11) Numéro de publication:

0 039 276

Α1

(12)

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt: 81400620.1

y Numero de depot: 81400620.1

(22) Date de dépôt: 17.04.81

(51) Int. Cl.³: H 01 J 9/236

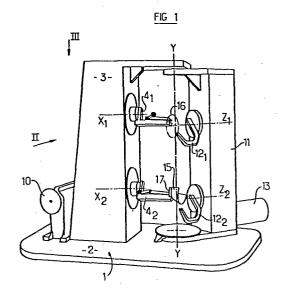
H 01 J 29/76, H 01 F 41/08

(30) Priorité: 22.04.80 FR 8008964

Date de publication de la demande: 04.11.81 Bulletin 81/44

84) Etats contractants désignés: DE NL 71 Demandeur: VIDEOCOLOR Société Anonyme Périsud 7, boulevard Romain Rolland F-92128 Montrouge(FR)

72 Inventeur: Pernet, Didier 13, rue des Iris F-21130 Auxonne(FR)


(72) Inventeur: Pater, François 13, rue Le Cottage F-21490 Varois et Chaignot(FR)

74 Mandataire: Lerner, François 5, rue Jules Lefebvre F-75009 Paris(FR)

- Procédé et machine de bobinage permettant de réaliser un bobinage amélioré notamment des bagues de déviation pour tubes cathodiques.
- (57) L'invention se rapporte à un procédé et à une machine permettant de réaliser un bobinage amélioré de spires de fil électrique sur un noyau.

Selon l'invention, on maintient le noyau (15) à recouvrir du bobinage sur un support orientable (4) autour d'un axe X, on monte chaque enrouleur (12) de façon que son bras d'enroulement puisse tourner autour du noyau et autour d'un axe Z dirigé obliquement par rapport à un axe Y lui-même dirigé obliquement par rapport à l'axe X, et l'on choisit et pilote les positions en rotation du support (40) autour de l'axe X et de la colonne (11) support des enrouleurs (12) autour de l'axe Y de façon à obtenir les différents plans successifs voulus d'enroulement des spires autour du noyau.

L'invention s'applique notamment au bobinage des bagues de déviation pour tubes cathodiques.

0 039 276

"Procédé et machine de bobinage permettant de réaliser un bobinage amélioré notamment des bagues de déviation pour tubes cathodiques"

La présente invention a pour objet un procédé et une machine de bobinage permettant de réaliser un bobinage amélioré notamment des bagues de déviation pour tubes cathodiques.

Pour de nombreux appareils électromagnétiques, on utilise des bobinages de fils électriques revêtus d'isolant comprenant plusieurs spires de fil enroulé sur un noyau magnétique.

Ainsi, pour les tubes cathodiques, on utilise des bagues de déviation qui sont constituées par un noyau magnétique en ferrite ayant sensiblement la forme d'un tronc de cône évasé en cuvette, sur lequel noyau sont enroulées serrées un faisceau de spires. Pour permettre le bobinage sur des machines à bobiner, la bague en ferrite est initialement divisée en deux parties, et chaque demi-noyau présentant ainsi une structure ouverte peut être bobiné sur des bobineuses automatiques, chaque demi-bague pouvant être tenue sur la machine à bobiner par une de ses tranches latérales.

Dans les bobinages actuellement réalisés à la machine, les spires sont enroulées sensiblement suivant des plans radiaux, c'est-à-dire en passant par l'axe du tronc de cône de la bague. Une telle orientation des spires n'est pas avantageuse sur le plan électromagnétique, ne correspondant pas au meilleur rendement de déviation du faisceau cathodique.

Bien sûr, on peut chercher à améliorer les performances des bagues de déviation en bobinant chaque spire sur chaque demi-bague sous les meilleures orientations, et par exemple en exécutant un tel bobinage à la main. Il s'agirait cependant là d'opérations extrêmement longues et coûteuses peu applicables industriellement.

L'objet de l'invention est de permettre sans réduire la vitesse de travail des enrouleurs d'une machine d'obtenir des pièces bobinées, telles notamment que des bagues de déviation pour tubes cathodiques, dans lesquelles chaque spire bobinée l'a été suivant l'orientation optimale calculée pour la fonction que la pièce bobinée doit remplir.

