(12

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt: 81400751.4

(51) Int. Cl.³: C 11 D 1/835

22 Date de dépôt: 12.05.81

D 06 M 13/46

(30) Priorité: 14.05.80 FR 8010905

(43) Date de publication de la demande: 25.11.81 Bulletin 81/47

(84) Etats contractants désignés: DE GB NL SE

Demandeur: LESIEUR COTELLE & ASSOCIES S.A. Société dite 122, avenue du Général Leclerc Boulogne Billancourt Hauts de Seine(FR) (72) Inventeur: Melin, Christiane 96, quai du Maréchal Joffre Courbevoie (Hauts de Seine)(FR)

(72) Inventeur: Peton, Nicole Rue Gaston Monmousseau Ivry (Val de Marne)(FR)

72 Inventeur: Platon, Jean François 18, rue de l'Alma Courbevoie (Hauts de Seine)(FR)

/2) Inventeur: Steiner, Jean-Pierre 114 Avenue de Paris Versailles (Yvelines)(FR)

(74) Mandataire: Cabinet BERT, DE KERAVENANT & HERRBURGER
115, Boulevard Haussmann
F-75008 Paris(FR)

- 54 Composition adoucissante concentrée pour fibres textiles.
- (5) a) Composition adoucissante concentrée pour fibres textiles.
- b) Composition caractérisée en ce qu'elle comporte des agents adoucissants actifs, constitués par un ou plusieurs agents adoucissants cationiques spécifiques représentant 10 à 30 % du poids de la composition totale et un ou plusieurs agents non-ioniques jouant le rôle d'agent émulsifiant ou stabilisant du ou des cationiques, ainsi qu'un ou plusieurs solvants du type méthanol, éthanol, isopropanol ou glycols, combinés de façon à donner une solution concentrée de consistance appropriée au conditionnement en dose plastique souple et pouvant être diluée dans de l'eau de ville par simple agitation.

 c) L'invention s'applique aux compositions adoucissantes pour fibres textiles.

A2

"Composition adoucissante concentrée pour fibres textiles"

5

10

15

20

25

La présente invention se rapporte à une composition adoucissante concentrée pour fibres textiles.

Les compositions adoucissantes sont généralement constituées de 3 à 10 % d'agents adoucissants actifs et 90 à 97 % d'eau déminéralisée. Les agents adoucissants actifs sont généralement soit des composés tensioactifs cationiques (le plus souvent des composés d'ammonium quaternaire comportant au moins 2 chaînes alkyls longues), soit des mélanges en proportions variables d'agents tensioactifs cationiques et d'agents tensioactifs non ioniques que l'on combine à des additifs annexes tels que parfums, azurants optiques, colorants, agents de conservation, bactéricides, agents épaississants etc.

Ces compositions présentent l'inconvénient de ne pouvoir être fabriquées et commercialisées qu'à l'état très dilué comme il a été montré, une concentration supérieure à 10 % les transformant en des gels non dispersables dans l'eau lorsqu'ils sont utilisés par la ménagère.

En plus l'industriel-fabricant est obligé d'utiliser pour la fabrication de son produit une eau déminéralisée dont les électrolytes ont été pratiquement éliminés, afin d'obtenir une émulsion ayant une homogénéité, une stabilité et une consistance acceptables au moment de l'utilisation.

Ceci implique des opérations technologiques sup-

plémentaires pour la déminéralisation de l'eau de ville et en même temps l'utilisation pour un pouvoir adoucissant déterminé d'un emballage et d'un sur-emballage volumineux et lourd.

5

Ces inconvénients se répercutent sur le consommateur non seulement au niveau du prix de vente du produit mais également en ce qui concerne le transport et le stockage étant donné qu'ils exigent le transport et le stockage d'un volume et d'un poids importants pour un effet adoucissant relativement faible.

10

La présente invention a pour objet de remédier à ces inconvénients en proposant une composition adoucis-sante concentrée ne se présentant pas sous forme de gel non dispersable mais sous la forme d'une solution visqueuse stable qui soit totalement diluable dans l'eau de ville même froide, donc de l'eau qui n'a pas besoin d'être déminéralisée au préalable.

15

20

De cette manière, l'utilisateur, notamment la ménagère, retrouve après dilution dans de l'eau de ville et par simple agitation le produit qu'elle utilise habituellement, à savoir une solution homogène stable et d'une consistance identique à celle des produits existant dans le commerce, c'est-à-dire des produits vendus par le fabricant sous forme de solution diluée et visqueuse.

