(1) Veröffentlichungsnummer:

0 035 069 A1

12

EUROPÄISCHE PATENTANMELDUNG

(1) Anmeidenummer: 80200183.4

(f) Int. Cl.3: C 22 F 1/08, C 22 C 9/01

2 Anmeldetag: 03.03.80

(3) Veröffentlichungstag der Anmeldung: 09.09.81 Patentblatt 81/36

Anmelder: BBC Brown, Boveri & Cie. (Aktiengesellschaft), CH-5401 Baden (CH)

Benannte Vertragsstaaten: AT BE CH DE FR GB IT LU NL SE (72) Erfinder: Melton, Keith, Dr., Sonnenrainstrasse 291, CH-5453 Busslingen AG (CH) Erfinder: Mercier, Olivier, Dr., Gelssbergstrasse 19, CH-5400 Ennetbaden AG (CH) Erfinder: Riegger, Helmut, Dr., Sonnenrainstrasse 295, CH-5453 Busslingen AG (CH)

- Formgedächtnisiegierung auf der Basis von Cu/Ai oder Cu/Ai/Ni und Verfahren zur Stabilisierung des Zweiwegeffektes.
- © Kupferreiche, den Zweiwegeffekt zeigende Cu/Al- und Cu/Al/Ni-Gedächtnislegierungen werden dadurch stabilisiert und für den Temperaturbereich von 100 bis 250 °C brauchbar gemacht, daß sie nach der letzten Glühung im β -Mischkristallgebiet und vor der Induzierung des Zweiwegeffektes zusätzlich im Temperaturbereich von 200 bis 350 °C während 0,5 bis 600 min zwischengeglüht werden. Die Zwischenglühung kann als Anlasen nach dem Abschrecken auf Raumtemperatur oder aber als Stufenabschreckung in ein Salzbad direkt aus dem β -Mischkristallgebiet auf die entsprechende Temperatur erfolgen.

Formgedächtnislegierung auf der Basis von Cu/Al oder Cu/Al/ Ni und Verfahren zur Stabilisierung des Zweiwegeffektes

Die Erfindung geht aus von einer Formgedächtnislegierung nach der Gattung des Anspruchs 1 und von einem Verfahren zur Stabilisierung des Zweiwegeffektes nach der Gattung der Ansprüche 6 und 7.

- 5 Kupferreiche Formgedächtnislegierungen, welche eine zur martensitischen Umwandlung befähigte/3-Phase (/3-Messing-Typ) aufweisen, sind seit längerer Zeit bekannt z.B. aus:
 R. Haynes, Some Observations on Isothermal Transformations of Eutectoid Aluminium Bronzes Below Their Ms Temperatures,
- 10 Journal of the Institute of Metals 1954-55, Vol. 83, Seiten 357-358; W.A. Rachinger, A "super-elastic" single crystal calibration bar, British Journal of Applied Physics, Vol. 9, Juni 1958, Seiten 250-252; R.P. Jewett, D.J. Mack, Further Investigation of Copper-Aluminium Alloys in the Temperature

.

- 15 Range below the β ⇒ α + γ2 Eutectoid, Journal of the Institute of Metals 1963-64, Vol 92, Seiten 59-61; K. Otsuka and K. Shimizu, Memory Effect and Thermoelastic Martensite Transformation in Cu-Al-Ni Alloy, Scripta Metallurgia, Vol. 4, 1970 Pergamon Press Inc., Seiten 469-472; Kazuhiro Otsuka,
- 20 Origin of Memory Effect in Cu-Al-Ni Alloy, Japanese Journal

of Applied Physics, Vol. 10, No. 5, May 1971, Seiten 571-579.

Diese Legierungen zeigen zwar in einem über der Raumtemperatur liegenden Temperaturbereich von mehr als 100 °C (was für Temperaturüberwachungsgeräte und Ueberstromschalter besonders interessant ist) gegenüber den ebenfalls bekannten Ni/Ti-Legierungen einen deutlichen Gedächtniseffekt, sind aber metastabil. Das heisst, dass sie im gewünschten Temperaturbereich diffusionsbedingten Phasenumwandlungen unterworfen sind. Bei der Ansprechtemperatur oder knapp oberhalb derselben wandelt sich die Hochtemperatur-β-Phase um und der Gedächtniseffekt geht verloren.