Ainsi, par exemple, s'agissant de bobinages de déflexion pour tubes cathodiques présentant des spires enroulées sur chaque demi-bague en forme 5 de tronc de cône évasé en cuvette, lesdites spires pourront être inclinées sur des plans radiaux symétriquement de part et d'autre du plan médian de chaque demi-bague avec deux faisceaux de spires symétriques nettement écartés du plan médian sur la petite tranche de la cuvette et au contraire sensiblement jointifs sur la grande tranche.

Ie procédé de l'invention permettant d'atteindre ces objets se caractérise notamment en ce qu'on maintient le noyau à recouvrir du bobinage sur un support orientable à chaque instant autour d'un axe X, on monte chaque enrouleur de façon que son bras d'enroulement puisse tourner autour dudit noyau et autour d'un axe Z dirigé obliquement par rapport à un axe Y, lui15 même dirigé obliquement par rapport audit axe X, et l'on choisit et pilote à chaque instant la position en rotation & dudit support autour dudit axe X et la position en rotation A de l'axe Z autour dudit axe Y pour obtenir les différents plans successifs voulus d'enroulement des spires autour du noyau.

De préférence, de façon pratique, les axes X et Y sont choisis fixes l'un par rapport à l'autre et dirigés sensiblement orthogonalement, de même que les axes Z et Y.

Selon une autre caractéristique du procédé de l'invention, on fixe chaque noyau à bobiner, tel qu'une demi-bague ferrite sensiblement tronconique, 25 sur son support, sensiblement dans son plan médian et sur sa petite tranche, et l'on réalise un bobinage parfaitement symétrique de spires inclinées par rapport à ce plan médian en choisissant des programmes d'enroulement à angles d et β , symétriques.

L'invention se rapporte également à une machine permettant la mise en 30 œuvre du procédé mentionné, cette machine se caractérisant en ce qu'elle comporte :

- un bâti,
- au moins un support de noyau orientable selon un angle d'autour d'un axe X fixe par rapport au bâti,
- au moins une colonne supportant au moins un enrouleur monté tournant sur ladite colonne autour d'un axe Z fixe par rapport à ladite colonne,
 - ladite colonne étant montée tournant selon un angle \mathcal{N} dans ledit bâti autour d'un axe Y fixe par rapport audit bâti.

- lesdits axes X, Y et Z étant dirigés obliquement les uns par rapport aux autres. De façon pratique et avantageusement, les axes X et Y d'une part, et Y et Z d'autre part, sont disposés sensiblement orthogonalement.

Selon une autre caractéristique de la machine objet de l'invention, elle comprend en outre :

5

10

15

20

25

30

35

- des premiers moyens de commande permettant de choisir à chaque instant la position angulaire of et de faire tourner pas à pas ledit support de noyau autour de l'axe X,
- des seconds moyens de commande permettant de choisir à chaque instant la position angulaire \(\beta \) et de faire tourner pas à pas ladite colonne autour dudit axe Y,
- et des moyens de conjugaison desdits premier et second moyens de commande pour obtenir les différents plans successifs voulus d'enroulement des spires autour du noyau.

Ces moyens de conjugaison sont avantageusement constitués par un micro-processeur ou ordinateur mémorisant les nombres de spires à enrouler autour du noyau pour chaque valeur des angles & et & déterminés conjugués précités. Le programme d'enroulement ainsi établi commande alors selon tout moyen connu existant dans la technique et à la portée du technicien les différents moteurs de la machine, à savoir les moteurs d'enrouleurs et les meteurs pas à pas de détermination de l'argle & de rotation du support autour de l'axe X et les moteurs pas à pas de détermination de l'angle & de rotation de la colonne autour de l'axe Y.

L'invention apparaîtra plus clairement à l'aide de la description qui va suivre faite en référence aux dessins annexés dans lesquels:

- la figure 1 est une vue schématique en perspective d'une machine conçue selon l'invention,
- la figure 2 est une vue de côté faite selon la flèche II de la figure 1,
- la figure 3 est une vue par dessus de la machine faite selon la flèche III de la figure 1,
 - la figure 4 est une vue d'une demi-bague ferrite bobinée selon l'invention, cette vue étant faite par dessus côté de la petite tranche sensiblement selon la flèche IV de la figure 5.

