(19) |
 |
|
(11) |
EP 0 033 229 B1 |
(12) |
EUROPEAN PATENT SPECIFICATION |
(45) |
Mention of the grant of the patent: |
|
12.12.1984 Bulletin 1984/50 |
(22) |
Date of filing: 22.01.1981 |
|
(51) |
International Patent Classification (IPC)3: F28D 21/00 |
|
(54) |
Heat exchange apparatus
Wärmetauschvorrichtung
Appareil d'échange de chaleur
|
(84) |
Designated Contracting States: |
|
AT BE CH DE FR GB IT LI SE |
(30) |
Priority: |
29.01.1980 GB 8002879 20.05.1980 GB 8017672
|
(43) |
Date of publication of application: |
|
05.08.1981 Bulletin 1981/31 |
(71) |
Applicant: Kidd, Archibald Watson |
|
Melksham
Wiltshire (GB) |
|
(72) |
Inventor: |
|
- Kidd, Archibald Watson
Melksham
Wiltshire (GB)
|
(74) |
Representative: Ford, Michael Frederick et al |
|
MEWBURN ELLIS
York House
23 Kingsway London WC2B 6HP London WC2B 6HP (GB) |
|
|
|
Note: Within nine months from the publication of the mention of the grant of the European
patent, any person may give notice to the European Patent Office of opposition to
the European patent
granted. Notice of opposition shall be filed in a written reasoned statement. It shall
not be deemed to
have been filed until the opposition fee has been paid. (Art. 99(1) European Patent
Convention).
|
[0001] This invention relates to heat exchange apparatus, also known as an "economiser",
serving to withdraw heat from flue gases. It is primarily concerned with apparatus
which would receive the flue_ gas from domestic or small commercial heating apparatus
used to heat a fluid medium, especially water. Such heating apparatus would typically
have a heat output in the range of approximately 17 to 87 kilowatts (60 000 to 300
000 BTU/h) and heat a fluid medium such as water for central heating or air for a
ducted warm air central heating system. It may be oil or gas fired apparatus.
[0002] It is often the case with domestic or small commercial heating apparatus that the
flue gas leaving the apparatus still contains a certain amount of recoverable heat
and the apparatus of this invention can be employed for recovering further heat from
the flue gas and thereby increasing the overall heating efficiency. The apparatus
of the present invention serves to transfer heat from the flue gas to a fluid medium
and this fluid medium will generally be the same as that which is heated in the main
heating apparatus; if so the heated fluid medium which flows out from the heat exchange
apparatus of this invention passes on to the main heating apparatus where it is heated
further.
[0003] One problem which can arise with heat exchange apparatus of the type indicated is
that if an overall efficiency of much over 80% is achieved the flue gases are cooled
almost to the dew point. The combustion products of oil and natural gas include a
lot of steam and such cooling entails a risk of condensation forming. This can form
in the heat exchange apparatus or in the chimney especially during starting up from
cold. The amount of this condensation can be substantial. It can have a damaging effect
on the structure of the chimney as well as other problems, and can lead to corrosion
of the boiler, thus shortening its life. Hitherto it has frequently been considered
necessary to keep the temperature above the dew point throughout the system, which
entails substantial waste of heat.
[0004] The problem is exacerbated in the case of fuel with a substantial sulphur content.
Oil frequently does have a substantial sulphur content. The condensation tends to
absorb sulphur- containing combustion products emanating from any sulphur content
of the fuel and cor- rossive sulphur acids can be formed. It will be readily appreciated
that the presence of such corrosive acids on cast iron or welded steel parts can greatly
reduce the working life of the equipment. Even stainless steel is not resistant to
these acids. Heretofore, only limited attention appears to have been paid to the problem
of acid condensation from flue gas.
[0005] FR-A-2321094 and equivalent GB-A-1502746 propose a heat exchanger arrangement mounted
above a central heating boiler, in which the flue gases are caused to pass upwardly
around finned tubes through which the central heating water passes. Provision is made
for the drainage of condensation dripping off these tubes. With this arrangement the
tubes extend between manifolds set slightly inwardly from the side walls of a casing
through which the flue gas passes and the tubes are provided with fins which increase
the heat exchange area but make it possible for dirt to accumulate on and between
the fins. This prior proposal indicates that the condensation may contain "aggressive
substances" and recommends construction from a resistant material. However, the material
particularly suggested is stainless steel which is not in fact resistant to sulphur
oxy- acids.