25

Le choix d'une viscosité appropriée est essentiel pour ce produit. En effet, si lors d'un transvasement, un produit trop visqueux cause des problèmes de passage d'un récipient à l'autre, un produit trop fluide présente l'inconvénient majeur de débordements et d'éclaboussures désagréables pour la ménagère qui doit doser le produit avant de l'introduire dans l'eau de rincage, et présente en même temps un risque de salissure et à terme de corrosion pour la machine à laver.

30

Le produit concentré selon l'invention peut donc donner par simple dilution, dans de l'eau de robinet par

35

exemple, un produit parfaitement adapté aux dimensions des bacs à adoucissants des machines à laver le linge actuellement dans le commerce.

En plus, le produit selon l'invention est conçu, à la différence des produits adoucissants dilués du commerce, pour des machines à laver le linge de conception récente, munies d'un réservoir à adoucissant capable d'assurer une réserve de produit pour 1 à 2 mois afin de faciliter le travail de la ménagère. Effectivement, le produit de l'invention possède 2 qualités essentielles pour de telles machines : une concentraction élevée qui permet l'utilisation d'un réservoir de dimensions relativement réduites, donc plus facile à loger dans de telles machines et une stabilité prolongée aux cycles de température qu'il subit dans le réservoir de la machine à laver. Ces qualités le rendent utilisable également dans les machines à laver industrielles.

A cet effet, la composition selon l'invention est caractérisée en ce qu'elle se compose d'agents adoucis-sants actifs constitués par un ou plusieurs agents adoucissants cationiques spécifiques, représentant 15 à 30 % du poids de la composition totale, et un ou plusieurs agents non ioniques jouant le rôle d'agent émulsifiant ou stabilisant du ou des cationiques, et le cas échéant, d'additifs tels que des parfums, des agents émulsifiants des parfums, des colorants et des azurants optiques, des agents de conservation ainsi que d'un ou plusieurs solvants du type méthanol, éthanol, isopropanol ou glycols.

Ainsi, l'invention est basée sur la mise au point d'une composition ayant une concentration en agents actifs qui est approximativement quatre à six fois supérieure à la concentration des compositions actuellement sur le marché et susceptible de donner après dilution dans l'eau de ville une solution de stabilité et d'homogénéité comparable aux solutions classiques et même ayant des propriétés

adoucissantes améliorées et un pouvoir absorbant amélioré par rapport à l'art antérieur.

Le choix des composants et leurs proportions ont été étudiés de manière à obtenir une composition ayant une viscosité qui permet une dilution facile et homogène; elle peut être diluée 4 à 6 fois avec de l'eau de ville froide et se présenter finalement sous le même aspect que les produits habituels et donc, être utilisée de la même manière dans les machines à laver de type classique, et pour l'utilisation lors d'un lavage à la main.

5 -

10

15

20

25

30

35

Le produit concentré peut être conditionné soit en emballage plastique rigide, soit en emballage plastique souple. Mais, cet emballage est un emballage intermédiaire, puisque le produit doit être dilué avant utilisation. Il est alors plus intéressant d'utiliser un emballage plastique souple sous forme de dose ou par exemple de berlingot, parce que le berlingot en plastique souple peut être vidé complètement du produit qu'il contient en appuyant les parois l'une sur l'autre, alors que l'emballage en plastique dur devrait être rincé pour être complètement vidé. Un autre avantage de ce genre d'emballage est qu'il prend moins de place au stockage, puisque l'espace nécessaire pour ranger des doses est 1,4 fois le volume de la dose alors que pour ranger des emballages en plastique dur, l'espace nécessaire est de 2 à 2,5 fois le volume du produit contenu dans l'emballage, suivant la forme de ce dernier. Le façonnage d'un emballage en plastique souple est beaucoup moins onéreux que celui d'un emballage en plastique dur. Toutes ces raisons sont en faveur d'un emballage qui a pour seules fonctions, le transport et le stockage du produit dans les conditions les plus simples, les plus faciles et les moins onéreuses. L'utilisation du produit se fait à partir d'un flacon dans lequel on dilue le produit, et ce flacon peut être réutilisé de nombreuses fois. Le volume de l'emballage souple peut être adapté à

5

10

15

20

25

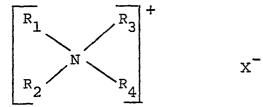
30

35

la dilution ultérieure désirée. Les contenances usuelles vont, par exemple, de 50 à 500 cm³ pour une dilution ultérieure amenant le volume à 1 000 cm³. On peut, par exemple, conditionner la composition de la présente invention dans un berlingot de 250 cm³. Ainsi, lorsqu'il achète une dose de produit, l'utilisateur transporte dans un emballage de 250 cm³ autant de pouvoir adoucissant que dans un flacon de 1 000 cm³ acheté dans le commerce.