- La figure 5 est une vue de l'intérieur de la demi-baguede la figure 4 faite sensiblement selon la flèche V de la figure 4 et rabattue dans le plan de figure!
- La figure 6 montre comme la figure 4 une demi-bague ferrite bobinée selon l'art antérieur.
- La figure 7 montre comme la figure 5 la demi-bague de la figure 6.
- Les figures 8 et 9 sont deux schémas angulaires illustrant comment peuvent être mesurés les angles de et β de rotation respectivement du bras support de la machine et de la colonne support des enrouleurs.

10

15

Selon le mode de réalisation illustré aux dessins, la machine comprend un bâti 1 avec un socle 2 supportant un montant 3 dans lequel sont montés deux supports 4_1 , 4_2 orientables selon un angle α respectivement autour d'un axe X_1 et X_2 sensiblement horizontaux comme le plan du socle 2 dans l'exemple illustré. Pour leur rotation autour des axes X_1 et X_2 , les supports 4_1 , 4_2 sont entraînés par un moteur électrique à commande pas à pas 5 dont l'arbre de sortie 6 entraîne deux poulies 7_1 , 7_2 reliées par une courroie 8. Les poulies 7_1 , 7_2 sont calées sur les arbres 9_1 , 9_2 d'entraînement des bras supports 4_1 , 4_2 .

En 10, on a repéré un volant permettant le calage manuel de l'angle & et monté en bout d'axe du moteur 5.

La machine comporte d'autre part une colonne 11 qui supporte dans l'exemple illustré deux enrouleurs classiques dont
les bras repérés 12₁, 12₂ sont entraînés en rotation et simultanément autour des deux axes parallèles Z₁, Z₂, horizontaux
dans l'exemple de réalisation illustré. Les enrouleurs 12₁,

12₂ sont entraînés par un moteur dont on aperçoit le capot en
13.

D'autre part, l'ensemble de la colonne 11 est monté tournant selon un angle β autour d'un axe Y fixe par rapport au bâti et sensiblement vertical, c'est-à-dire perpendiculaire 35 au socle 2 dans l'exemple illustré. La rotation de l'ensemble de la colonne autour de l'axe Y est obtenue grâce à un moteur électrique à entraînement pas à pas visible en 14 à la figure '2'. On notera que l'axe Y passe sensiblement à l'endroit où peut être présentée en bout des supports 4₁, 4₂ la pièce à bobiner telle que la demi-bague ferrite tronconique illustrée en 15 montée fixée sur le support 4₂.

5

10

20

25

30

35

Evidemment, les bras bobineurs 12_1 , 12_2 sont également positionnés sur la colonne 11 de façon que le plan d'enroulement coupe la pièce à bobiner, permettant le bobinage. En 16, on a matérialisé le cercle décrit par l'extrémité d'enroulement du bras 12_1 tournant autour de son axe de rotation Z_1 , ce cercle 16 étant évidemment contenu dans le plan d'enroulement.

La comparaison des figures et plus particulièrement celle des figures 1, 8 et 9 permet de comprendre le processus de bobinage réalisé selon l'invention.

La figure 8 matérialise vu de l'axe X l'angle & de rotation du bras 4 supportant la pièce 15. L'angle & pour des questions de facilité peut être repéré par rapport à la droite A' A verticale, parallèle à l'axe Y et passant par les axes X, et X2.

De même, la figure 9 représente, vue de l'axe Y l'orientation angulaire β de la colonne 11 autour dudit axe Y. Pour des questions de facilité, l'angle β peut être repéré à partir de la droite B' B qui n'est autre dans l'exemple illustré que la trace sur le plan du socle 2 des axes X_1 , X_2 .

D'autre part, selon un mode de mise en oeuvre avantageux de l'invention, la demi-bague 15 sera supportée en bout du support 4₁, 4₂ sensiblement dans son plan médian et sur sa petite tranche. De façon pratique, la fixation pourra se faire en venant coller sur la demi-bague tronconique en ferrite 15 un peigne 17 en matériau plastique qui comprendra des dents 18 dans lesquelles viendront se loger les spires 19 enroulées assurant un bon positionnement et évitant tout glissement ultérieur. Le bras support 4₂ pourra être pourvu à son extrémité d'une pince qui recevra la partie médiane du peigne.

