11 Veröffentlichungsnummer:

0 044 351

A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 80104274.8

(51) Int. Cl.3: C 22 C 29/00

22) Anmeldetag: 19.07.80

43 Veröffentlichungstag der Anmeldung: 27.01.82 Patentblatt 82/4

84 Benannte Vertragsstaaten: AT CH DE FR GB LI SE 7) Anmelder: Kernforschungszentrum Karlsruhe GmbH Weberstrasse 5 D-7500 Karlsruhe 1(DE)

72) Erfinder: Holleck, Helmut, Dr. Im Eichbäumle 27 D-7500 Karlsruhe(DE)

- Hartlegierung, bestehend aus einem oder mehreren Hartstoffen und einer binären Bindemetall-Legierung, und Verfahren zum Herstellen dieser Legierung.
- 57) Die Erfindung betrifft eine Hartlegierung, bei der
- a) eine feindisperse homogene Verteilung des Hartstoffes in der Bindemetall-Legierung vorliegt,
- b) die Hartstoffe aus Carbiden der Übergangsmetalle der Gruppen 4b, 5b und 6b des Periodensystems der Elemente bestehen und
- c) die Bindemetalle aus festen Legierungen der Übergangsmetalle der Gruppen 4b, 5b und 6b des Periodensystems der Elemente mit Re oder einem der Platinmetalle (Ru, Rh, Pd, Os, Ir, Pt) bestehen. Ein Teil des Platinmetalles kanr durch Fe, Co oder Ni ersetzt sein.

Die feindisperse homogene Verteilung des Hartstoffes in der Bindemetall-Legierung wird dadurch erreicht, daß während der Herstellung intermediär ein oder mehrere ternäre Carbide gebildet werden, die im Verlaufe des Herstellungsverfahrens zu den gewünschten Hartlegierungen zersetzt werden.

351 A1

Beschreibung:

Die Erfindung betrifft eine Hartlegierung, bestehend aus einem oder mehreren Hartstoffen und einer binären Bindemetall-Legierung, die ein Metall aus der Gruppe 8b des Periodensystems der Elemente enthält.

Hartmetalle bzw. Hartlegierungen sind bereits in ·R.Kieffer, F.Benesovsky "Hartmetalle" (1965), Seiten 216 bis 223, beschrieben worden. Gute Verschleißfestigkeit und hohe Korrosionsbeständigkeit weisen Hartmetalle mit einem Basiscarbid aus Chromcarbid (Cr_3C_2) mit 12 % oder 15 % Nickel-Binder auf. Solche Chromcarbid-Hartmetalle sind aber verhältnismäßig 15 spröde, was bei Schlagbeanspruchungen zu berücksichtigen ist. Mit steigendem Nickel-Gehalt nimmt auch die Korrosionsbeständigkeit von Cr₃C₂-Hartmetallen ab. Die geringe Zähigkeit und schlechte Temperaturwechselbeständigkeit schließt die Verwendung von Cr_3C_2 -20 Hartmetallen als Hochtemperaturwerkstoffe aus. Versuche, Cr₃C₂ teilweise durch Mo₂C, WC, TiC und TaC sowie Nickel durch Kobalt, Kupfer, Eisen oder Molybdän zu ersetzen, haben keine wesentlichen Eigenschaftsverbesserungen gebracht. Eine andere Möglich-. 25 keit zu korrosionsfesten Hartmetallen zu gelangen, besteht darin, in WC-Co- oder WC-TiC-Co-Legierungen das Kobalt durch korrosionsbeständige Binder-Legierungen zu ersetzen. Hierzu wurden Nickel-Chrom-Legierungen im Verhältnis 80:20 oder 70:30 verwendet. In der Praxis kommen 6 bis 20 %, vorzugsweise 8 bis 10 % Binder-Legierung in Frage. Platin gebundenes WC-Hartmetall wurde ebenfalls hergestellt. Dieses wird im Reaktorbau, wo starke Neutronenstrahlung auftritt

empfohlen [Kieffer, Benesovsky 1965].