[0006] DE-A-2720397 also proposes a heat exchanger for recovering additional heat from flue
gas. In this proposal a finned structure is disposed in the path of the flue gases
and some of the central heating water is made to pass through a pipe which coils around
this finned structure. Again provision is made for the drainage of condensation forming
within the heat exchanger unit.
[0007] DE-A-2758181 also provides an enclosure through which pass hot gases from a central
heating burner. Within the enclosure there are so-called "guide panels" to remove
heat from the flue gas. they project from and are supported by the top or bottom of
the enclosure. The guide panels are not illustrated in detail but are said to be constructed
as registers or panels of tubes comprising a closed area of tube convolutions abutting
on one another. Presumably dirt could become lodged in the interstices between adjoining
tubes. The casing is provided with a cleaning flap in its bottom and this flap is
provided with a drain orifice.
[0008] FR-A-2293674 shows two different forms of heat exchanger for removing heat from flue
gas. In one form the flue gas is guided to flow over a convoluted water filled tube.
In a second form of heat exchanger, the flue gas is made to flow around vessels each
of which is formed from two pressed sheets (so as to be hollow over part of its surface
area). These vessels rest on the bottom of the casing. In the heat exchanger of this
prior proposal no provision is made for the drainage of condensation out of the enclosing
casing. The specification suggests that the parts in contact with the flue gas can
be provided with a coating of heat resisting paint, but no details are given as to
how this might be applied. The nature of the corrosion is possibly not understood,
or alternatively it is intended only that the corrosion should be slowed down, because
galvanising is also put forward as an alternative protective coating.
[0009] Another problem which can arise with heating apparatus in which fuel is burnt is
that fly ash particles i.e. particles of solid material entrained in the flue gas,
can accumulate and tend to block the chimney, particularly at its base or at a point
in the chimney at which there is a change in the direction of flow. Such fly ash can
cake into hard material. in the presence of the condensation referred to above.
[0010] Of the four prior proposals mentioned above, only DE-A-2758181 makes any mention
of dealing with dirt such as fly ash. This specification provides a cleaning flap
as mentioned above but this seems to be provided for removing dirt from where it may
happen to lodge without any attempt to control the point of deposition. As will be
explained below, the present invention employs reversal of the flue gas flow direction
to encourage deposition of fly ash. In DE-A-2758181 there is indeed reversal of flow
from a downward to an upward direction but this is accompanied by an apparent narrowing
of the cross-section available for flow which would tend to increase the speed of
flow and offset the effect of the flow reversal. In the second form of heat exchanger
shown in FR 2293674 there is again a reversal in the direction of flue gas flow from
downwardly to upwardly but again the cross section for flow appears to diminish where
the reversal occurs and in addition there is no apparent provision for access to the
interior of the heat exchanger casing to clean it.
[0011] One aspect of this invention is concerned with providing a simple and advantageous
form of heat exchange apparatus for withdrawing heat from flue gases to enable an
improvement in overall efficiency as compared to heating apparatus where further heat
is not withdrawn from flue gases without undue difficulty being caused by condensation.
The overall efficiency may for example reach 90-95%. In this aspect the invention
provides that hollow vessels within the heat exchange apparatus extend fully across
a casing between its side walls, and are supported by those side walls, while also
providing a drainage outlet from the lower part of the casing, this lower part of
the casing being shaped so that moisture will drain through the drainage outlet(s).
Preferably condensation forming on any cooled part of the apparatus, or dripping back
from the chimney, is intercepted and drained out, so that none of the condensation
returns to the boiler.
[0012] In a second aspect the present invention seeks to overcome the problem of fly ash
deposition mentioned above by inducing the deposition of entrained solid particles
within the heat exchange apparatus and moreover at a place where this deposition can
be tolerated and from which the deposited particles can reasonably easily be removed.
Deposition is induced by constraining the flue gas to reverse its direction from downwardly
to upwardly, accompanied by an increase in the cross sectional area available for
flow, and with provision of a closable aperture for removing deposited solid material.
[0013] Preferably, in order to provide resistance to the corrosive effects of sulphur acids
contained in any condensation, surfaces of the casing and of the heat exchange means
which are exposed to the flue gas have a coating of a thermosetting synthetic resin,
applied by dip coating the casing with the heat exchange means already fixed therein,
with an organic solvent-based heat curable paint. Preferably it is an epoxy phenolic
paint.
[0014] The economiser can be mounted, for example on a wall, above an existing boiler or
other fuel burning heating apparatus. Alternatively, where the economiser and fuel
burning apparatus are being designed to go together, they can be made to form a single
unit with the economiser mounted above and supported by the fuel-burning apparatus.
