(1) Publication number:

0 035 477 A1

(12)

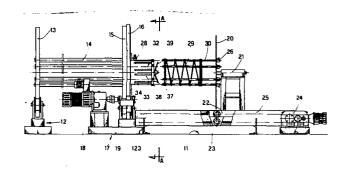
EUROPEAN PATENT APPLICATION

(21) Application number: 81830031.1

. '61 Int. Cl.3: B 21 F 27/20

22 Date of filing: 03.03.81

30 Priority: 05.03.80 IT 8332980


Applicant: REMA - Macchine Utensili Spa, I-33058 San Giorgio di Nogaro (UD) (IT)

- Date of publication of application: 09.09.81

 Bulletin 81/36
- Inventor: Tumanischvill, Iracli, Via dei Fiustinelli, 1, I-34100 Trieste (IT)
- Ø Designated Contracting States: AT BE CH DE FR GB LI NL
- Representative: Petraz, Gilberto, G.L.P. S.a.s. di Gilberto Petraz P.le Cavedalls 6/2, I-33100 Udine (IT)

(54) Machine to form cages.

 A forming machine suitable to realize cages for reinforcement with at least one iron bar circumferentially disposed according to a desired spiral, the machine consisting of a drive flange (15) and a free-turning flange (20) supported on a trolley (22) which can move in front of the drive flange (15), both flanges having a plurality of holes (14-214) disposed in concentric circles for positioning the longitudinal rods (30), the machine comprising in combination a substantially conical forming element (32) extending in front of said drive flange (15) and anchored thereto towards the free-turning flange (20), it having fixed thereon a plurality of peripherically spaced spacer means (34), whereby the forming element (32) bears positionable flange means (37) carrying rollers (38) which cooperate in preventing torsion, said flange means (37) being provided with own locking means (39).

0 035 477

1 Description of the invention entitled:
MACHINE TO FORM CAGES

in the name of REMA - Macchine Utensili Spa at San Giorgio di. Nogaro

5 Submitted on

under no.

The subject of the invention is a machine to form cages for building purposes; to be more specific, the subject of this invention is a machine suitable for forming and conforming cylindrical cages and cages with a polygonal section and in particular, but not only, cages for conduits, foundation piles, comlumns or the like substantially without torsional deformation. Hereinafter the word "cage" will also be used to mean any type of reinforcement for concrete products.

15 The cage which can be made with the machine of the invention comprise a plurality of iron bars with the section and characteristics desired, arranged axially according to a configuration which is advantageously circular.

Around these longitudinal bars at least one wire is envisaged.

20 as being arranged in a spiral and located circumferentially
in respect of said longitudinal bars.

Many type of machines are known which form cages.

Machines to form cages are known which comprise rotating wheels that bear periferically and rigidly the lenghthwise round bars being formed.

In this type of machines the spiral is formed with a wire fed by an unwinding device which moves along the cage either outside or inside said cage in rotation.

Another type of forming machine is known which comprises one single flange able to support vertically the lengthwise bars. of the cage.

Said flange can rotate or be stationary.

If said flange is stationary, a device is envisaged which unwinds the coiled wire and is able to rotate around said

10 cage along a spiral path.

Other known systems envisage that said unwinding device is capable of a simple rotation, drawing the cage lengthwise in one direction or the other.

The prior art as documented by EPO Search RS 62986 IT, also teaches that another type of machines for the production of reinforcement cages which comprise longitudinal rods and an armament wire would about the longitudinal rods generally consists of two synchronously driven disk flanges for holding

longitudinally displaceable and supports the ends of the longitudinal rods. The other flange is immovable and axially guides the longitudinal rods.

and guiding the longitudinal rods; one of the flanges being.

Guide means for the longitudinal rods are usually provided on the immovable flange, the radial position of said guide the means being generally adjustable either manually to suit the

radial size of each cage being formed by providing a plurality of positioning bores in concentric circles in the immovable flange or automatically by means capable of varying the radial

. position of said guide means both during the formation of the

 $_{\rm 30\,.}$ cage or for each different cage size.

The armament spiral wire is usually spot-welded to the longi.

tudinal rods at each point of contact therebetween.

The welding is done while the cage is in rotation either

0035477

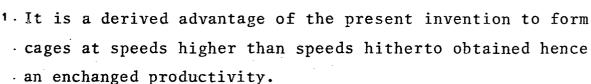
• manually or automatically, the longitudinal rods being sustained only at the points of their engagement with the rotating flanges.