Die Nachteile der bekannten Hartlegierungen sind in ihrer verhältnismäßig geringen Festigkeit und/ oder in ihrem hohen spezifischen Gewicht zu sehen.

5

10

Der Erfindung liegt daher die Aufgabe zugrunde, einen Werkstoff mit hoher Festigkeit, hoher Härte und hoher Verschleißfestigkeit, der gegen korrodierende (teil-weise auch oxidierende) Medien weitgehend resistent ist, bereitzustellen. Das Verfahren seiner Herstellung soll einfach sein.

- Die Aufgabe wird erfindungsgemäß gelöst durch eine
 Hartlegierung, bestehend aus einem oder mehreren
 Hartstoffen und einer binären Bindemetall-Legierung,
 die ein Metall aus der Gruppe 8b des Periodensystems
 der Elemente enthält und die dadurch gekennzeichnet ist,
 daß
- 20 a) eine feindisperse homogene Verteilung des Hartstoffes in der Bindemetall-Legierung vorliegt,
 - b) die Hartstoffe aus Carbiden der Übergangsmetalle der Gruppen4b, 5b und 6b des Periodensystems der Elemente bestehen und
- 25 c) die Bindemetalle aus festen Legierungen der Übergangsmetalle der Gruppen 4b, 5b und 6b des Periodensystems der Elemente mit Rhenium (Re) oder einem der Platinmetalle (Ru, Rh, Pd, Os, Ir, Pt) bestehen.

Vorteilhafte Ausbildungen der Hartlegierung sind gekennzeichnet durch Hartstoff-zu-Bindemetall-Legierungs-Verhältnisse im Bereich zwischen 90 Vol.-% Hartstoff/lo Vol.-% Bindemetall-Legierung und 5 Vol.-% 5 Hartstoff/95 Vol.-% Bindemetall-Legierung. Eine Weiterbildung der Hartlegierung ist dadurch gekennzeichnet, daß der Anteil des 4b,5b, 6b-Übergangsmetalles in der Bindemetall-Legierung im Bereich zwischen 2 Mol.-% und 60 Mol.-% liegt. Das Carbid in der Hartlegierung 10 weist eine Zusammensetzung auf, die einem Übergangsmetall-zu-Kohlenstoff-Verhältnis im Bereich von 1:1 bis 2:1 entspricht. In einer vorteilhaften Weiterbildung der Hartlegierung ist der Anteil des Platin-15 metalls in der Bindemetall-Legierung bis zu 90 Atom-% durch Eisen, Kobalt oder Nickel ersetzt.

Das Verfahren zur Herstellung der erfindungsgemäßen Hartlegierungen ist dadurch gekennzeichnet, daß

20

25

- a) ein Pulver eines Übergangsmetalls aus einer der Gruppen 4b, 5boder 6b mit einem Pulver des Metalls Rhenium oder eines Platinmetalls und mit Kohlenstoffpulver in stöchiometrischem Verhältnis, das Carbiden mit 2 oder mehr Metallkomponenten entspricht, gemischt werden,
- b) daß Pulvergemisch aus a) zu Preßlingen gepreßt wird,

- c) die Preßlinge bei Temperaturen von 1575 K oder darüber, jedoch in jedem Einzelfall bei Temperaturen oberhalb der Zerfallstemperatur des jeweiligen mehrkomponentigen Carbids geschmolzen oder gesintert und
- 5 d) danach einer Ausscheidungs- oder Homogenisierungs-Glühung unterzogen und abgekühlt werden.