[0015] An example of heat exchange apparatus (to be referred to as an "economiser") embodying
this invention will now be described with reference to the accompanying drawings in
which:
Fig. 1 is a perspective view of the economiser showing its mounting as a common unit
with fuel-burning heating apparatus, and
Fig. 2 is a section through the economiser taken on the line II-II of Fig. 1.
[0016] Referring to the drawings, the economiser 8 (i.e. heat exchange apparatus) broadly
comprises a casing 10 through which flue gas passes and within which there are heat
exchange vessels 12, 14, 16 which in use are filled with water to be heated and which
are exposed to the flue gas. If desired these vessels 12, 14, 16 could be corrugated
to enhance their heat exchange efficiency, although as shown they have simple plane
surfaces.
[0017] The casing 10 is contained within an outer casing 18, whose front face is designated
19. The space between the two casings is packed with thermal insulation such as glass
wool 20.
[0018] As shown by Fig. 1, the economiser 8 is mounted above an oil-fired water-heating
boiler 22. The two pieces of apparatus are constructed as a single unit with the weight
of the economiser taken by the boiler 22 beneath. It will be seen that the sides 24
of the outer casing 18 of the economiser lie flush with the sides 26 of the outer
casing of the boiler.
[0019] Within the boiler 22 oil is burnt as fuel (although gas could be used as fuel) and
the hot flue gases produced rise up through an array of tubes 30 extending through
a tank 32 containing water to be heated. The flue gases then collect in an upper manifold
34 and leave by an exit 35 which extends across substantially the full width of the
boiler 22 between the layer of heat insulation which the boiler has at each side.
From the exit 35 a duct 36, which also extends across substantially the full width
of the boiler, carries the flue gas up to the inlet 38 to the casing 10. The duct
36 is formed by an extension of the casing 10 and it is contained within an outer
casing 39 integral with the casing 18. Heat insulation 20 is provided between the
duct 36 and this outer casing at the front and rear (as shown by Fig. 2) and also
at each side. The inlet 38 to the casing 10 extends across the full width of that
casing.
[0020] Within the tubes 30 are spiral metal retarders (not shown). The spacing of the economiser
8 above the boiler 22, together with a forward tilt to the rearmost tubes 30 allows
these retarders to be pulled out for cleaning.
[0021] As shown by Fig. 2, within the casing 10 the flue gases are constrained by baffles
40, 42 to flow first upwardly over the rear surface 44 of the heat exchange vessel
12 then downwardly over the facing surfaces of the vessels 12 and 14 and thereafter
round and up over the front surface 46 of the vessel 14 and both surfaces of the vessel
16. The flue gases finally flow out of the casing 10 through an upper outlet 48.
[0022] Both the main boiler 22 and the economiser 8 are employed to heat water, for a central
heating system for instance. This water flows first through the vessels in the economiser
8 generally in countercurrent to the flue gas and then into the tank 34 of the boiler
22. In more detail, the cold return of water from the central heating system is connected
so as to flow into the heat exchange vessel 16 through its inlet 50 (Fig. 1). Water
leaves this vessel through an upper outlet hole 52 and is carried by duct 66 to an
inlet hole 54 of the vessel 14. The water flows out of vessel 14 through a hole 56
into duct 68 leading to an upper inlet hole 58 of the vessel 12 which has a lower,
outlet hole 60 connected by a pipe 62 to an inlet 64 of the tank 34. An outlet, not
shown, from the tank 34 provides the hot flow to the central heating system.
[0023] The ducts 66, 68 are cuboidal boxes welded to the side wall of the casing 10. Each
of these boxes is open on its side welded against the wall of the casing, which thus
closes the boxes to form ducts between the holes 54 and 56 and between the holes 58
and 60.
[0024] In order to allow venting of air when the apparatus is initially filled, a small
tube 70 is provided connecting the ducts 66 and 68 and on the outer side of the duct
66 a small bleed valve, of the type used for central heating radiators, is provided
through which air trapped in the apparatus can be vented.
[0025] Each of the vessels, 12, 14, 16 is constructed from two pieces of sheet steel which
are bent into an L shape (see Fig. 2) and the two pieces then joined by welds 74 to
form a hollow box section. This box section is then welded at each end to a plate
76 forming a part of a sidewall of the casing 10. When the economiser is assembled
the three plates 76 at each side butt edge to edge and are welded together at the
butt joins 78. Sufficient gas-tightness is achieved without welding down the full
length of each butt join 78 but welding must be provided where the ducts 66, 68 cross
butt joins, in order to achieve water-tightness.