Der Erfindung liegt die Aufgabe zugrunde, bei Temperaturen von über 100 °C alterungsbeständige Gedächtnislegierungen des Cu/Al- oder Cu/Al/Ni Typs sowie ein Verfahren zu deren Herstellung bzw. Stabilisierung des Zweiwegeffeks anzugeben.

Diese Aufgabe wird erfindungsgemäss durch die Merkmale der Ansprüche 1, 6 und 7 gelöst.

Das Verfahren der Stabilisierung besteht im wesentlichen in einer Wärmebehandlung der im gegossenen oder warmgekneteten Zustand vorliegenden Legierung nach der letzten im A-Mischkristallgebiet liegenden Glühung im Temperaturbereich von 600 bis 950 °C (5 bis 60 min) und vor der Induzierung des Zweiwegeffektes. Die Wärmebehandlung stellt eine Glühung im 25 Temperaturbereich von 200 bis 350 °C dar, welche prinzipiell auf zwei Arten durchgeführt werden kann. In einem ersten Verfahren wird die Legierung nach der letzten Glühung im

β-Mischkristallgebiet auf Raumtemperatur abgeschreckt und anschliessend während 0,1 bis 10 h im Temperaturbereich von 200 bis 350 °C angelassen. In einem zweiten Verfahren wird die Legierung nach der letzten Glühung aus dem β -Mischkristallgebiet direkt in ein Oel-, Salz-, Metall- oder Sandbad von 250 bis 350 °C abgeschreckt, hier während 0,5 bis 10 min gehalten und schliesslich an der Luft auf Raumtemperatur abgekühlt. In beiden Fällen folgt auf diese Wärmebehandlung eine Verformung von 1 bis 6 % im Bereich von 30 °C oberhalb bis 50 °C unterhalb des Punktes der martensitischen Umwandlung M_S zwecks Induzierung des Zweiweg-

5

Gedächtniseffektes.

Zweiwegeffekt.

Das Verfahren erstreckt sich auf die gesamte Legierungsgruppe des /3 -Typs Cu/Al und Cu/Al/Ni, insbesondere auf

Legierungen mit 10 bis 15 Gew.-% Aluminium, 0 bis 6 Gew.-% Nickel, Rest Kupfer. Dabei kann das Nickel teilweise oder vollständig durch Mangan, Eisen, Kobalt oder eine Mischung von mindestens zweier dieser Elemente ersetzt sein. Nach diesem Verfahren hergestellte Legierungen sind bis zu 300 °C alterungsbeständig, d.h. sie bestehen vorwiegend aus der 3-Hochtemperaturphase und zeigen einen stabilen

Die Erfindung wird anhand der nachfolgenden Ausführungsbeispiele beschrieben.

Als Ausgangsmaterial diente eine Legierung der nachfolgenden Zusammensetzung: - 4 -

Aluminium: 13 Gew.-%

Nickel: 3 Gew.-%

Kupfer: Rest.

Die Legierung wurde schmelzmetallurgisch hergestellt, zu einem Barren vergossen und anschliessend bei 700 °C derart 5 warmverformt, dass ein Stab von 10 mm Durchmesser entstand. Anschliessend wurde der Stab einer Glühung im /3 -Mischkristallgebiet von 10 min bei 750 °C unterworfen und in Wasser abgeschreckt. Aus dem Stab wurden Torsionsproben von 40 mm 10 totaler und 22 mm Messlänge bei 3 mm Durchmesser herausgearbeitet. Der Zweiwegeffekt wurde dadurch induziert, dass die Proben einer Torsionsbeanspruchung in der Nähe des martensitischen Umwandlungspunktes M_S (150 °C) derart unterworfen wurden, dass die Torsionsdehnung stufenweise bis auf 4 bis 5 % erhöht wurde bei gleichzeitigem Durchlaufen eines Erwärmungs/Abkühlungs-Zyklus. Hierauf wurden die Proben während 1 h bei einer Temperatur von 300 °C geglüht. Die Nachprüfung ergab, dass der Gedächtniseffekt völlig verschwunden war.