Le produit vendu dans ce type d'emballage offre toute garantie à l'utilisateur à qui il permet après la première dilution avec de l'eau de ville, d'obtenir une dispersion homogène, stable à la conservation, et d'une viscosité comparable à celle des produits vendus sous forme diluée.

En outre, le rapport composé/eau/solvant est calculé de manière à obtenir un produit pouvant être conditionné en doses dont la viscosité est calculée pour permettre de remplir et de vider rapidement, facilement et totalement la dose.


En conséquence, dans le cas d'un produit conditionné dans des berlingots plastiques, par exemple de 250 cm³, l'utilisateur peut transférer le produit dans un flacon de l litre, puis compléter avec de l'eau de ville qui ne doit pas présenter une qualité spéciale et, après agitation du flacon, obtenir un produit prêt à l'emploi pour l'usage à la main ou pour l'usage en machine. Le produit ainsi obtenu a une viscosité habituelle pour l'utilisateur, ce qui lui permet de distribuer la quantité adéquate de produit de façon constante.

Selon une autre caractéristique de l'invention, le rapport pondéral des adoucissants cationiques aux agents non ioniques est compris entre 10/1 et 3/2.

Dans la composition, objet de l'invention, le constituant principal est donc le ou les agents tensio-actifs cationiques qui peuvent être constitués par diffé-

rents types de composés que l'on va étudier ci-dessous :

a) des composés d'ammonium quaternaire de formule
générale :

5

10

15

20

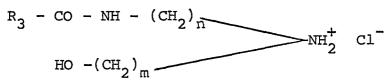
25

30

35

formule dans laquelle R_1 et R_2 représentent soit des groupes alkyle ayant de préférence de 10 à 22 atomes de carbone, soit des chaînes alkyle interrompues par des groupes fonctionnels tels que hydroxy, carboxy, amide, éthoxy; R_3 et R_4 représentent des groupes alkyle ou hydroxyalkyle ayant de 1 à 4 atomes de carbone, et X est un anion : halogénure, méthylsulfate ou éthylsulfate.

Parmi ces composés d'ammonium quaternaire, on peut citer plus particulièrement le chlorure de di-suif-diméthyl ammonium, le chlorure de di-suif hydrogéné-diméthyl ammonium, le chlorure de dioctadécyl-diméthyl ammonium, le chlorure d'éthyl-diméthyl-stéaryl ammonium, le méthylsulfate de distéaryl-diméthyl ammonium, le chlorure de di(stéaroyl-oxyéthyl-)diméthyl ammonium, le chlorure de di-(lauryl-hydroxypropyl-)diméthyl ammonium, le méthylsulfate de di(stéaroyl-oxyéthyl-)diméthyl ammonium, le chlorure de di(palmytoyl-oxyéthyl-)diméthyl ammonium, le méthylsulfate de di(stéaroyl-oxyéthyl-)hydroxyéthyl-méthyl ammonium, le méthylsulfate de di(palmitoyl-oxyéthyl-)hydroxyéthyl-méthyl ammonium, le méthylsulfate de di(oléoyloxyéthyl-)hydroxyéthyl-méthyl ammonium, l'éthylsulfate de di(stéaroyl-oxyéthyl-)hydroxyéthyl-méthyl ammonium, l'éthylsulfate de di(palmitoyl-oxyéthyl-) hydroxyéthylméthyl ammonium, l'éthylsulfate de di(oléoyl-oxyéthyl-) hydroxyéthyl-méthyl ammonium.