[0026] The hot flue gases coming into the economiser 8 from the boiler 22 yield up a large
proportion of their heat to the incoming return water flowing through the vessels
12, 14, 16 and which is consequently warmed by 4-6°C (7-10°F) before returning to
the boiler 22 itself. The unit formed by the boiler 22 and the economiser 8 can achieve
an overall water heating efficiency of around 90-95%. This cools the flue gases sufficiently
that condensation can occur within the economiser (where it initially forms on the
vessels 12, 14 16) and also within the chimney into which the flue gas from the outlet
48 passes. Any condensation which forms on the front surface of the rearmost heat
exchange vessel 12, or on the vessels 14 or 16, or any which drops back into the casing
10 from the chimney will fall onto the bottom surface 80 of the casing 10. Also the
baffle 42 is shaped so that any condensation running down the rear surface of the
heat exchange vessel 12 will be diverted through the small gap 82 between the vessel
12 and the baffle, rather than dripping back into the boiler. The reduction in efficiency
caused by gas leakage through this aperture 82 is sufficiently small as to be acceptable.
[0027] The bottom surface 80 of the casing 10 is inclined so that condensation falling onto
it drains rearwardly, and flows out through an outlet aperture 84 from which a duct
86 leads first downwardly and then sideways (backwards from the plane of the paper
as seen in Fig. 2) leading out through the side of the economiser. A flexible plastic
tube 88 is connected onto the duct 86 and this is used to carry any condensation away
to some convenient drain. The position of the economiser 8 above the boiler 22 gives
some hydrostatic head, and enables the tube 88 to be run along a wall for some distance
if this is required in order to reach a drain. A guard 89, to be further mentioned
below, partially surrounds the outlet 84.
[0028] The economiser 8 also has provision for causing the deposition of fly ash at a point
from which it can be removed reasonably easily. The vessels 12 and 14 together with
the baffles 40, 42 constrain the flue gas to reverse its direction, as indicated by
arrow 90, from downwardly to upwardly beneath the vessels 14, 16. The reversal of
direction induces deposition of any fly ash from the flue gas stream. Moreover, the
large void space at this point means that the cross section available for flow of
the flue gas increases rapidly as the gas debouches from the passage between the vessels
12 and 14, so causing the speed of flow to reduce. This slowing further induces deposition
of any entrained fly ash.
[0029] In the front face 19 of the economiser an access door 92 is provided enabling removal
of any fly ash which as accumulated in the void space beneath the vessels 14, 16 (where
the space available is such that some build up of ash is tolerable. Provision for
promoting deposition of fly ash at a place from which it can be removed obviates the
formation of blockages elsewhere. When the ash is removed the surfaces of the vessels
12, 14, 16 can be lightly brushed to maintain their heat exchange efficiency.
[0030] In order largely to prevent fly ash from entering the condensation drainage outlet
84, a guard 89 is placed around this. It consists of a small metal strip bent into
a U-shape and positioned around the outlet 84 so that the opening between the arms
of the U is at the rear. One arm only of the U-shape can be seen in Fig. 2. Alternatively
the guard could completely encircle the outlet 84, but have a serrated bottom edge
standing on the bottom surface of the casing 10. Condensate would pass between the
serrations but these would act as a coarse filter, holding back the fly ash.
[0031] The parts of the economiser are made of mild steel plate. In order to protect the
parts which are exposed to the sulphur acids contained in any condensation which forms,
a theremset- ting synthetic resin coating is applied to all of the interior surfaces
which in use are exposed to flue gas. The coating is provided by applying a fairly
thick film of a phenolic epoxy resin paint curable by heating, and then baking to
effect the curing and provide a hard impermeable coating. The paint is applied by
dip coating to the whole of the inner casing 10, with the vessels 12, 14, 16 and the
ducts 66, 68 in place and with the inlet 50 and outlet 60 temporarily blocked to close
off the system of spaces which in use are filled with water.
[0032] To apply the paint the assembled casing 10 is submerged in a suitably shaped tank
filled with the paint, so that (inter alia) all interior surfaces of the casing and
the exterior surfaces of the heat exchanger vessels (which are the surfaces exposed
to flue gas, in use) are coated by the paint. The casing is then lifted out and surplus
paint allowed to drain back into the tank. After it has drained the casing is stoved
to cure the coating.