It is known that in order to spot-weld the spiral wire to the

5 longitudinal rods it is necessary to create a proper contact
points between said spiral wire and the longitudinal rods which
requires a tight wrapping of the spiral wire about the rotating
longitudinal rods.

Due to the tangential pull of the spiral wire this tight

wrapping causes torsional deformation of the cage since the
longitudinal rods are not sustained peripherically at the
welding section which is downstream of the immovable flange.
In order to minimize this torsional deformation it has been
hitherto necessary to confine the rotational speed of the
cage within a limited range.


This torsional deformation is accentuated as the cage formation proceeds and the cage length develops.

In addition to the above-mentioned torsional deformation, the tightening of the spiral wire disadvantageously produces cages of polygonal circumference only due to the fact that the wire portionslying between one longitudinal rod and the next are substantially straightened by the tension induced therein. This problem has been partially solved in the past by increasing the number of long rods which results in unduly heavy and uneconomic cages.

The object of the invention is a machine to form reinforcement cages including means capable of giving sufficient circumferential support to the cage in formation which eliminates
the torsional deformation.

25 .

one further object of the invention is to provide means suitable for forming circular reinforcement cages without having to unnecessarily augment the number of the longitudinal rode as well as cages with polycopal sections if and when requested

Another advantage of the present invention is the production-

- of circular or polygonal cages with the right number of longitudinal rods for the requested strength, saving thus on weight.
 - The subject matter of the invention is a machine to form.

 cages comprising two flanges having holes which are and can.

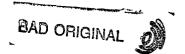
 be pre-set to position and support the plurality of container.
- tubes needed to hold the longitudinal rods, one of said flanges
 being a drive flange, while the other driven, both positioned
 essentially on the same axis and connected together by the
 longitudinal rods themselves, the free-turning driven flange.
 being in front of the drive flange and supported and upheld.
- by a trolley that moves in front of said drive flange and comprises the same number and of positioning holes as the . other flange and moves substantially along the same generatrix. According to the present invention a forming element is envise aged between the drive flange and the free-turning flange and is solidly fixed to the drive flange.

Said forming element is dimensioned in relation to the cage diameter and thus, if the radial position of the container tubes is varied, it is necessary to vary the forming element as well.

The forming element has the shape of a truncated cone with its larger end anchored to the drive flange.

To ensure that the circumference of the cage being formed is as round as possible the forming element comprises some fixed bars, or bars which can be fixed, separated by the

ness substantially the same as that of the longitudinal rods.
These fixed bars or bars which can be fixed are needed when it is wished to obtain cylindrical cages; but can be removed.


- 1. when it is wished to obtain polygonal cages.
 - . The said fixed bars or bars are wholly or partially removable.
 - . In front of the forming element a positionable internal flange
 - . is envisaged to bear peripherically positioned rollers coop-
- erating with the longitudinal rods; said flange serves to . ensure that the cage does not undergo torsion.
 - To be specific, this flange by means of one single operation enables all the rollers cooperating laterally with the longi
- tudinal rods to be positioned and then to be clamped in the . desired position, the purpose being to prevent the cage being processed from having its longitudinal rods askew in respect of its own axis of symmetry, a thing which would happen otherwise because of the torsion generated by the spiral wire during its winding and welding on the bundle of longi-.
- tudinal rods at the portion of the cage downstream of the drive flange.

At the side of the drive flange is envisaged a straightening group which feeds sustantially continuously the wire which will be positioned circumferentially around the cage, in a position very near the base of the forming element, said base being . sustantially cylindrical according to one realization of the invention.

The invention, therefore, is realized in a cage-forming machine suitable for forming cages for reinforcement with at least one circumferential wire disposed according to a desired spiral, whereby the machine consists of a drive flange and a free-turning driven flange borne on a trolley which can move. in front of the drive flange, both flanges having a plurality of holes disposed in concentric circles for positioning the . $_{30}$ longitudinal rods, said machine being characterized by includ ing in combination

25

- a substantially conical forming element stretching in front of said drive flange and anchored thereon towards the free-

- turning flange, having fixed thereon a plurality of peripherically spaced spacer means;
 - whereby the forming element is equipped with positionable .
 internal flange means bearing free-turning guide rolles .
- to provide resistance to torsion, said rollers being disposed circumferentially in respect of said flange means and cooperating with said longitudinal rods.

With the help of the attached tables, which have been provided as non-restrictive examples, let us now describe the machine. according to the invention.