Néanmoins, dans cette catégorie, les composés utilisés de manière préférentielle, sont les chlorures de di-suif hydrogéné-diméthyl ammonium, les chlorures de ditétradécyl-diméthyl ammonium et de préférence, les méthyl-sulfates de di(stéaroyl-oxyéthyl-) méthyl-hydroxyéthyl ammonium, les méthylsulfates de di(palmitoyl-oxyéthyl-) méthyl-hydroxyéthyl ammonium, et les méthylsulfates de di(oléoyl-oxyéthyl-)méthyl-hydroxyéthyl ammonium, seuls ou en mélange.

- b) des sels d'alkyl imidazolinium tels que par exemple le méthylsulfate de 2.heptadécyl 1-méthyl -1-(2. stéaroyl-amido) éthyl-imidazolinium, le chlorure de 2. heptadécyl 1-méthyl 1-(stéaroylamido) éthyl-imidazolinium ou d'éthylsulfate de éthyl 1-stéaroylamido éthyl-alkyl 2.imidazolinium.
 - c) des sels d'amine, de formule générale :

R₁ th₂ cl

formule dans laquelle R_1 et R_2 sont des radicaux alkyles, hydro-alkyles ou des radicaux alkyles interrompus par des groupements fonctionnels carboxy, éthoxy, hydroxy ou amide.

Comme exemple de ces produits, on peut citer les produits de formule générale :

25

30

35

5

10

15

20

$$R_3 - CO - NH - (CH_2)_n$$
 $R_4 - COO - (CH_2)_m$
 $NH_2^+ C1^-$

formules dans lesquelles R_3 et R_4 sont des radicaux alkyles ayant de préférence entre 10 et 22 atomes de carbone, m et n étant compris de préférence entre 1 et 6.

Bien entendu, la liste des exemple des compositions ci-dessus (a, b, c) n'est pas limitative et les produits appartenant aux trois classes d'agents cationiques du même type peuvent être utilisés seuls ou en mélange.

Selon une autre caractéristique de l'invention, le ou les agents non ioniques sont choisis dans le groupe formé par les alcools gras contenant de 8 à 20 atomes de carbone condensés avec 3 à 12 molécules d'oxyde d'alkylène (de préférence d'éthylène et/ou de propylène) et les alkylphénols comportant un radical alkyle ayant de 8 à 10 atomes de carbone condensés avec 4 à 12 molécules d'oxyde d'alkylène (de préférence d'éthylène et/ou de propylène).

Ainsi, ces caractéristiques sont dues à une composition contenant un cationique spécifique additionné
d'un ou plusieurs non-ioniques appropriés. On obtient,
après une première dilution à l'eau de ville froide, une
dispersion d'une homogénéité et d'une stabilité physique
qui n'avait jamais pu être obtenue dans l'art antérieur,
ce qui est indispensable pour conditionner un produit
concentré, sous forme de dose en matière plastique dont
le prix est très faible par rapport aux emballages de
l'art antérieur.

De plus, cette composition reste stable dans des limites de température très larges allant de celles pouvant être atteintes dans le bac de stockage des machines à laver au cours du lavage et peut, par ailleurs, supporter une température d'emmagasinage allant jusqu'à -25°C tout en retrouvant sa consistance initiale après dégel.

Néanmoins, pour leur permettre de prétendre à une large diffusion auprès du public, il est indispensable d'ajouter aux compositions, objet de l'invention, une quantité relativement importante de parfum.

Par suite, selon une autre caractéristique de l'invention, on ajoute à la composition des agents émulsifiants des huiles dans l'eau ayant une valeur HLB comprise entre 10 et 16, appartenant à la classe des nonioniques; de tels agents sont de préférence des esters de sorbitan et/ou des esters poly-oxy-éthylénés de sorbitan.

5

10

15

20

25

30

En effet, dans la composition de la présente invention, il a été constaté que l'addition d'une très faible quantité de ces produits permet d'obtenir une incorporation des parfums sans séparation ultérieure de phase et une stabilité à une longue conservation.

Par ailleurs, l'addition dans des quantités déterminées d'un solvant ou d'un mélange de solvants du type méthanol, éthanol, isopropanol ou glycols, est nécessaire pour l'ajustement de la viscosité et pour l'obtention d'une émulsion bien homogène et finement dispersée.

Les propriétés particulièrement intéressantes des compositions, objet de l'invention, vont être démontrées en se référant aux tests suivants, dans lesquels les propriétés adoucissantes de ces compositions sont comparées avec celles d'un produit habituel à base de chlorure de di-suif hydrogéné-di-méthyl ammonium.