In einer Ausbildung des erfindungsgemäßen Verfahrens wird Chrompulver mit einem Pulver eines oder mehrerer der Metalle aus der Gruppe Ru, Rh, Ir und Pt und mit Kohlenstoffpulver in einem Verhältnis das den Formeln

10

20

25

30

15 (III)
$$(Cr_{0.5}Ir_{0.5})C_{0.25}$$
 und

aus diesen sich ergebenden Mischformeln entspricht, gemischt und das Gemisch nach dem Pressen zur Bildung des intermediär entstehenden Carbidsgeschmolzen oder bei Temperaturen über den Zerfallstemperaturen der jeweiligen mehrkomponentigen Carbide gesintert.

In einer anderen Ausbildung des erfindungsgemäßen Verfahrens wird Molybdänpulver mit einem Pulver eines oder mehrerer Metalle aus der Gruppe Re, Ru, Rh, Os, Ir, Pt und mit Kohlenstoffpulver in einem Verhältnis, das den Formeln

(IX)
$$(Mo_{0.5}Ir_{0.5})C_{0.25}$$
 und

(X)
$$(Mo_{0.5}Pt_{0.5})C_{0.1}$$
 oder aus

diesen sich ergebenden Mischformeln entspricht,

gemischt und das Gemisch nach dem Pressen zur Bildung
des intermediär entstehenden Carbids geschmolzen oder
bei Temperaturen über den Zerfallstemperaturen der
jeweiligen mehrkomponentigen Carbide gesintert.

In einer weiteren Ausbildung des erfindungsgemäßen
Verfahrens wird Wolframpulver mit einem Pulver eines
oder mehrerer der Metalle aus der Gruppe Ru, Rh, Os
und Pt und mit Kohlenstoffpulver in einem Verhältnis,
das den Formeln

25

(XII)
$$(W_{0.5}Rh_{0.5})C_{0.25}$$

(XIII)
$$(W_{0.5}Os_{0.5})C_{0.33}$$
 und

aus diesen sich ergebenden Mischformeln entspricht, gemischt und das Gemisch nach dem Pressen zur Bildung des intermediär entstehenden Carbids geschmolzen oder bei Temperaturen über den Zerfallstemperaturen der jeweiligen mehrkomponentigen Carbide gesintert.

Eine andere erfindungsgemäße Verfahrensweise zur Herstellung einer Hartlegierung gemäß der Erfindung ist dadurch gekennezeichnet, daß

a) ein Pulver eines vorgefertigten Carbids eines

Übergangsmetalles aus einer der Gruppen 4b,

5b oder 6b mit einem Pulver eines Übergangsmetalles aus einer der Gruppen 4b, 5b oder 6b
und mit einem Pulver des Metalles Re oder eines
der Platinmetalle in stöchiometrischem Verhältnis,

das Carbiden mit 2 oder mehr Metallkomponenten entspricht, gemischt wird,

- b) das Pulvergemisch aus a) zu Preßlingen gepreßt wird.
- c) die Preßlinge bei Temperaturen von 1575 K oder darüber, jedoch in jedem Einzelfall bei Temperaturen oberhalb der Zerfallstemperatur des jeweiligen mehrkomponentigen Carbids geschmolzen oder gesintert und
- lo d) danach einer Ausscheidungs- oder Homogenisierungs-Glühung unterzogen und abgekühlt werden.

In allen Fällen wurde nach dem Schmelz- oder Sintervorgang eine Ausscheidungsglühung durchgeführt. Auf
diese Weise konnten Legierungen hergestellt werden,
die sich durch feinstverteilte Carbide in einer
festen, zähen und korrosionsbeständigen Metallmatrix
auszeichnen. Als Carbide kommen insbesondere Chrom-,

20 Molybdän- und Wolframcarbide in Frage; als Metallphase Legierungen auf der Basis von (Pt-Cr), (Pt-Mo),
(Pt-W7, (Pd-Cr), (Pd-Mo), (Pd-W), (Ru-Cr), (Ru-Mo),
(Ru-W) bzw. anderer Platinmetalle mit Cr, Mo und W.