In the tables we have as follows:

Fig. 1 gives a side view;

Fig. 2 gives a front view along AA of Fig. 1;

Fig. 3 shows a possible perforation of the flanges;

Fig. 4 shows a variant of the flanges of Fig. 3;

Fig. 5 shows a lengthwise section of the forming element;

Fig. 6 shows a frontal view of the forming element according.

. With reference to the figures wa have the following: 10 is,

in general, the cage-forming machine and can have one single.

20 base of a plurality of separate bases; 11 is the carrying

surface or floor; 12 is the rear group for supporting the free-

turning wheels; 13 is the driven flange supported by the arepsilon

support group 12; 14 are the longitudinal rods tubes and have

a desired length, being anchored to the flanges 13 and 15

 $_{25}$ or merely inserted thereinto whenever a rigid connecting shaft

is envisaged between the flange 13 and the drive flange 15; .

.16 is the toothed wheel or other means for receiving motion \cdot

and is solidly connected on one side to the drive flange 15.

and is connected on its other side (besides teeth, it could .

30 also be connected by means of belts, ropes, chains, etc.) to.

the primary drive group 17, which comprises the motor group .

18 and the transmission and support group 19 which activates at

the wheel 16 directly; 20 is the free-turning flange positioned

1. in front of the drive flange 15; 21 is the support anchored. . to the trolley 22 and bears the free-turning flange 20; said . trolley 22 is enable to move in front of the drive flange . 15 according to a desired programme so that the free-turning 5 flange 20 moves substantially on the same axis as said flange . 15; 23 is the drive chain causing lengthwise movement of the . trolley 22 and travels backwards and forwards to the wheels. . 123, being activated in our example by the secondary drive . group 24, which conditions is a desired manner the movement. of the trolley 22; the group 24, can also be embodied in the primary drive group 17; both the primary group 18 and the secondary group 24 can be operated by hand, that is to say, they can comprise a gear-box which can be operated by hand with a control lever or they can be operated automatically or semi-automatically; both these groups have one forward gear, one neutral and one reverse gear; 25 are the runways of the trolley 22 and extend in front of and below the wheel 15; 26 are the clamps which serve to fix the longitudinal rods 30 to the free-turning wheel 20; 27 are the free-turning wheels which support the transmission group 19 and serve to sustain the drive wheel 15; 28 is the straightening device and can be one or more in number in relation to the number of circumferential wires 29 employed; 29 are the circumferential wire and 129 is the portion being fed, while 30 are the longi 25. tudinal rods and 31 is the direction of rotation; 32 is . generically the forming element and has a substantially conical . shape, with its larger end positioned substantially in contact . with the drive flange 15, to which it is anchored, whereas . 33 is the bell element of the forming element 32; 34 are 30 spacer means which are or can be fixed as required and which cooperate with the longitudinal rods 30 to obtain a harmonious development of the circumferential wires 29 so as to ensure. , that the are done in a leaste releasing there is is

- required to be such; the forming element 32 can have its initial tract, near the drive flange 15, substantially cylindrical, its successive tract being substantially tapered; 35 is a terminally threaded supporting shaft anchored to the.
- 5 bell element 33; 37 is the positionable flange and is supported and axially guided by the supporting shaft 35 and bears the free-turning rollers 38 which cooperate with the longitudinal rods 30; said rollers 38 are envisaged advantageously as being the same in number as the longitudinal rods 30 and lie pos-
- itioned at an angle like said bars 30; 39 is the clamping handwheel with an internally threaded portion which cooperates with the threaded end of the supporting shaft 35 and thrusts the flange 37 towards the bell element until said flange 37 or the pins or other means protruding from said flange 37
- bear, in our example, against the front edge of the bell
 element 33 and, being pressed thereagainst, are fixed in the
 desired circumferential position.
- To prevent complete removal of flange 37 from support shaft.

 35, an eventual pin 36 may be inserted through the support.

 20 shaft 35 and a hub portion of flange 37, the diagonal bore drilled in said hub portion being greater that the diameter of pin 36 to allow a limited relative radial and axial movement between flange 37 and its support shaft 35 before the clamping action is carried out.
- with reference to Fig. 3, the rear flange 13 comprises a plurality of holes 214 pre-arranged symmetrically around the axis of said flange 13 in a suitable number and size, said holes 214 being suitable for lodging the ends of the container tubes 14 according to the requirements and shape of the cage.

 30 desired.
 - Fig. 4 shows a variant of said rear flange 13, wherein a plurality of radial slots 314 is envisaged to be arranged symmetrically around the axis of said flange 13.