[0033] The paint can be a stoving modified epoxy paint containing pigment, paint extenders
(finely ground powders such as barytes and talc) liquid synthetic resins such as epoxy
alkyd and melamine-formaldehye, hydrocarbon and other solvent liquids such as ethyl
cellosolve (2-ethoxy- ethan-1-
01).
[0034] An epoxy phenolic enamel paint has been successfully used. This paint has hitherto
been used for coating steel drums, an application where it is not, of course, subject
to heat in use. As supplied it contained 40-44% solids by weight. For application
it was diluted by adding thinner. The thinner comprises ethyl cellosolve blended with
low boiling naptha. About 4 to 5 litres of this were added to 100 litres of the paint.
This dilution gave a creamy consistency slightly more viscous than domestic gloss
paint. After dipping the casing, surplus paint was allowed to drain back into the
tank at room temperature for approximately 30 minutes. After it had drained the casing
was stoved at 206°C (403 °F) for 7 minutes to cure the coating. The paint film which
remained after the casing had been allowed to drain was rather thick and gave an eventual
baked coat about 50 ,um (0.002 inch) thick. Only a single coat would normally be applied
but if appropriate to meet extremely difficult conditions a further coat could be
applied. This would be put on after the first coat had been baked and the casing allowed
to cool back to room temperature. It would be applied by dip coating as above, with
stoving at the same temperature but for 15 minutes.
1. Heat exchange apparatus for transferring heat from flue gases to a fluid medium
and comprising:
a casing (10) comprising a pair of side walls and a plurality of further walls extending
therebetween,
an inlet (38) to the casing for entry of the flue gas, and an outlet (48) for exit
of the cooled flue gas therefrom, at least the said inlet being disposed in a said
further wall of the casing,
a plurality of heat exchange units (12, 14, 16) within the casing, each comprising
a hollow vessel defining a space for the passage of a fluid medium, and having exterior
surfaces exposed to the ftue gas for the transfer of heat from the gas to the fluid
medium, and
at least one drainage outlet (84) from a lower part (80) of the casing for exit of
any moisture which may condense out within the casing, the lower part being shaped
so that such moisture will drain to the drainage outlet(s);
characterised in that the hollow vessels (12, 14, 16) are spaced apart, each extending
fully across the casing (10) between its said side walls with its weight supported
by the side walls.
2. Apparatus according to Claim 1, wherein condensation draining off any surface of
the said heat exchange units (12, 14, 16) will drain to the or a drainage outlet (84).
3. Apparatus according to Claim 1, or Claim 2, wherein the flue gas outlet (48) is
positioned so that any condensation draining back through it into the casing will
drain to the or a drainage outlet (84).
4. Apparatus according to any one of the preceding claims, wherein the heat exchange
vessels (12, 14, 16) and or one or more baffles (40, 42) are arranged to constrain
the flue gas to reverse its direction of flow at least once as it flows through the
casing (10).
5. Heat exchange apparatus for transferring heat from flue gases to a fluid medium
comprising a casing (10) having an inlet (38) thereto and an outlet (48) therefrom
for flue gas and heat exchange means (12, 14, 16) within the casing defining one or
more spaces for the passage of a fluid medium, the heat exchange means having surfaces
exposed to the flue gas for the transfer of heat from the gas to the said fluid medium,
the heat exchange means (12, 14, 16) and/or one or more baffles (40, 42) being arranged
within the casing (10) so as to constrain the flue gas to reverse its direction of
flow from downwardly to upwardly, the casing having a closable aperture (92) giving
access to the region of the reversal of direction, characterised in that the cross
section available for flow of flue gas increases at the region of the reversal of
flow, inducing a retardation of the speed of flow, thereby to induce deposition of
any solid particles entrained in the flue gas as it reverses its direction, and also
slows down;
the closable aperture (92) enabling periodic removal of solid material thereby deposited
from flue gas in the region of the reversal of direction.
6. Apparatus according to any one of the preceding claims wherein surfaces of the
casing (10) and of the heat exchange means (12, 14, 16) which are exposed to the flue
gas have a coating of a thermosetting synthetic resin, applied by dip coating the
casing (10) with the heat exchange means (12, 14, 16) already fixed therein, with
an organic solvent-based heat curable paint.
7. Apparatus according to Claim 6, wherein the resin is an epoxy phenolic paint.
8. Apparatus according to Claim 6 or Claim 7 formed of mild steel, wherein the steel
surfaces are phosphated prior to the application of the resin thereto.