25

30

Die Erfindung zeichnet sich dadurch aus, daß ternäre Hochtemperaturcarbide erhalten werden, die beim Abkühlen oder bei Wärmebehandlung bei mittleren Temperaturen (ca. 1273 K bis 1575 K) in eine Carbidphase und eine feste Platinmetall-Legierung zef-

fallen. Die Wärmebehandlung läßt sich so steuern, daß äußerst feinkörnige Gefügestrukturen mit gleichmäßiger Carbidverteilung entstehen. Dies bringt eine hohe Härte und Festigkeit mit sich und ist die Grundlage für günstiges Verschleißverhalten. Beispielsweise weist eine Hartlegierung mit 63 Vol.-% Metallphase und 37 Vol.-% Carbid (Mo₂C) so noch eine Härte von lo60 HV auf und, nach dem Rißlängen-Verfahren zu schließen, eine sehr hohe Zähigkeit.

10

25

. 5

Die erfindungsgemäßen Hartlegierungen stellen feinkörnige Verbundwerkstoffe dar mit einer Gesamtzusammensetzung aus dem Viereck a-b-c-d in Fig. 1 bestehend aus einer Carbidphase und Metallegierungen

mit den in Fig. 1 angegebenen Komponenten. Wesentlicher Bestandteil der Erfindung ist ferner die Herstellungsmethode: Durch Hochtemperatursinterung oder
Erschmelzung wird ein ternäres Carbid hergestellt,
welches bei tieferen Temperaturen zum Zerfall in eine
binäre Carbidphase und eine binäre Metallphase gebracht wird.

Folgende Tabelle zeigt Zusammensetzungen solcher ternärer Carbidphasen mit Übergangsmetallen der 6. Gruppe, deren Zerfall erfindungsgemäß genutzt wird. Ternäre kubisch flächenzentrierte Carbide der Übergangsmetalle Cr, Mo und W mit Rhenium und Platinmetallen

_			
5	Carbid	Gitterkon- stante (nm)	Existenzbereich Bemerkung
	(Cr _{0.5} Ru _{0.5})C _{10.33}	a = 0.386	homogener Bereich stabil bei 1575 K≤T≤1730 K
	(Cr _{0.5} Rh _{0.5})C _{10.25}		homogener Bereich stabil bei T>~1450 K
10	(Cr _{0.5} Ir _{0.5})C _{~0.25}	1	homogener Bereich; T = 1773 K
	(Cr _{0.5} Pt _{0.5})C _{~0.1}	a = 0.383	homogener Bereich; T = 1773 K
15	(Mo _{0.5} Re _{0.5}) C _{~0.4}	a = 0.409	homogener Bereich; T = 1773 K
	(Mo _{0.5} Ru _{0.5})C _{~0.33}	a = 0.402	homogener Bereich; T > ~ 1575 K
	(Mo _{0.5} Rh _{0.5})C 0.25	a = 0.397	homogener Bereich; T > ~ 1630 K
20	(Mo _{0.5} Os _{0.5})C _{√0.33}	a = 0.405	homogener Bereich in Schmelzproben; T > 1800 K
	(Mo _{0.5} Ir _{0.5})C _{√0.25}	a = 0.398	homogener Bereich in Schmelzproben; T > 1800 K
25	(Mo _{0.5} Pt _{0.5})C~0.1	a = 0.396	homogener Bereich; T > 1500 K
	(W _{0.5} Ru _{0.5}) C _{~0.33}	a = 0.400	homogener Bereich; T = 2270
	(W _{0.5} Rh _{0.5})C _{~0.25}	a = 0.395	homogener Bereich; T = 2270 K
	(W _{0.5} Os _{0.5})C _{~0.33}	a = 0.401	homogener Bereich; T > 2300 K
30	(Wo.5 ^{Pt} o.5)C~o.1	a = 0.399	homogener Bereich; m = 2270 K

Jedoch können auch erfindungsgemäße Hartlegierungen in dem in Fig. 1 bezeichneten Bereich mit anderen Übergangsmetallen der Gruppen 4b, 5b und 6b und den genannten Platinmetallen hergestellt werden.