DES CRISTIAL SA

Within said slots 314 are envisaged adjustable spacer means
315 able to regulate the diameter of the cage by displacing
the container tubes 14 radially; said spacer means 315 also
serve to clamp said container tubes 14 in the radial position
required.

The aforesaid spacer means 315 consist of an anchorage head.

316 equipped with a threaded shank 317 that cooperates with.

an internally threadedhexagonal tube 318, of which the inner

end cooperates with a second threaded shank 319 anchored or

welded to the relative container tube 14 in such a way that,

by revolving said hexagonal tube 318 with a suitable key,

it is possible to regulate the radial depth of the relative

container tube in respect of the axis of the flange and

thereby the diameter of the cage.

15 First of all, the container tubes 14 are positioned and the longitudinal rods 30 are then inserted into them.

Said longitudinal rods 30 are then fixed with clamps 26 to the free-turning flange 20, which is brought for this purpose to its nearest position to the drive flange 15.

Next the rollers 38 are positioned, being solidly fixed to the positionable flange 37 but able to turn freely; positioning of the rollers 38 is done in cooperation with the position of the longitudinal rods 30.

Steps are then taken to move the spiral wire 29 forward until it is near to a longitudinal rod 30 to which it can be welded. At this stage the machine can work either automatically with continous rotation, or according to a rhythm with the trolley 22 being moved as desired, or else semi-automatically or else by hand operation.

The presence of the rollers 38 has the effect that sideways.

movement of the metal rods 30 does not take place, since .

therwise such a movement would lead to torsion in the case being formed.

BAD ORIGINAL

0035477

- 1 As we said, the trolley 22 and therefore the free-turning flange 20 can go backwards as desired and can also halt for a period or for a required number of revolutions (of the drive flange 15).
- 5 The outcome of this is that the circumferential wire 29 is . coiled in a spiral as desired with coils of a different pitch to suit the requirement.

According to the invention, the resulting cage will have the circumferential wire 29 over almost all its length, with only its initial part remaining free.

This is very advantageous where said cage has to cooperate with other cages in line or at an angle or normal to the cage formed.

We have described the invention here according to a preferential solution, but variants can be applied; thus the proportions and sizes can be varied; parts can be added or removed or to. be integrated or replaced, etc. These and other variants are . all possible for a technician in this field.

20 .