Avec une telle fixation de la demi-bague 15 dans son plan médian et par sa petite tranche, il est alors possible de réaliser un bobinage parfaitement symétrique de spires inclinées 19, 19¹ (voir figures 4 et 5) par rapport au plan médian 20, l'angle d'inclinaison des spires pouvant être

choisi à chaque moment en choisissant le programme d'enroulement, c'est-à-dire les angles α et β conjugués utilisés à chaque instant, et le nombre de spires devant être réalisé pour chaque valeur des angles α et β déterminés conjugués précités.

D'autre part, il apparaît immédiatement que compte tenu de la fixation en position médiane de la bague, on obtiendra des spires 19, 19' parfaitement symétriques si on prend simplement soin de choisir des programmes d'enroulement identiques pour des angles α et β symétriques.

10

15

20

25

30

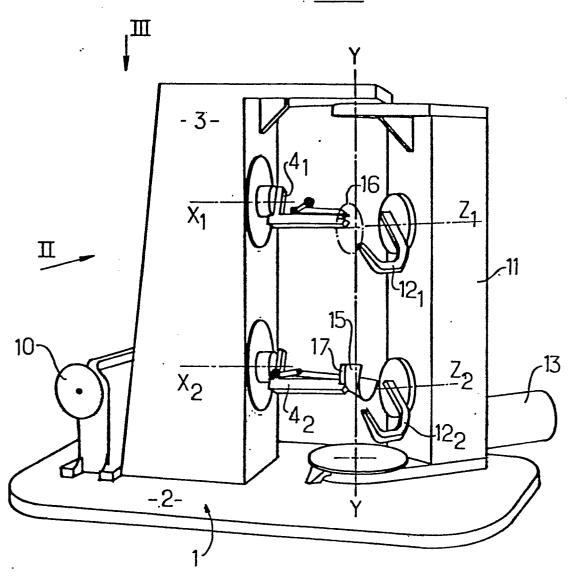
Si l'on se reporte maintenant aux figures 6 et 7, on voit que selon l'art antérieur, le noyau constitué par une demi-bague ferrite 21 était tenu par une patte 22, par exemple collée au voisinage d'une tranche d'extrémité de la demi-bague 21, et sur la demi-bague ainsi tenue, on enroulait au moyen de bras enrouleurs tels que 12, 12 des spires dans des plans radiaux passant par l'axe 24 de la demi-bague 21. Ces différents plans d'enroulement radiaux étaient obtenus en faisant pivoter les bras d'enrouleurs autour de l'axe 24 de la bague tenue fixe.

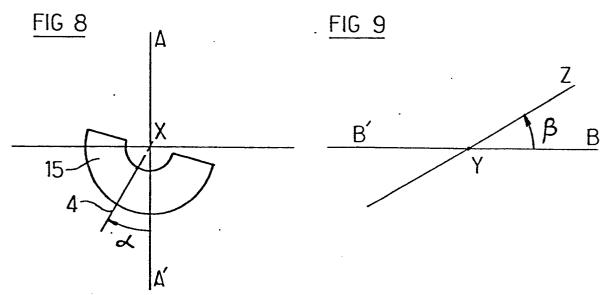
Au point de vue électromagnétique, les bobinages ainsi obtenus sont bien moins efficaces que lorsque les spires sont disposées dans des plans inclinés comme selon l'invention.

Bien entendu, l'invention n'est nullement limitée aux mode de réalisation illustré et décrit qui n'a été donné qu'à titre d'exemple, l'invention comprenant au contraire tous les équivalents techniques des moyens décrits ainsi que leurs combinaisons si celles-ci sont réalisées suivant son esprit et mises en oeuvre dans le cadre des revendications qui suivent.