20 Ausführungsbeispiel II:

Eine Legierung gemäss Beispiel 1 wurde geschmolzen, gegossen, warmverformt, geglüht und in Wasser abgeschreckt. Der erhaltene Stab wurde dann zusätzlich während 3 h bei 300 °C angelassen. Nach dem Herausarbeiten der Proben gemäss Beispiel I wurde der Zweiwegeffekt in der gleichen Weise induziert. Nach einem zusätzlichen Glühen der Proben während 8 h bei 300 °C hatte der Zweiwegeffekt noch in keiner Weise nachgelassen. Selbst nach einer Glühdauer von 500 h bei 300 °C war immer noch ein Zweiwegeffekt – wenn auch schwächer –

- 5 -

nachweisbar.

Ausführungsbeispiel III:

Eine Legierung gemäss Beispiel I wurde geschmolzen, gegossen und zu einem Stab von 10 mm Durchmesser warmverformt.

Aus diesem Stab wurde durch Warmwalzen ein Band von 1,5 mm Dicke und 10 mm Breite hergestellt. Daraus wurden Biegeproben von 60 mm Länge geschnitten und der üblichen Glühung während 10 min bei 750 °C unterworfen. Hierauf wurden die Proben direkt in ein Salzbad von 300 °C abgeschreckt, während 2 min auf dieser Temperatur gehalten und dann in Luft abgekühlt. Während des Abkühlvorganges wurden die Proben um einen Winkel von 90 °C gebogen, wodurch der Zweiwegeffekt induziert wurde. Nach mehrstündiger Erhitzung auf 300 °C konnte der Effekt in unverminderter Grösse nachgewiesen werden.

Die Erfindung ist nicht auf die vorstehenden Beispiele beschränkt. Das Verfahren kann prinzipiell auf alle \beta-Kupfer-legierungen dieses Typs angewendet werden. Eine weitere günstige Legierung hat folgende Zusammensetzung:

20 Aluminium: 13,25 %

Nickel: 3 %

Kupfer: Rest.

Es zeigt sich, dass die Höhe der Umwandlungstemperatur M_S offenbar durch geringe Variationen im Aluminiumgehalt stark beeinflusst werden kann. Weitere Beeinflussungen sind durch die oben erwähnten Substitute Mangan, Eisen, Kobalt möglich.

Durch das erfindungsgemässe Verfahren wurden Gedächtnislegierungen geschaffen, welche bis über den in der Elektrotechnik und in vielen industriellen und Haushaltsanwendungen üblichen Bereich der Temperaturüberwachung hinaus alterungsbeständig sind und einen stabilen Zweiwegeffekt zeigen. Damit schliessen sie eine bisher vorhandene Lücke in der Ueberwachungstechnik.

5

Patentansprüche

- 1. Formgedächtnislegierung auf der Basis von Cu/Al oder Cu/Al/Ni, dadurch gekennzeichnet, dass sie bis zu einer Temperatur von 300 °C alterungsbeständig ist, vorwiegend aus der /3 -Hochtemperaturphase besteht und im Temperaturbereich von 100 bis 250 °C einen stabilen Zweiwegeffekt zeigt.
 - 2. Formgedächtnislegierung nach Anspruch 1, dadurch gekennzeichnet, dass sie aus 10 bis 15 Gew.-% Aluminium, 0 bis 6 Gew.-% Nickel, Rest Kupfer besteht.
- 10 3. Formgedächtnislegierung nach Anspruch 2, dadurch gekennzeichnet, dass sie aus 13,25 Gew.-% Aluminium, 3 Gew.-% Nickel, Rest Kupfer besteht.
 - 4. Formgedächtnislegierung nach Anspruch 2, dadurch gekennzeichnet, dass sie aus 13 Gew.-% Aluminium,
- 3 Gew.-% Nickel, Rest Kupfer besteht.

