_{12} , tandis que l'eau rejoint les condensats de ce réchauffeur. Ce mélange est introduit dans la turbine biphasique TB_{15} et la vapeur séparée dans celleci est dirigée vers la zone vapeur du réchauffeur R_{11} . L'eau rejoint les condensats de ce réchauffeur et le mélange ainsi formé alimente le sous-refroidisseur SOR.

Bien entendu, comme dans le cas de la Fig. 2, les turbines biphasiques TB₁₁ à TB₁₅ sont alimentées en fonction du niveau dans l'échangeur par condensation dont 10 elles reçoivent les condensats, par ajustement de la position de leur modérateur respectif V'₁₁, V'₁₂, V'₁₃, V'₁₄ et V'₁₅. De même également, dans cet exemple, l'énergie du mélange d'eau et de vapeur dans chacune des turbines est recueillie sur un arbre commun A pour entraîner des organes auxiliaires ou 15 individuellement sur l'arbre de chaque turbine.


Ainsi, le système de réchauffage à turbine biphasique suivant l'invention permet à la fois d'alimenter en cascade les réchauffeurs avec de la vapeur prélevée à partir des condensats d'un réchauffeur précédent ou d'un surchauffeur et de fournir de la puissance mécanique supplémentaire. Ceci permet donc d'accroître le rendement global de l'installation de production d'énergie à laquelle est associé le système de réchauffage.


Outre cet avantage au niveau du rendement, qui peut se chiffrer par un apport de puissance supplémentaire de 0,5 à 0,8%, le système de réchauffage suivant l'invention permet de supprimer les séparateurs de phases statiques des systèmes de réchauffage de la technique antérieure puisque ce sont les turbines biphasiques elles-mêmes qui effectuent la séparation. Il en résulte par là même une suppression des phénomènes d'érosion précités dans les séparateurs de phases et une simplification du schéma de canalisation.


- REVENDICATIONS -

- 1.- Système de réchauffage des condensats
 d'une turbine à vapeur d'une installation de production
 d'énergie, comprenant au moins un échangeur à condensation
 dont les condensats sont détendus vers un échangeur à plus
 5 basse pression, caractérisé en ce que ledit système comprend au moins une turbine biphasique (TB₁) disposée entre
 ledit échangeur à condensation et l'échangeur à plus basse
 pression et alimentée par les condensats dudit échangeur à
 condensation.
- 2.- Système selon la revendication 1, comprenant une série de réchauffeurs disposés en cascade et alimentés par des soutirages de vapeur à des pressions progressivement décroissantes depuis le côté générateur de vapeur jusqu'au côté condenseur de l'installation, caractérisé en ce qu'il comprend plusieurs turbines biphasiques (TB₁-TB₅; TB₁₂-TB₁₅) disposées en cascade, dont la première (TB₁; TB₁₂) est alimentée par la purge du réchauffeur (R₇; R₁₆) à la pression la plus élevée et dont les suivantes (TB₂ TB₅; TB₁₃-TB₁₅) sont alimentées chacune au moins en partie par le liquide de sortie de la turbine biphasique qui la précède.
 - 3.- Système suivant la revendication 2, caractérisé en ce qu'au moins certaines desdites turbines biphasiques (TB₂, TB₃, TB₅; TB₁₂, TB₁₃, TB₁₅) sont alimentées à la fois par le liquide de sortie de la turbine biphasique (TB₁, TB₂, TB₄; TB₁₁, TB₁₂, TB₁₄) et par les condensats du réchauffeur (R₆, R₅, R₃; R₁₆, R₁₅, R₁₂) qui les précède côté amont.
- 4.- Système selon l'une quelconque des revendications 2 et 3, comprenant un réchauffeur par mélange intermédiaire, caractérisé en ce que la turbine biphasique (TB_4) associée au réchauffeur (R_3) disposé immédiatement en aval du réchauffeur par mélange (R_4) est alimentée uniquement par le liquide de sortie de la turbine biphasique (TB_3) alimentant le réchauffeur par mélange (R_4).

- 5.- Système selon l'une quelconque des revendications 2 et 3, comprenant un surchauffeur en amont du réchauffeur à pression la plus élevée, caractérisé en ce qu'il comprend une turbine biphasique (${\rm TB}_{11}$) entre ledit surchauffeur (SU) et ledit réchauffeur (${\rm R}_{16}$).
- 6.- Système selon l'une quelconque des revendications 2 à 5, caractérisé en ce qu'il comprend une turbine biphasique associée à chacun de plusieurs réchauffeurs consécutifs.
- 7.- Système selon l'une quelconque des revendications l à 6, caractérisé en ce que la ou lesdites turbines biphasiques (${\rm TB}_1$ - ${\rm TB}_5$; ${\rm TB}_{11}$ - ${\rm TB}_{15}$) sont couplées à un arbre commun (A).
- 8.- Système selon l'une quelconque des reven15 dications l à 7, dans lequel ladite turbine biphasique comporte un modérateur de réglage de son alimentation, caractérisé en ce que ledit modérateur (V₁-V'₄; V'₁₁-V'₁₅) est commandé par un régulateur (RN₁-RN₄; RN₁₁, RN₁₅, RN₁₀) du niveau des condensats dans ledit échangeur à conden20 sation.

RAPPORT DE RECHERCHE EUROPEENNE

EP 80 40 0077

DOCUMENTS CONSIDERES COMME PERTINENTS			CLASSEMENT DE LA DEMANDE (Int. Cl. 3)	
Catégorie	Citation du document avec indication, en cas pertinentes	tio	vendica- n ncernée	- (
				F 01 K 7/40
A	US - A - 2 921 441 (B	IIRT)		
			Ì	
A	FR - A - 1 290 451 (S	IEMENS)		
A	FR - A - 377 826 (FER	RANTI)		
	an ao ao ao			
				!
				DOMAINES TECHNIQUES
				RECHERCHES (Int. Cl. 3)
				F 01 K
				CATEGORIE DES DOCUMENTS CITES
				X: particulièrement pertinent
				A: arrière-plan technologique O: divulgation non-écrite
				P: document intercalaire T: théorie ou principe à la base
				de l'invention
				E: demande faisant interférence D: document cité dans
				la demande
				L: document cité pour d'autres raisons
				&: membre de la même famille,
77	Le présent rapport de recherche a été étab	li pour toutes les revendications		document correspondant
Lieu de la	recherche Date d'achèv	rement de la recherche	Examinate	ır
	La Have 14-	08-1980	V a	GHEEL