Gilberto Hetraz

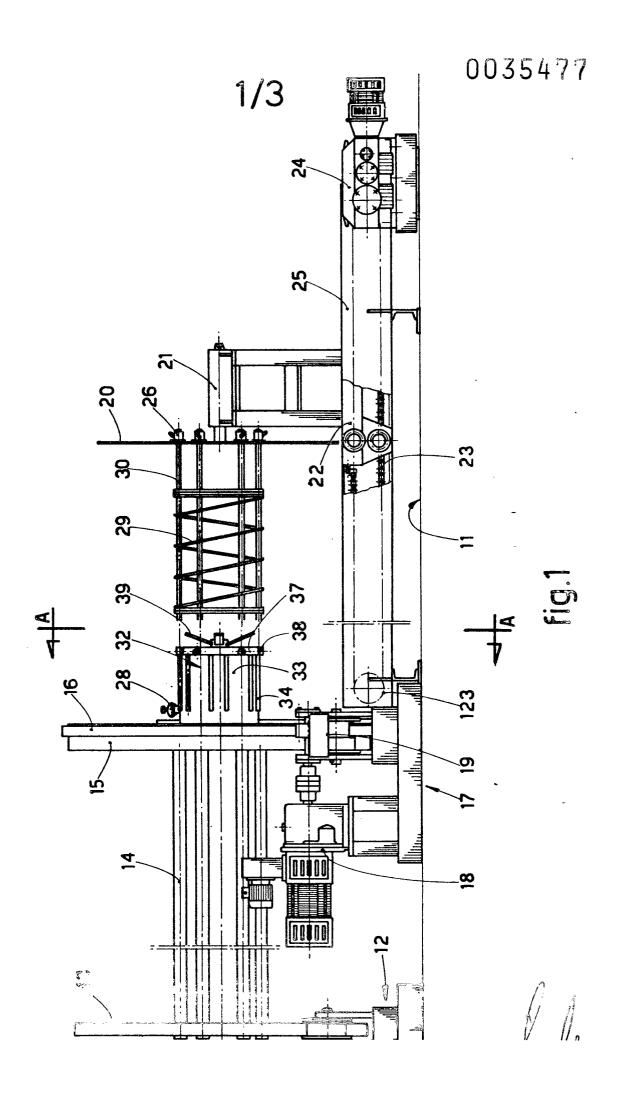
CLAIMS

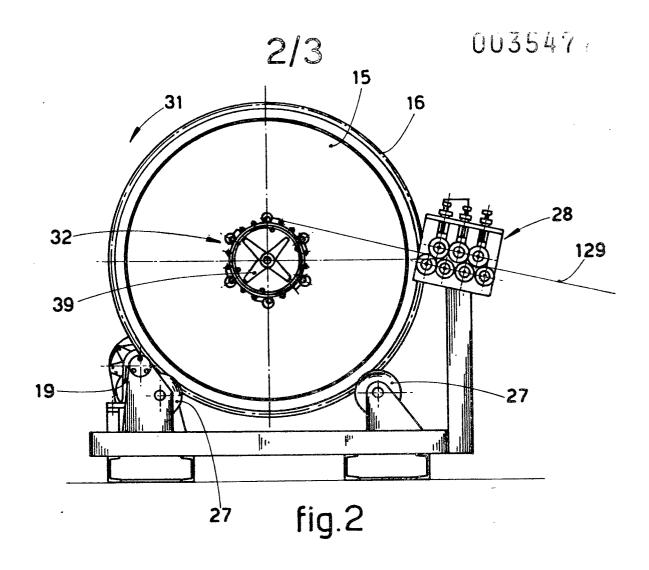
- of 1 Machine to form cages, being suitable for forming cages for reinforcement with at least one wire disposed circumferentially according to a desired spiral, whereby the machine consists of a drive flange and a free-turning flange supported by a trolley which can move in front of the drive flange, both flanges having a plurality of holes (14-214) disposed in concentric circles for positioning the longitudinal rods (30), said machine being characterized by including in combination
 - a substantially conical forming elements (32) extending in front of said drive flange (15) and anchored thereto towards the free-turning flange (20), having fixed thereon a plurality of peripherically spaced spacer means (34);
- whereby the forming element (32) bears positionable internal flange means (37) carrying rollers (38) which cooperate in preventing torsion.
 - 2 Machine to form cages as in claim 1, characterized by the fact that the spacer means (34) comprises a plurality bars positioned lenghtwise and substantially parallel to the length wise iron rods (30), whereby the presence of said spacer bars (34) is proper for making cylindrical cages, said spacer means (34) being advantageously of a removable type.
- 3 Machine to form cages as in claim 1, characterized by
 the fact that the forming element (32) comprises a substantially
 cylindrical tract near the drive flange (15).
 - 4 Machine to form cages as in claim 1, characterized by .
 the fact that the forming element (32) has a tapered conformation of its bell (33), of which the smaller end lies .
 towards the free-turning flange (20), whereby a positionable
 internal flange (37) peripherically bearing thrust rollers
 - (22) is surated in front of the forming element (22).
 - Machine to form cages as in claims 1 and 4, characterized