REVENDICATIONS

- 1. Procédé de bobinage de plusieurs spires de fil sur un noyau, en particulier pour le bobinage des bagues de déviation pour tubes cathodiques, ledit procédé utilisant des enrouleurs comportant un bras tournant à grande vitesse autour du noyau à 5 bobiner, et étant caractérisé en ce que, de façon à bobiner chaque spire ou faisceau de spires dans un plan d'inclinaison rigoureusement choisi par rapport au noyau 15 et variable selon l'endroit du noyau qui reçoit les spires, et cela de façon automatique et en travaillant à la pleine vitesse des enrouleurs, on 10 maintient le noyau à recouvrir du bobinage sur un support 4,, 42 orientable à chaque instant autour d'un axe X, on monte chaque enrouleur de façon que son bras d'enroulement 12,, 12, puisse tourner autour dudit noyau et autour d'un axe Z dirigé obliquement par rapport à un axe Y lui-même dirigé obliquement par 15 rapport audit axe X, et l'on choisit et pilote à chaque instant tour dudit axe X et la position en rotation /3 de l'axe Z autour dudit axe Y pour obtenir les plans successifs voulus d'enroulement des spires autour du noyau.
- 20 2. Procédé selon la revendication l, caractérisé en ce que lesdits axes X et Y sont choisis fixes l'un par rapport à l'autre et dirigés sensiblement orthogonalement.
- Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que les axes Z et Y sont choisis fixes l'un
 par rapport à l'autre et dirigés sensiblement orthogonalement l'un par rapport à l'autre.
 - 4. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'on fixe chaque noyau 15 à bobiner, tel qu'une demi-bague en ferrite sensiblement tronconique, sur son support
- 30.4₁, 4₂, sensiblement dans son plan médian et sur sa petite tranche, et l'on réalise un bobinage parfaitement symétrique de spires inclinées par rapport à ce plan médian en choisissant des programmes d'enroulement où les angles & et ß ont respectivement des valeurs symétriques.
- 5. Machine pour la mise en oeuvre du procédé selon l'une des revendications précédentes, caractérisée en ce qu'elle comporte en combinaison:


- un bâti 1,
- au moins un support 4_1 , 4_2 de noyau orientable selon un angle \prec autour d'un axe X fixe par rapport au bâti,
- au moins une colonne 11 supportant au moins un enrouleur 5 12, 12 monté tournant sur ladite colonne autour d'un axe Z fixe par rapport à ladite colonne,
 - ladite colonne 11 étant montée tournante selon un angle /3 dans ledit bâti l autour d'un axe Y fixe par rapport audit bâti, et
- lesdits axes X, Y et Z étant dirigés obliquement les uns par rapport aux autres.
 - 6. Machine selon la revendication 5, caractérisée en ce qu'elle comprend en outre des premiers moyens 5, 10 de commande permettant de choisir à chaque instant la position angulaire


 ✓
- 15 et de faire tourner pas à pas ledit support 4₁, 4₂ de noyau autour de l'axe X, et des seconds moyens de commande 14 permettant de choisir à chaque instant la position angulaire A et de faire tourner pas à pas ladite colonne autour dudit axe Y, et
- des moyens de conjugaison desdits premier 5 et second 14 20 moyens de commande pour obtenir les différents plans successifs voulus d'enroulement des spires autour du noyau.
 - 7. Machine selon la revendication 5 ou la revendication 6, caractérisée en ce que les axes X et Y sont disposés sensiblement orthogonalement l'un par rapport à l'autre.
- 8. Machine selon l'une des revendications 5 à 7, caractérisée en ce que les axes Y et Z sont disposés sensiblement orthogonalement l'un par rapport à l'autre.
- 9. Machine selon l'une des revendications 5 à 8, caractérisée en ce qu'au moins deux axes X₁, X₂ et deux axes Z₁, Z₂, res-30 pectivement parallèles entre eux dans chaque groupe X et Z, sont prévus et sont conjugués de façon qu'au moins deux opérations d'enroulement identiques puissent être conduites simultanément.
- 10. A titre de produits obtenus à partir du procédé et de la machine selon l'une des revendications précédentes, les bobina35 ges de déflexion pour tubes cathodiques présentant des spires enroulées 19, 19' sur chaque demi-bague 15 en forme de tronc de cône évasé en cuvette, lesdites spires étant inclinées sur des plans radiaux symétriquement de part et d'autre du plan médian 20 de chaque demi-bague avec les deux faisceaux de spires symé-

triques nettement écartés du plan médian sur la petite tranche de la cuvette et au contraire sensiblement jointifs sur la grande tranche.