9. Apparatus according to any one of the preceding claims, wherein the heat exchange
means comprises a plurality of heat exchange units (12, 14, 16) each defining a space
for the fluid medium and having surfaces exposed to the flue gas, the flue gas which
passes through the casing being constrained to flow first upwardly over one surface
of one heat exchange unit (12) thereafter downwardly between that unit (12) and a
second (14), then to reverse its direction of flow from downwardly to upwardly and
flow over a second surface of the second unit (14) and at least one surface of a third
unit (16), the heat exchange units (12, 14, 16) being connected together, so that
the flow of fluid medium through them is generally countercurrent to the flow of flue
gas.
10. Apparatus according to any one of the preceding claims, wherein the apparatus
is combined with a fuel burning apparatus (22), the two pieces of apparatus being
of similar width and arranged as a single unit with the heat exchange apparatus (8)
mounted above and supported by the fuel-burning apparatus (22), the flue gas passing
through a connection (36) between them which extends across a major proportion of
the width of the apparatus, and a heated fluid medium outlet (60) from the heat exchange
apparatus being connected to a fluid medium inlet (64) of the fuel burning apparatus
(22).
1. Appareil d'échange de chaleur pour transférer de la chaleur de gaz de carneau à
un fluide et comprenant:
un boîtier (10) comprenant deux parois latérales et un certain nombre d'autres parois
qui s'étendent entre elles,
une entrée (38) vers le boîtier pour l'entrée des gaz de carneau, et une sortie (48)
pour la sortie des gaz refroidis de carneau, au moins ladite entrée étant disposée
dans une autre paroi du boîtier,
Un certain nombre d'unités d'échange de chaleur (12, 14, 16) dans le boîtier, chacune
comprenant un récipient creux définissant un espace pour le passage d'un fluide, et
ayant des surfaces extérieures exposées aux gaz de carneau pour le transfert de chaleur
des gaz au fluide, et
au moins une sortie de vidange (84) à une partie inférieure (80) du boîtier pour la
sortie de toute humidité pouvant se condenser dans le boîtier, la partie inférieure
étant configurée de façon que cette humidité soit drainée vers la ou les sorties de
vidange;
caractérisé en ce que les récipients creux (12, 14, 16) sont espacés, chacun s'étendant
totalement à travers le boîtier (10) entre ses parois latérales.
2. Appareil selon la revendication 1 où la condensation se drainant de toute surface
desdites unités d'échange de chaleur (12, 14, 16) s'évacuera vers la ou une sortie
de vidange (84).
3. Appareil selon la revendication 1 ou la revendication 2 où la sortie des gaz de
carneau (48) est placée de façon que toute condensation la retraversant vers le boîtier
soit vidangée vers la ou une sortie de vidange (84).
4. Appareil selon l'une quelconque des revendications précédentes où les récipients
d'échange de chaleur (12, 14, 16) et une ou plusieurs chicanes (40, 42) sont agencés
pour forcer les gaz de carneau à changer de direction d'écoulement au moins une fois
lors de leur écoulement à travers le boîtier (10.
5. Appareil d'échange de chaleur pour transférer de la chaleur de gaz de carneau à
un fluide comprenant un boîtier (10) ayant une entrée (38) et une sortie (48) pour
les gaz de carneau et ayant un moyen d'échange de chaleur (12, 14, 16) dans le boîtier
définissant un ou plusieurs espaces pour le passage d'un fluide, le moyen d'échange
de chaleur ayant des surfaces exposées au gaz de carneau pour le transfert de chaleur
des gaz au fluide, le moyen d'échange de chaleur (12, 14, 16) et/ou une ou plusieurs
chicanes (40, 42) étant agencés dans le boîtier (10) afin de forcer le gaz de carneau
à changer sa direction d'écoulement vers le bas pour une direction vers le haut, le
boîtier ayant une ouverture (92) pouvant être fermée donnant accès à la région du
changement de direction, caractérisé en ce que la section transversale disponible
pour l'écoulement des gaz de carneau augmente dans la région d'inversion d'écoulement,
induisant un retard de la vitesse d'écoulement, pour ainsi induire un dépôt de toute
particule solide entraînée dans les gaz de carneau lors du changement de direction
et du ralentissement également;
l'ouverture (92) pouvant être fermée permettant un enlèvement périodique de la matière
solide ainsi déposée par les gaz de carneau dans la région du changement de direction.