5

Die Erfindung wird im folgenden anhand einiger Ausführungsbeispiele, die die Erfindung jedoch nicht einschränken sollen, näher erläutert.

lo Beispiel 1:

Ein Werkstoff auf der Basis Molybdäncarbid-(Mo,Pt)Legierung wurde erhalten durch Erschmelzen oder Sinterung oberhalb 1575 K einer Mischung von Mo/Pt/C 50/35/15 At.%. Eine solche Probe liegt am Ende des ternären

- 15 Carbids (Mo,Pt)C_{NO.1} im Isothermen-Schaubild des Systems Mo-Pt-C bei 1773 K. Eine nachfolgende Glühung bei 1373 K führte zum Zerfall gemäß den Phasenbeziehungen im Schaubild bei 1373 K in Mo₂C und η-(Mo,Pt). Die Gehalte der metallischen bzw. der Carbidphase können nach Bedarf variiert werden. WC-(W,Ir)-bzw.
 - WC-(W,Pt)-Legierungen mit sehr hohen Metallgehalten sind ebenfalls hergestellt worden.

Beispiel 2:

25 Eine W/Pt/C-Legierung mit 50 At.% W, 40 At.% Pt und 10 At.% C wird erschmolzen oder bei 2273 K gesintert, schnell abgekühlt und anschließend bei Temperaturen um 1373 K homogenisiert. Feinste WC- und W₂C-Teilchen sind sodann in einer (W,Pt)-Matrix gelöst.

Beispiel 3

Eine W/Rh/C-Legierung mit 40 At.% W, 40 At.% Rh und 20 At.% C wird erschmolzen oder bei 2273 K gesintert, schnell abgekühlt und anschließend bei 1773 K homogenisiert. Das Mikrogefüge zeigt WC- und W2C-Partikel von etwa 1 bis 2 um, homogen in einer (W,Rh)-Legierung verteilt.

Verschleiß- und korrosionsbeständige Hartmetalle der angegebenen Art können in Werkzeugen und Verschleißteilen unter besonders korrosiver (und/oxidationsanfälliger)
Umgebung eingesetzt werden. Auch in der Kerntechnik ergeben sich günstige Anwendungsmöglichkeiten infolge der Kurzlebigkeit der bei Neutronenstrahlung auftretenden Isotopen von manchen Platinmetallen,z.B. Pt, im Gegensatz zu dem konventionellen Bindemetall Co.

Kernforschungszentrum Karlsruhe GmbH Karlsruhe, den 16.7.1980 PLA 8038 Gl/he

Patentansprüche:

5

15

20

25

30

- Hartlegierung, bestehend aus einem oder mehreren Hartstoffen und einer binären Bindemetall-Legierung, die ein Metall aus der Gruppe 8b des Periodensystems der Elemente enthält,
- lo dadurch gekennzeichnet, daß
 - a) eine feindisperse homogene Verteilung des Hartstoffes in der Bindemetall-Legierung vorliegt,
 - b) die Hartstoffe aus Carbiden der Übergangsmetalle der Gruppen 4b, 5b und 6b des Periodensystems der Elemente bestehen und .
 - c) die Bindemetalle aus festen Legierungen der Übergangsmetalle und Gruppen 4b, 5b und 6b des Periodensystems der Elemente mit Rhenium (Re) oder einem der Platinmetalle (Ru, Rh, Pd, Os, Ir, Pt) bestehen.
 - 2. Hartlegierung gemäß Anspruch 1, gekennzeichnet durch Hartstoff-zu-Bindemetall-Legierungs-Verhältnisse im Bereich zwischen 90 Vol.-% Hartstoff/ lo Vol.-% Bindemetall-Legierung und 5 Vol.-% Hartstoff/95 Vol.-% Bindemetall-Legierung.
 - Hartlegierung gemäß Anspruch 1 oder 2, dadurch gekennzeichnet daß der Anteil des 4b,5b,6b-Übergangsmetalles in der Bindemetall-Legierung im Bereich zwischen
 Mol.-% und 60 Mol.-% liegt.
 - 4. Hartlegierung gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß das Carbid eine Zusammensetzung

aufweist, die einem Übergangsmetall-zu-Kohlenstoff-Verhältnis im Bereich von 1:1 bis 2:1 entspricht.