1/3

FIG 1

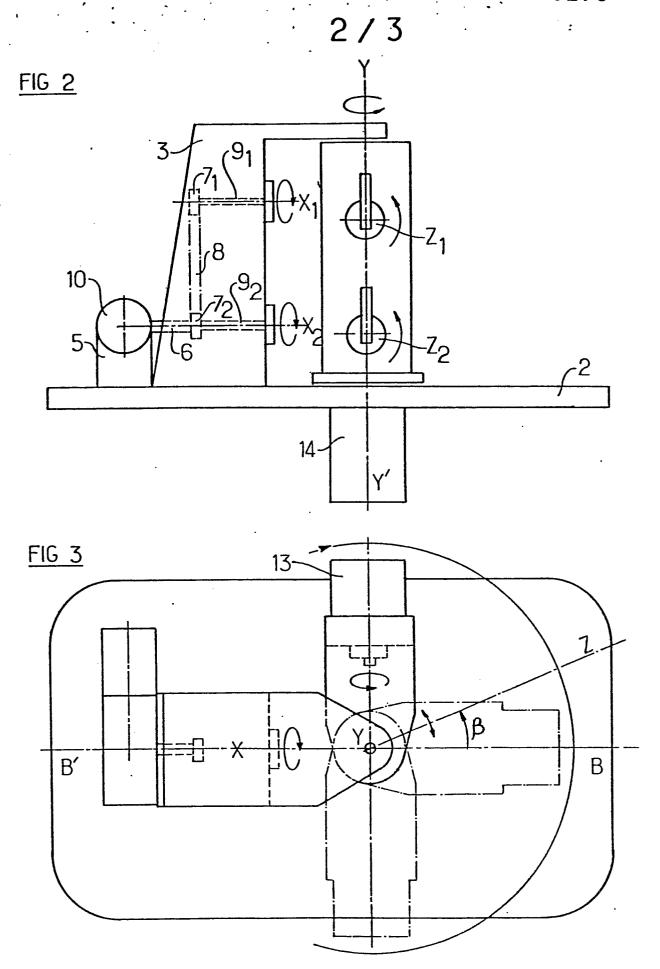
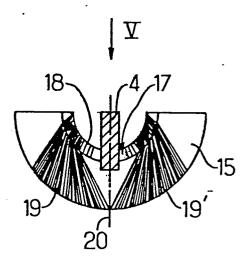



FIG 4

FIG 5

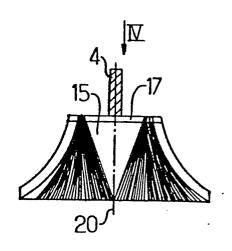
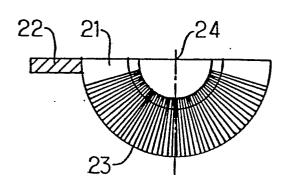
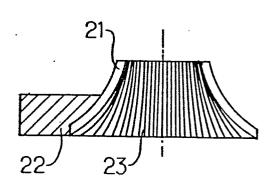




FIG 6

FIG 7

RAPPORT DE RECHERCHE EUROPEENNE

Numéro de la demande EP 81 40 0620

DOCUMENTS CONSIDERES COMME PERTINENTS				CLASSEMENT DE LA
Catégorie	I Poyon			DEMANDE (Int. Cl.9) H 01 J 9/236
	FR - A - 2 234 6	542 (PHILIPS)	1,10	29/76 H 01 F 41/08
	* Page 1, lignes ligne 33 à pag figure 1 *	s 1-11; page 1, ge 3, ligne 21;		
A	FR - A - 2 351	903 (RCA)	1,3,8,	
	* Figure 2; reve	endication 5 *	9	
A	FR - A - 2 361	742 (VIDEON)	10	
	* Figure 8; reve	endications *		DOMAINES TECHNIQUES RECHERCHES (Int. Cl. ³)
A	<u>US - A - 3 299 3</u>	379 (TORSCH)	10	H 01 J 29/76 9/236
	* Figures 4,5,7. ligne 25 à col	-9; colonne 3, lonne 4, ligne 30 *		H 01 F 41/08
	Auro Dana Salah Au	na kada pang kana atau		
		•		
				CATEGORIE DES DOCUMENTS CITES
				X: particulièrement pertinent A: arrière-plan technologique
				O: divulgation non-écrite P: document intercalaire
				T: théorie ou principe à la base de l'invention
				E: demande faisant interférence D: document cité dans
				la demande L: document cité pour d'autres raisons
20	Le présent rapport de recher	&: membre de la même famille, document correspondant		
Lieu de la	recherche La Haye	Date d'achèvement de la recherche 30-07-1981	Examinate	
	1503.1 06.78	30-01-1901		SCHAUB