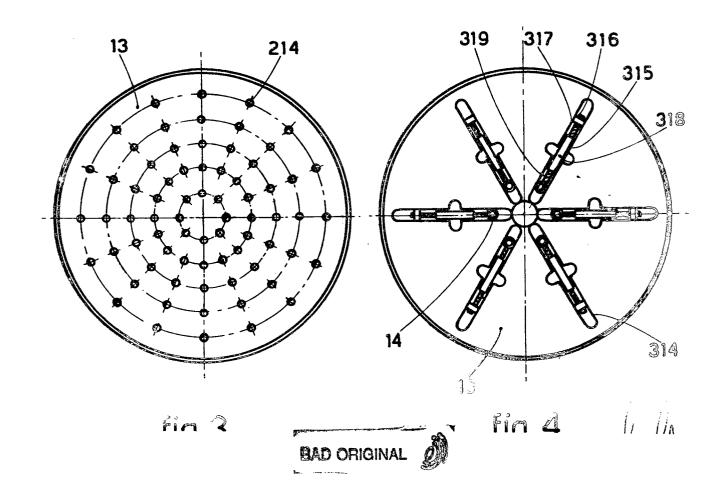
if plp 3-2587.ag : 0035477

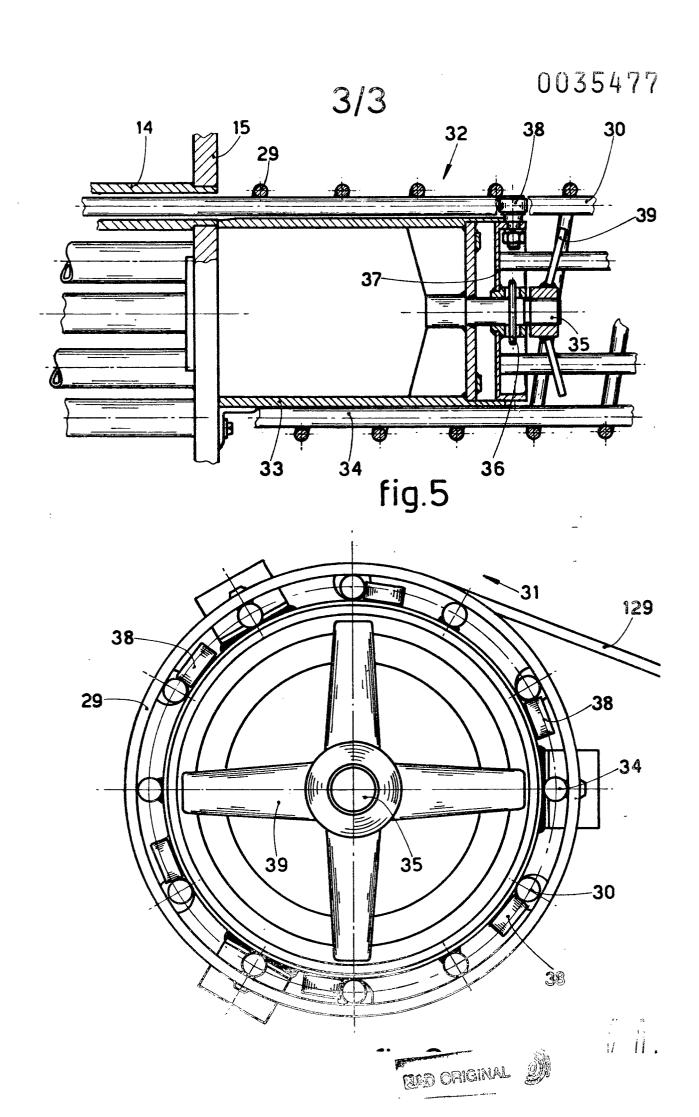
- by the fact that said internal flange (37) is coaxially
 mounted on and axially guided by a central support shaft
 (35) axially extending from said forming element (32).
 - 6 Machine to form cages as in claims 1 and 5, characterized by the fact that said internal flange (37) is provided with.

 means to lock said internal flange (37) against said forming element (32).
 - 7 Machine to form cages as in claim 6 characterized by the fact that said locking means consists of a coaxial handwheel (39) having an internally threaded hub cooperating with a terminal threaded portion of the said support shaft (35).
 - 8 Machine to form cages as in claim 1 and in one or another of the claims thereafter, as described and shown and for the purpose allowed.


15 .


20


25


30

EUROPEAN SEARCH REPORT

Application number EP 81 83 0031

	DOCUMENTS CONSIDERED TO BE RELEVANT			CLASSIFICATION OF THE APPLICATION (Int. Cl. ³)	
Category	Citation of document with indication, where appropriate, of relevant passages		Relevant to claim	D 01 E 07/00	
	GB - A - 525 485 CONCRETE PIPE COM	(WELLINGTON MP.)	1	B 21 F 27/20	
	* The whole docum	nent *			
A	DE - C - 918 504	(WOLFER)			
A	US - A - 3 718 79	97 (PFENDER)		·	
A	US - A - 3 579 25	59 (KATO)			
A	<u>US - A - 3 209 793</u> (MIURA) <u>FR - A - 2 365 386</u> (ROCLA)				
A				TECHNICAL FIELDS SEARCHED (Int. Cl. ³)	
A	GB - A - 1 449 14	14 (REDLAND)		B 21 F	
A	<u>GB - A - 894 798</u>	(J. ELLIS & SONS)			
		70 April 1988 MA			
	<u></u>				
	•				
	,				
				CATEGORY OF CITED DOCUMENTS	
				X: particularly relevant A: technological background	
		•		O: non-written disclosure	
				P: intermediate document T: theory or principle underlyir	
				the invention	
İ				E: conflicting application D: document cited in the	
				application	
	÷		•	L: citation for other reasons	
				&: member of the same patent	
9	The present search report has been drawn up for all claims			family, corresponding document	
ace of se	The Hague	ate of completion of the search 27.05.1981	Examiner	THE	