Pour cela, on lave dans une machine à laver domestique des serviettes éponge et des tissus de percale de coton avec une poudre de lavage normalisée et on introduit dans la machine à laver 60 cm³ de composition adoucissante pour le rinçage final. Les serviettes éponge et les tissus de percale de coton sont séchés verticalement.

a) Pouvoir adoucissant.

Cet essai se fait sur des serviettes éponge :
un panel de personnes exercées apprécie le toucher des serviettes et note chaque produit par rapport
au produit témoin.

Le produit témoin est noté 0.

Les produits donnant un toucher supérieur au témoin. sont notés de + à +++.

Les produits donnant un toucher inférieur au témoin sont notés de - à ---.

b) Pouvoir de remouillage.

35 Les compositions habituelles qui ont un bon pou-

voir adoucissant ont l'inconvénient de rendre les tissus hydrophobes, c'est-à-dire que les tissus perdent une partie de leur pouvoir absorbant, ce qui est désagréable, en particulier pour les serviettes éponge dont la principale fonction est d'absorber l'eàu.

Cet essai se fait sur la percale de coton. On mesure la montée capillaire d'une solution aqueuse sur des éprouvettes de tissu de 2 cm de large. On note le pourcentage de remouillage par rapport au tissu témoin qui a été lavé et non adouci.

Composition témoin.

On disperse sous forte agitation 66,66 g de chlorure de di-suif hydrogéné-diméthyl ammonium à 75 % dans 928 g d'eau déminéralisée à 60°C et contenant 5 g de nonylphénol condensé avec 9 molécules d'oxyde d'éthylène. On obtient une solution adoucissante contenant 5 % d'agent cationique.

EXEMPLE 1.

5

10

15

20

25

30

35

On mélange à 40°C, 235 g d'une solution à 85 % de méthylsulfate N méthyl, NN di(CC14C18 - acyloxyéthyl), N-C hydroxyéthyl ammonium avec 20 g d'alcool gras oxy-éthylénés et 80 g d'isopropanol. On disperse cette préparation dans 700 g d'eau de ville contenant le colorant. On ajoute ensuite le parfum dispersé par un ester oxy-éthyléné de sorbitan. On obtient une composition opaque et homogène à 20 % de matière adoucissante ayant une viscosité suffisamment faible de 200 à 300 millipascals.seconde pour que le produit se disperse facilement dans l'eau (la viscosité est déterminée au moyen d'un viscosimètre type EPPRECHT TVB mobile 2).

On met 250 g de cette composition dans un flacon, on ajoute 750 g d'eau de ville froide et par agitation du flacon, on obtient une composition adoucissante dont la viscosité est identique à celle des produits existants : 40 à 80 millipascals.seconde et dont les qualités adou-

cissantes sont supérieures à celles obtenues avec le chlorure de di-suif hydrogéné-diméthyl ammonium à la place de ce cationique. De plus, les tissus adoucis avec cette composition ont un pouvoir de remouillage supérieur à ceux adoucis avec la composition témoin (voir tableau annexe 1).

EXEMPLE 2.

5

10

15

20

25

30

35

On reprend l'exemple l dans lequel, on ajoute 5 g de nonylphénol oxyéthyléné, avant l'addition du mélange de parfum et d'ester oxyéthyléné de sorbitan. On obtient une composition opaque et homogène dont la viscosité est comprise entre 100 et 200 millipascals.seconde.

On met 250 g de cette composition dans un flacon d'un litre et on ajoute 750 g d'eau de ville et on agite. On obtient une composition adoucissante bien dispersée dont la viscosité est comprise entre 40 et 80 millipas-cals.seconde.

Les tissus traités avec cette composition ont les mêmes qualités que ceux traités avec l'exemple 1.

EXEMPLE 3.

On reprend l'exemple 1 et on ajoute 5 g d'un al-cool gras en C_{12}^{-C} oxyéthyléné avec 9 molécules d'oxyde d'éthylène, et on opère comme dans l'exemple 2.

On obtient un produit dont la viscosité est de 200 à 300 millipascals.seconde et dont les propriétés adoucissantes sont identiques à celles de l'exemple 2.

EXEMPLE 4.

On reprend l'exemple 3, et on ajoute 10 g d'alcool gras en C_{12}^{-C} oxyéthyléné et on opère comme dans l'exemple 3.