5. Hartlegierung gemäß einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß der Anteil des Platinmetalls in der Bindemetall-Legierung bis zu 90 Atom-% durch Eisen, Kobalt oder Nickel ersetzt ist.

lo

15

20

25

- 6. Verfahren zur Herstellung einer Hartlegierung gemäß Anspruch 1, dadurch gekennzeichnet, daß
 - a) ein Pulver eines Übergangsmetalls aus einer der Gruppen 4b, 5b oder 6b mit einem Pulver des Metalles Rhenium oder eines Platinmetalls und mit Kohlenstoffpulver in stöchiometrischem Verhältnis, das Carbiden mit 2 oder mehr Metallkomponenten entspricht, gemischt werden,
 - b) das Pulvergemisch aus a) zu Preßlingen gepreßt wird,
 - c) die Preßlinge bei Temperaturen von 1575 K oder darüber, jedoch in jedem Einzelfall bei Temperaturen oberhalb der Zerfallstemperatur des jeweiligen mehrkomponentigen Carbids geschmolzen oder gesintert und
 - d) danach einer Ausscheidungs- oder Homogenisierungs-Glühung unterzogen und abgekühlt werden.
- 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet,
 30 daß
 Chrompulver mit einem Pulver eines oder mehrerer
 der Metalle aus der Gruppe Ru, Rh, Ir und Pt und
 mit Kohlenstoffpulver in einem Verhältnis, das

den Formeln

15

	(I)	(Cr _{0.5} Ru _{0.5})C _{0.33} ,	
	(II)	(Cr _{0.5} Rh _{0.5})C _{0.25} ,	
5	(III)	(Cr _{0.5} Ir _{0.5})C _{0.25}	und
	. (IV)	(Cr _{0.5} Pt. _{0.5})C _{0.1}	oder

aus diesen sich ergebenden Mischformeln entspricht, gemischt wird und das Gemisch nach dem Pressen zur lo Bildung eines intermediär entstehenden Carbides geschmolzen oder bei Temperaturen über den Zerfallstemperaturen der jeweiligen mehrkomponentigen Carbide gesintert wird.

8. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß Molybdänpulver mit einem Pulver eines oder mehrerer Metalle aus der Gruppe Re, Ru, Rh, Os, Ir, Pt und mit Kohlenstoffpulver in einem Verhältnis, das den Formeln

aus diesen sich ergebenden Mischformeln entspricht, gemischt wird und das Gemisch nach dem Pressen zur

Bildung eines intermediär entstehenden Carbids geschmolzen oder bei Temperaturen über den Zerfallstemperaturen der jeweiligen mehrkomponentigen Carbide gesintert wird.