6. Appareil selon l'une quelconque des revendications précédentes où les surfaces
du boîtier (10) et du moyen échangeur de chaleur (12, 14, 16) qui sont exposées aux
gaz de carneau ont un revêtement d'une résine synthétique thermodurcissable, appliqué
en revêtant par immersion le boîtier (10) avec le moyen d'échange de chaleur (12,
14, 16) qui y est déjà fixé, d'une peinture thermodurcissable à base de solvant organique.
7. Appareil selon la revendication 6 où la résine est une peinture époxy phénolique.
8. Appareil selon la revendication 6 ou la revendication 7 formé d'acier doux, où
les surfaces de l'acier sont phosphatées avant application de la résine.
9. Appareil selon l'une quelconque des revendications précédentes où le moyen d'échange
de chaleur comprend un certain nombre d'unités d'échange de chaleur (12, 14, 16),
chacune définissant un espace pour le fluide et ayant des surfaces exposées aux gaz
de carneau, les gaz de carneau passant par le boîtier étant forcés à s'écouler d'abord
vers le haut sur une surface d'une unité d'échange de chaleur (12) ensuite vers le
bas entre cette unité (12) et une seconde (14) puis à changer de direction d'écoulement
vers le bas pour un écoulement vers le haut en passant sur une seconde surface de
la seconde unité (14) et au moins une surface d'une troisième unité (16), les unités
d'échange de chaleur (12, 14, 16) étant connectées ensemble de façon que l'écoulement
du fluide à travers elles soit généralement à contre-courant à l'écoulement des gaz
de carneau.
10. Appareil selon l'une quelconque des revendications précédentes où l'appareil est
combiné à un appareil brûlant du combustible (22), les deux appareils étant de largeur
semblable et agencés en une seule unité avec l'appreil d'échange de chaleur (8) monté
au-dessus et supporté par l'appareil brûlant du combustible (22), les gaz de carneau
passant par une connexion (36) entre eux qui traversent une proportion majeure de
la largeur de l'appareil, et une sortie de fluide chauffé (60) de l'appareil échangeur
de chaleur étant connectée à une entrée de fluide (64) de l'appareil (62) brûlant
du combustible.
1. Wärmetauschvorrichtung zur Übertragung von Wärme aus Rauch- bzw. Verbrennungsgasen
an ein Fluidmedium, bestehend aus:
-einem Gehäuse (10) mit einem Paar Seitenwänden und einer Mehrzahl weiterer Wände,
die sich dazwischen erstrecken,
- einem Einlaß (38) in das Gehäuse für den Eintritt des Verbrennungsgases und einen
Auslaß (48) für den Austritt des gekühlten Verbrennungsgases aus demselben, wobei
zumindest der Einlaß in einer der genannten weiteren Wände des Gehäuses angeordnet
ist,
- einer Mehrzahl von Wärmetauscheinheiten (12, 14, 16) innerhalb des Gehäuses, von
denen jede ein hohles Gefäß umfaßt, das einen Raum für den Durchfluß eines Fluidmediums
begrenzt, und Außenwände aufweist, die dem Verbrennungsgas für die Übertragung von
Wärme aus dem Gas an das Fluidmedium ausgesetzt sind, und
- zumindest einem Drainageauslaß (84) von einem unteren Teil (80) des Gehäuses für
den Austritt jeder Feuchtigkeit, die sich innerhalb des Gehäuses niederschlägt, wobei
der untere Teil so ausgebildet ist, daß diese Feuchtigkeit in Richtung Drainageauslaß
(-lässen) abrinnt;
dadurch gekennzeichnet, daß die hohlen Gefäße (12, 14, 16) im Abstand voneinander
angeordnet sind, wobei sich jedes ganz über das Gehäuse (10) zwischen seinen Seitenwänden
erstreckt, wobei sein Gewicht von den Seitenwänden getragen wird.
2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das von jeder Fläche der
Wärmetauscheinheiten (12, 14, 16) abrinnende Kondensat in Richtung zum oder zu einem
Drainageauslaß (84) abfließt.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Verbrennungs-Auslaß
(48) so angeordnet ist, daß jedes durch ihn in das Gehäuse zurückfließende Kondensat
in Richtung zum oder zu einem Drainageauslaß (84) abrinnt.
4. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß
die Wärmetauschgefäße (12, 14, 16) und eine oder mehrere Umlenkplatten (40 42) so
angeordnet sind, daß sie das Verbrennungsgas zur Umkehrung seiner Durchflußrichtung
zumindest einmal zwingen bzw. veranlassen, wenn es durch das Gehäuse (10) strömt.