On obtient une composition ayant une viscosité comprise entre 700 et 900 millipascals-seconde. Cette composition est très difficile à couler et la dilution dans l'eau de ville est très difficile, il faut exercer une agitation très énergique pour obtenir une solution

diluée homogène.

5

10

15

20

25

30

Avec cette solution diluée et homogénéisée, on obtient les mêmes propriétés adoucissantes et le même pouvoir de remouillage que dans l'exemple 3.

EXEMPLE 5.

On coule, sous forte agitation, 700 g d'une solution à 30 % de chlorures d'amine et de non-ioniques dont le rapport cationique/non-ionique = 8/2, dans l'eau de ville froide contenant le colorant. Après agitation, on ajoute le parfum et on obtient une composition opaque, homogène et stable ayant une viscosité de 200 à 300 millipascals.seconde, le produit se disperse facilement dans l'eau de ville.

On met 250 g de cette composition dans un flacon d'un litre et on ajoute 750 g d'eau de ville et on agite. On obtient une composition adoucissante de faible viscosité de 6 à 10 millipascals.seconde. Cette composition a de bonnes propriétés adoucissantes, le pouvoir de remouillage est comparable à la composition témoin.

EXEMPLE 6.

On mélange 35 % de la préparation de l'exemple 1 et 65 % de la préparation de l'exemple 2. On obtient un produit à 20 % de produits adoucissants. Ce produit a une viscosité de 250 à 350 millipascals.seconde et il se disperse facilement dans l'eau de ville froide.

Dilué 4 fois, on obtient un produit de faible viscosité, 6 à 10 millipascals.seconde, qui a de bonnes propriétés adoucissantes et des propriétés de remouillage comparables à la composition témoin.

EXEMPLE 7.

On coule sous forte agitation, 66,4 g d'éthylsulfate de éthyl-l-stéaroylamido éthyl-alkyl 2-imidazolinium à 75 %, fondu, avec 729,6 g d'eau déminéralisée à 60°C contenant 4 g de paratoluène sulfonate de sodium.

On obtient un produit à 20 % de produit adoucis-

sant qui a une viscosité de 450 à 550 millipascals.seconde et il se disperse facilement dans l'eau de ville froide.

Dilué 4 fois dans l'eau de ville, on obtient un produit adoucissant de faible viscosité dont les propriétés adoucissantes sont légèrement inférieures à celles de la composition témoin.

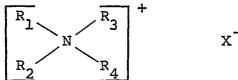
5

ANNEXE

	TEMOIN	EX. 1	EX. 2	EX.3	EX. 4	EX. 5	EX. 6	EX. 7
VISCOSITE : en millipascals. seconde								
Produit concentré	1	200-300	200-300 100-200 200-300 700-900 200-300 250-350 450-550	200-300	700-900	200-300	250-350	450-550
Produit dilué	08-09	40-80	40-80	40-80	40-80	2-10	5-10	5-10
Pouvoir adoucis- sant	0	+	+	+	+	0	0	l
Pouvoir de remouil- lage	30-35%	5060%	50-60%	20-60%	20-60%	30-35%	30-35%	40-45%

* Dans l'exemple n° 1-2-3-4, on remarque que la qualité du pouvoir de remouillage est nettement améliorée par rapport à celle des autres compositions. Cette qualité est très importante parce qu'elle permet d'avoir du linge de coton ayant une douceur agréable et une bonne capacité d'absorption de l'humidité.

REVENDICATIONS


- 1°) Composition adoucissante pour fibres textiles, caractérisée en ce qu'elle se compose d'agents adoucissants actifs, constitués par un ou plusieurs agents adoucissants 5 cationiques spécifiques représentant 10 à 30 % du poids de la composition totale et un ou plusieurs agents non-ioniques jouant le rôle d'agent émulsifiant ou stabilisant du ou des cationiques et, le cas échéant, d'additifs tels que des parfums, des agents émulsifiants de parfums, des colo-10 rants et des azurants optiques, des agents de conservation ainsi que d'un ou plusieurs solvants du type méthanol, éthanol, isopropanol ou glycols, combinés de façon à donner une solution visqueuse concentrée de consistance appropriée au conditionnement en dose plastique souple, de 15 viscosité choisie de manière à permettre un remplissage et un vidage rapide, facile et complet de celle-ci tout en garantissant la concentration désirée, stable aux températures de lavage en machine, supportant des variations de températures pendant des durées prolongées lors du stockage 20 dans des réservoirs de machines à laver ainsi qu'une température de stockage allant jsuqu'à -25°C tout en retrouvant sa consistance initiale après dégel, et pouvant être diluée dans de l'eau de ville même froide en donnant par simple agitation une solution homogène d'une viscosité 25 comprise entre 40 et 80 millipascals.seconde dont les propriétés adoucissantes et le pouvoir absorbant sont améliorés.
 - 2°) Composition adoucissante selon la revendication 1, caractérisée en ce que le rapport pondéral des adoucissants cationiques aux agents non-ioniques est compris entre 10/1 et 3/2.