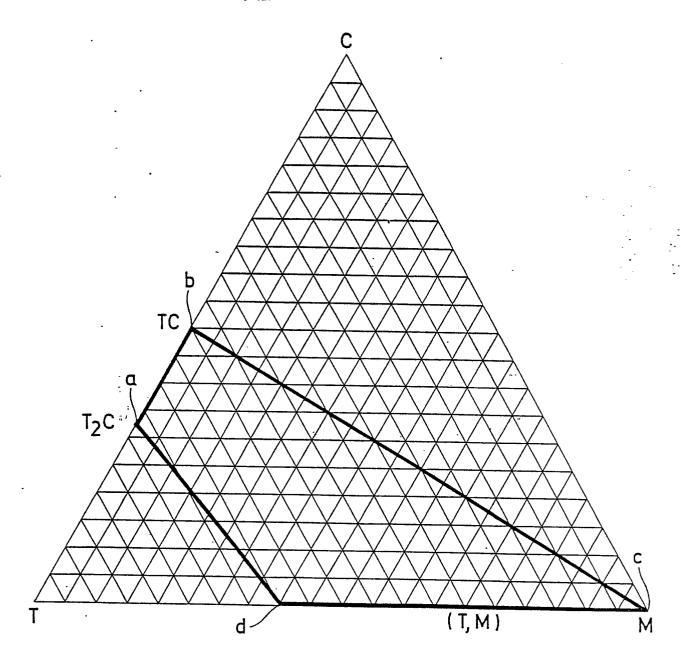
5

10

20

30

9. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß Wolframpulver mit einem Pulver eines oder mehrerer der Metalle aus der Gruppe Ru, Rh, Os und Pt und mit Kohlenstoffpulver in einem Verhältnis, das den Formeln


aus diesen sich ergebenden Mischformeln entspricht, gemischt wird und das Gemisch nach dem Pressen zur Bildung eines intermediär entstehenden Carbids geschmolzen oder bei Temperaturen über den Zerfallstemperaturen der jeweiligen mehrkomponentigen Carbide gesintert wird.

- 25 lo. Verfahren zur Herstellung einer Hartlegierung gemäß Anspruch 1, dadurch gekennzeichnet, daß
 - a) ein Pulver eines vorgefertigten Carbids eines Übergangsmetalles aus einer der Gruppen 4b, 5b oder 6b mit einem Pulver eines Übergangsmetalles aus einer der Gruppen 4b, 5b oder 6b und mit einem Pulver des Metalles Re oder eines der Platinmetalle in stöchiometrischem Verhältnis, das Carbiden mit 2 oder mehr Metallkompo-

nenten entspricht, gemischt wird,

- b) das Pulvergemisch aus a) zu Preßlingen gepreßt wird,
- c) die Preßlinge bei Temperaturen von 1575 K oder darüber, jedoch in jedem Einzelfahl bei Temperaturen oberhalb der Zerfallstemperatur des jeweiligen mehrkomponentigen Carbids geschmolzen oder gesintert und
- d) danach einer Ausscheidungs- oder Homogenisie rungs-Glühung unterzogen und abgekühlt werden.

Fig. 1

EUROPÄISCHER RECHERCHENBERICHT

EP 80 10 4274.8

	EINSCHLÄG	KLASSIFIKATION DER ANMELDUNG (Int. Cl. ³)		
ategorie	Kennzeichnung des Dokuments maßgeblichen Teile	mit Angabe, soweit erforderlich, der	betrifft Anspruch	· · · · · · · · · · · · · · · · · · ·
A	* Seite 2, Zeilen	(INTERNATIONAL NICKEL) 7 bis 3 von unten;	-	C 22 C 29/00
A	Beispiel 6 * DE - A - 2 011 082 ALLOY)	(PRODUCTION TOOL	- :.	·
A	GB - A - 828 877 (ENGELHARD IND.)	,	RECHERCHIERTE SACHGEBIETE(Int. Cl. ³)
A	DE - B2 - 2 008 46	1 (AEROJET)		Short Order (int. Str.)
A	<u>US - A - 4 097 275</u>	(E. HORVATH)		C 22 C 1/00 C 22 C 29/00 C 22 C 32/00
				KATEGORIE DER GENANNTEN DOKUMENTE X: von besonderer Bedeutung A: technologischer Hintergrun O: nichtschriftliche Offenbarun P: Zwischenliteratur T: der Erfindung zugrunde liegende Theorien oder
XI	Der vorliegende Recherchenb	pericht wurde für alle Patentansprüche erst	elit.	Grundsätze E: kollidierende Anmeldung D: in der Anmeldung angeführ Dokument L: aus andern Gründen angeführtes Dokument &: Mitglied der gleichen Paten familie, übereinstimmend
Recherc				Dokument
	Berlin	20-05-1981		KESTEN