5. Wärmetausvorrichtung zur Übertragung von Wärme aus Rauch- bzw. Verbrennungsgasen
an ein Fluidmedium, welches ein Gehäuse (10) mit einem Einlaß (38) in dasselbe und
mit einem Auslaß (48) von demselben für Verbrennungsgas umfaßt, sowie Wärmetauscheinrichtung
(12, 14, 16) innerhalb des Gehäuses, die einen oder mehrere Räume für den Durchfluß
eines Fluidmediums begrenzen, wobei die Wärmetauscheinrichtungen Flächen aufweisen,
die dem Verbrennungsgas für die Übertragung von Wärme von dem Gas zu dem Fluidmedium
ausgesetzt sind, wobei die Wärmetauscheinrichtungen (12, 14, 16) und/ oder eine oder
mehrere Umlenkplatten (40, 42) in dem Gehäuse (10) so angeordnet sind, daß sie das
Verbrennungsgas zur Umkehrung seiner Durchflußrichtung von abwärts nach aufwärts veranlassen,
wobei das Gehäuse eine verschließbare Öffnung (92) hat, die Zutritt zu dem Bereich
der Richtungsumkehr gewährt, dadurch gekennzeichnet, daß der für den Fluß des Verbrennungsgases
zur Verfügung stehende Querschnitt in dem Bereich der Richtungsumkehr zunimmt und
dadurch eine Versögerung der Durchflußgeschwindigkeit herbeiführt, um dadurch die
Ablagerung aller festen Teilchen zu verursachen, die in dem Verbrennungsgas mitgeführt
werden, wenn es seine Richtung ändert und gleichzeitig langsamer wird;
wobei die verschließbare Öffnung (92) eine periodische Entfernung des dadurch vom
Verbrennungsgas im Bereich der Richtungsänderung abgelagerten festen Materials ermöglicht.
6. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß
die Flächen des Gehäuses (10) und der Wärmetauscheinrichtungen (12, 14, 16), die dem
Verbrennungsgas ausgesetzt sind, einen Überzug aus wärmeaushärtendem Kunstharz haben,
der durch Tauchstreichen des Gehäuses (10) zusammen mit den Wärmetauscheinrichtungen
(12, 14, 16), die bereits in ihm angeordnet sind, mit einem auf einem organischen
Lösungsmittel basierenden, wärmeaushärtendem Anstrich aufgetragen wird.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß das Harz ein Epoxyphenolanstrich
ist.
8. Vorrichtung nach Anspruch 6 oder 7 aus schweißbarem bzw. Flußstahl, dadurch gekennzeichnet,
daß die Stahlflächen phosphatiert werden, bevor sie mit dem Harz beschichtet werden.
9. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß
die Wärmetauschvorrichtung eine Mehr-. zahl von Wärmetauscheinheiten (12, 14, 16)
umfaßt, wobei jede einen Raum für das Fluidmedium begrenzt und Flächen aufweist, die
dem Verbrennungsgas ausgesetzt sind, wobei das durch das Gehäuse strömende Verbrennungsgas
veranlaßt wird, zunächst aufwärts über eine Fläche einer Wärmetauscheinheit (12),
danach abwärts zwischen dieser Einheit (12) und einer zweiten Einheit (14) zu strömen,
anschließend seine Durchflußrichtung von abwärts nach aufwärts zu ändern und über
eine zweite Fläche der zweiten Einheit (14) und über zumindest eine Fläche einer dritten
Einheit (16) zu fließen bzw. zu strömen, wobei die Wärmetauscheinheiten (12, 14, 16)
miteinander verbunden sind, sodaß der Fluß des Fluidmediums durch sie im allgemeinen
gegensinnig zum Fluß des Verbrennungsgases ist.
10. Vorrichtung nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, daß
die Vorrichtung mit einer Verbrennungsvorrichtung (22) kombiniert ist, wobei die beiden
Stücke der Vorrichtung gleiche Breite aufweisen und als einzige Einheit mit der Wärmetauschvorrichtung
(8), die darüber befestigt ist und von der Verbrennungsvorrichtung (22) unterstützt
bzw. getragen wird, angeordnet sind, wobei das Verbrennungsgas durch ein Verbindung
(36) zwischen ihnen tritt bzw. Strömt, welche sich über einen längeren Abschnitt der
Breite der Vorrichtung erstreckt, und wobei ein Auslaß (60) für das erwärmte Fluidmedium
aus der Wärmetauschvorrichtung mit einem Einlaß (64) für das Fluidmedium der Verbrennungsvorrichtung
(22) verbunden ist.