5

5. Formgedächtnislegierung nach Anspruch 1, dadurch gekennzeichnet, dass das Nickel zum Teil oder vollständig durch mindestens eines der Elemente Mangan, Eisen, Kobalt ersetzt ist. 6. Verfahren zur Stabilisierung des Zweiwegeffektes bis zu einer Temperatur von 300 °C einer Formgedächtnislegierung auf der Basis von Cu/Al oder Cu/Al/Ni, welche im gegossenen oder warmgekneteten Ausgangszustand vorliegen kann, dadurch gekennzeichnet, dass die Legierung zunächst während 5 bis 60 min im Temperaturbereich zwischen 600 und 950 °C geglüht, in Wasser abgeschreckt und während 0,1 bis 10 h bei einer Temperatur von 200 bis 350 °C angelassen und schliesslich zur Induzierung des Zweiwegeffektes im Temperaturbereich von 30 °C oberhalb bis 50 °C unterhalb des Umwandlungspunktes M_S um einen Betrag von 1 bis 6 % verformt wird.

5

10

7. Verfahren zur Stabilisierung des Zweiwegeffektes bis zu einer Temperatur von 300 °C einer Formgedächtnislegierung auf der Basis von Cu/Al/Ni, welche im gegossenen oder warmgekneteten Ausgangszustand vorliegen kann, dadurch gekennzeichnet, dass die Legierung 15 zunächst während 5 bis 60 min im Temperaturbereich zwischen 600 und 950 °C gegüht, in ein Metall-, Salz-, Oeloder Sandbad auf eine Temperatur zwischen 250 und 350 °C abgeschreckt, auf dieser Temperatur während 0,5 bis 10 min gehalten und dann an der Luft auf Raumtemperatur abgekühlt und schliesslich zur Induzierung 20 des Zweiwegeffektes im Temperaturbereich von 30 °C oberhalb bis 50 °C unterhalb des Umwandlungspunktes Ms um einen Betrag von 1 bis 6 % verformt wird.

EUROPÄISCHER RECHERCHENBERICHT

0035069 EP 80 20 0183

EINSCHLÄGIGE DOKUMENTE				KLASSIFIKATION DER ANMELDUNG (Int. Cl.3)
Kategorie	Kennzeichnung des Dokuments maßgeblichen Teile	mit Angabe, soweit erforderlich, der	betrifft Anspruch	
	mangeonchen rene		Anspiden	
A	GB - A - 1 346 RESEARCH INSTITU	047 (FULMER JTE)	1	C 22 F 1/08 C 22 C 9/01
	* Ansprüche 1 "Binary Coppalloys conta weight % Alu 18:(viii) "]	,2,4; Seite 6:(iii) per-Aluminium aining 10.0% to 13.0 aminium"; Seite Ternary Copper- tckel Alloys" *		
		40 4		
A	GB - A - 433 534 SONS LTD.)	(THOMAS BOLTON &	2	
	* Anspruch 3 *			RECHERCHIERTE SACHGEBIETE (Int. Cl.3)
	-			C 22 F 1/08 C 22 C 9/01
				0 22 0 9/01
				KATEGORIE DER GENANNTEN DOKUMENTE
				X: von besonderer Bedeutung
				A: technologischer Hintergrund
				O: nichtschriftliche Offenbarung
ł				P: Zwischenliteratur
				T: der Erfindung zugrunde liegende Theorien oder
				Grundsätze
				E: kollidierende Anmeldung D: in der Anmeldung angeführtes
				Dokument L: aus andern Gründen
				angeführtes Dokument
	Der vorliegende Recherchenb	&: Mitglied der gleichen Patent- familie, übereinstimmendes Dokument		
Recherch	neport .	Abschlußdatum der Recherche	Prüfer	Dokument
		8-09-1980		MO
EPÀ form		F 37-1700	LIPPE	IND