30

35

3°) Composition adoucissante selon l'une quelconque des revendications 1 et 2, caractérisée en ce que le ou les agent(s) cationique(s) est ou sont choisi(s) dans le groupe formé par :

a) les composés d'ammonium quaternaire de formule générale :

5

dans laquelle R₁ et R₂ représentent soit des groupes alkyle ayant de préférence de 10 à 22 atomes de carbone, soit des chaînes alkyle interrompues par des groupes fonctionnels hydroxy, carboxy, amide, éthoxy, et R₃ et R₄ représentent des groupes alkyle ou hydroxy alkyle ayant de 1 à 4 atomes de carbone, et X représente un anion : halogénure, méthylsulfate ou éthylsulfate.

- b) les sels d'alkyle imidazolinium,
- c) les sels d'amide de formule générale :

15

20

25

30

10

dans laquelle les radicaux R₁ et R₂ sont des radicaux alkyle, hydroxy-alkyle, ou des radicaux alkyle interrompus par des groupements fonctionnels carboxy, éthoxy, hydroxy ou amide.

- 4°) Composition adoucissante selon la revendication 3, caractérisée en ce qu'elle comporte en tant qu'agent adoucissant cationique du méthyl ou éthylsulfate de N-méthyl, NN-di($^{\circ}$ C₁₄-C₁₈-acyloxy-éthyl), N- $^{\circ}$ hydroxy éthyl ammonium.
- 5°) Composition adoucissante selon la revendication 4, caractérisée en ce que l'agent adoucissant cationique est choisi dans le groupe formé par les méthyl et les éthylsulfates de di-(stéaroyl-oxyéthyl-)méthyl-hydro-xyéthyl ammonium, de di(palmitoyl-oxyéthyl-)méthyl-hydro-xyéthyl ammonium, de di(oléoyl-oxyéthyl-)méthyl-hydroxy-éthyl ammonium et leurs mélanges.
- 6°) Composition adoucissante selon l'une quelcon-35 que des revendications l à 5, caractérisé en ce que le ou

les agent(s) non-ionique(s) est ou sont choisi(s) dans le groupe formé par les alcools gras contenant de 8 à 20 atomes de carbone condensés avec 3 à 12 molécules d'oxyde d'alkylène, et les alkylphénols comportant un radical alkyle ayant de 8 à 10 atomes de carbone condensés avec 4 à 12 moles d'oxyde d'alkylène.

- 7°) Composition adoucissante selon la revendication 6, caractérisée en ce que le ou les agent(s) non-ionique(s) est ou sont choisi(s) dans le groupe formé par les alcools gras contenant de 8 à 20 atomes de carbone condensés avec 3 à 12 molécules d'oxyde d'éthylène et/ou de propylène, et les alkylphénols comportant un radical alkyle ayant de 8 à 10 atomes de carbone condensés avec 4 à 12 moles d'oxyde d'éthylène et/ou de propylène.
- 8°) Composition adoucissante selon l'une quelconque des revendications l à 7, caractérisée en ce qu'elle comporte un ou plusieurs agents émulsionnants des huiles dans l'eau ayant une valeur HLB comprise entre 10 et 16 appartenant à la classe des non-ioniques.
- 9°) Composition adoucissante selon la revendication 8, caractérisée en ce que le ou les agent(s) émulsionnant(s) des huiles dans l'eau est ou sont choisi(s) dans le groupe formé par les esters de sorbitan, les esters polyoxyéthylénés de sorbitan et leurs mélanges.
 - 10°) Solution adoucissante pour produits textiles caractérisée en ce qu'elle consiste en la composition selon l'une quelconque des revendications l à 9, diluée entre 3 et 10 fois à l'eau de ville froide.

30

25

5

10