1) Publication number:

**0 049 017** 

12

# **EUROPEAN PATENT APPLICATION**

| 27) | Application | number: | 81201056.9 |
|-----|-------------|---------|------------|
|-----|-------------|---------|------------|

(f) Int. Cl.3: C 07 C 93/04, D 06 M 13/46

2 Date of filing: 22.09.81

30 Priority: 25.09.80 US 190550

(NL) Applicant: Akzo N.V., Velperweg 76, NL-6824 BM Arnhem (NL)

- (3) Date of publication of application: 07.04.82 Bulletin 82/14
- Inventor: Richmond, James Matthew, 29W304 Hartman Drive, Naperville Illinois 60540 (US) Inventor: Bernard, Gary Allen, 442 Degas, Bolingbrook Illinois 60439 (US)
- 24 Designated Contracting States: BE DE FR GB IT NL SE
- A Representative: Sleders, René et al, P.O. Box 314, NL-6800 AH Arnhem (NL)
- Alkoxylated quaternary ammonium borates.
- This disclosure relates to a class of quaternary ammonium compounds. More particularly, this disclosure relates to a class of quaternary ammonium borate compounds and their use as fabric softeners. This disclosure further relates to fabric softening compositions containing such quartenary ammonium borates and to methods of softening textiles employing such compounds and compositions.

Alkoxylated quaternary ammonium borates and their use as fabric softening agents.

The present invention relates to a class of quaternary ammonium compounds. More particularly, this invention relates to a class of quaternary ammonium borate compounds and their use as fabric softeners. This invention further relates to fabric softening compositions containing such quaternary ammonium borates and to methods of softening textiles employing such compounds and compositions.

It has been long recognized in the art that certain quaternary ammonium compounds have the capability of imparting "softness" to textile fabrics. Of particular interest is a class of alkoxylated quaternary ammonium compounds wherein an alkoxyalkyl or a poly(oxyalkyl) group is bonded to the nitrogen. Such alkoxylated quaternary ammonium compounds have been generally found to exist as chloride salts. Thus, quaternary ammonium compounds of certain structure for subject use, either alone or in combination with other additives, are for instance disclosed in US 3 546 115, US 3 660 459, DE 27 30 302 and EP 001 3820.

One concern of users of such quaternary ammonium compounds is liquidity of the product. Thus, it is desirable that fabric softening compounds be as "liquid" as possible to reduce the necessity, for example, of utilizing heated railroad cars for transportation of the bulk compound, or the use of heated holding tanks and transfer lines to assure that the compound is maintained in a liquid state. This is especially true in view of the recent desirability to minimize the energy which is needed for, any type of processing. Therefore, if a more "liquid" product is produced, the amount of energy required to transport and store the product is minimized. Also, liquid products are generally cold water dispersible, negating the need to heat water to make diluted solutions or dispersions of the concentrated softener.

Another concern when quaternary ammonium compounds are utilized as fabric softening compounds is the solvent. Ideally, compounds relatively 30 free of volatile, flammable and/or odor producing solvents that serve only as a reaction media and have no softening effect are preferred.

A further concern when using quaternary ammonium compounds relates to

the ease of formulating various compositions containing such compounds. In this regard it is highly desirable to employ cold water dispersible quaternary ammonium compounds.

An object of the present invention is to provide a class of quaternary ammonium compounds which are effective fabric softeners. In addition it is an object of the present invention to provide a class of quaternary ammonium compounds which in addition to softening fabrics produce desirable rewet and antistatic characteristics in treated fabrics.

Furthermore, an object of the present invention is to provide a class of quaternary ammonium compounds which exhibit increased liquidity over other prior art compounds.

An additional object is to produce a class of compounds relatively free of volatile, flammable and/or odor producing solvents that serve only as a reaction media and have no value for providing softening.

It is also an object of the present invention to provide a class of compounds which are readily formulated into fabric softening compositions.

In addition it is an object of the present invention to provide quaternary ammonium compounds which are cold water dispersible.

The compounds of the present invention are represented by the following formulae:

and

$$\begin{bmatrix}
R_1 & & & & \\
R - N & & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& &$$

wherein R is selected from the class consisting of aliphatic radicals containing from about 6 to about 22 carbon atoms, a

$$R_5 \leftarrow C_m H_{2m} \rightarrow$$

group wherein  $R_5$  is alkoxy containing from 6 to 22 carbon atoms and m is an integer of from 2 to 6, and a

group, wherein  $R_6$  is alkyl containing from 1 to 20 carbon atoms, z is an integer of from 1 to 10 and each R' is independently hydrogen or 5 methyl; each  $R_1$ , which may be the same or different, is independently selected from the class consisting of

$$-(-C_2H_3R''O-)_xH$$

groups, wherein x is an integer of from 1 to 20 and each R'' is independently hydrogen or methyl;  $R_2$  is methyl or a group selected from the class represented by  $R_1$ ;  $R_3$  is a group selected from the class represented by R or  $R_2$ ; n is an integer of from 2 to 6; a and b are independently 0 or 1 provided that the sum of a + b is greater than zero; and c is the sum of a + b.

The long chain aliphatic radicals represented by R and R<sub>3</sub> contain from about 6 to about 22 carbon atoms. Preferably, the aliphatic radicals contain from about 12 to about 18 carbon atoms. The aliphatic groups may be either "straight chain" or "branched" aliphatic radicals. In addition, the aliphatic radicals may be either saturated groups, and thus alkyl, or may be unsaturated groups, and thus alkenyl. It is most preferred that the aliphatic radicals represented by R and R<sub>3</sub> be alkyl or alkenyl containing from about 12 to 18 carbon atoms. Typically, such radicals are derived from, for example, animal fatty acids such as tallow fatty acids or grease acids (Flomkoy fat), hydrogenated tallow fatty acids, and coconut fatty acids.

It is to be understood that the  $--(-C_2H_3R''O-)-H$  radicals represented by  $R_1$  containing more than one alkylene moiety, i.e. x is greater than one, may contain alkylene moieties wherein all the R''s are the same or different. If x is two, radicals represented by  $R_1$  include for example:

In the compounds of the present invention represented by formula (II) it is preferred that n is 3. It is further preferred that a and b are each one.

10 If R is a  $R_5$ --(- $C_{m}H_{2m}$ -)- group it is preferred that m is 3 and  $R_5$  is alkoxy containing from 10 to 18 carbon atoms.

The preferred embodiments of the compounds of formula (I) are represented by the formulae:

$$\begin{bmatrix} R_1 & & & \\ R & -N & -CH_3 & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$$

$$\begin{bmatrix} R & -N & -R_1 & -R_2 & -R_3 & -R_4 & -R_4 & -R_4 & -R_5 & -R_$$

wherein R and  $R_3$  are selected from the class consisting of aliphatic radicals containing from about 6 to about 22 carbon atoms and  $R_1$  is a

$$-(-CH_2CH_2O-)_xH$$

group wherein x is an integer of from 1 to 5. Compounds of formulae (IV)

5 and (V) are more preferred and the compound of formulae (V) is most preferred.

The compounds of formula (I) may be prepared in accordance with the following procedure:

An amine of the formula

$$R \xrightarrow{M} (VII)$$

wherein R is above defined. M is hydrogen or methyl and M' is hydrogen, methyl or an aliphatic radical containing from about 6 to about 22 carbon atoms; is treated with boric acid. The resulting mixture is treated with an alkylene oxide(s) of the formula

wherein R''' is hydrogen or methyl; to produce the N-alkoxylated quaternary ammonium borates of formula (I). A surprising aspect of this process for preparing the compounds of the present invention is that unlike similar compounds wherein the anion is chloride, acetate, phosphate, etc., the reaction of the amine and boric acid does not produce

an intermediate amine salt. The formation of an intermediate amine salt was previously deemed necessary in order to produce an alkoxylated product.

Although it is preferred to employ boric acid, other sources of borate 5 may be employed. Borate salts such as sodium tetraborate and borate esters such as trimethylborate which are readily hydrolyzed to boric acid may be employed. However if borate salts or borate esters are employed, water must be present in the reaction mixture.

The above procedure is generally carried out in a closed reaction vessel at a temperature of from 40°-l10°C with a temperature of 70°-l10°C being preferred and under a pressure in a range of 5-60 psig with 20 psig being preferred. Although a catalyst is not necessary, an acid catalyst such as p-toluenesulfonic acid, methane sulfonic acid, sulfuric acid and the like, may be employed. If a catalyst is employed, p-toluenesulfonic acid is preferred. Although not narrowly critical, the time of reaction should be sufficient to permit the reaction to proceed the completion. A reaction time period of 6 hours is generally sufficient. The molar ratio between the amine of formula (VII) and boric acid may vary, but about 1 mole of boric acid is preferably reacted with about 1 mole of amine. It is most preferred to employ 1.25-1.50 moles of boric acid per mole of amine.

It should be noted that unlike the procedures for preparing quaternary ammonium chlorides, acetates, etc., a solvent is not required in the preparation of the borates. However, if desired a solvent which will not react with the reactants may be employed. Illustrative of such solvents include for example, water, mineral oil, alcohols, such as isopropanol, ethylene glycol, hexylene glycol and the like, and esters of acetic acid.

25

If a solvent is to be utilized, it is preferred to employ water or isopropanol. The amines of formula (VII) employed in accordance with the above procedures are either commercially available or prepared in accordance with known techniques.

To prepare the compounds of formula (II), a diamine of the formula

$$R \xrightarrow{M''} N \xrightarrow{(C_n H_{2n} \rightarrow N - M'')} N - M''$$
(IX)

wherein R and n are above defined and M'' is hydrogen or a group selected from the class represented by R<sub>1</sub>: is employed in the above described procedure in lieu of the amine of formula (VII). Such diamines are also either commercially available or prepared in accordance with known techniques. If a diamine of formula (IX) is employed in the above procedure, a molar ratio of boric acid to diamine of about 2:1 is preferred. It is most preferred to employ an excess of boric acid.

The following illustrative, non-limiting examples will serve to further demonstrate those of ordinary skill in the art the manner in which specific compounds within the scope of this invention can be prepared.

### Example 1

:

A one liter Carp. 20 steel autoclave was charged with 400 g. (0.800 g. mole) of di(hydrogenated tallow) amine (Armeen® 2HT from Armak Company, Chicago, Illinois), 74.2g (1.201 g. mole) of boric acid, 23.7 g. (3.7% of total charge) of isopropyl alcohol and 141 g. (3.2 g. mole) of ethylene oxide. The resulting mixture was heated to 100°C and digested until the reactor head pressure levelled off at about 5 psig. to yield a product having the following analysis: 91.8% solids 5.1% ethylene glycol, 5.0% diethylene glycol, 1.0% triethylene glycol, 0.20 meg/g. (10%) free amine, and 1.05 meg/g. (68.2%) quaternary borate. NMR analysis (excluding glycols) revealed about 1.7 moles of ethylene oxide per mole of amine/quaternary mixture. Analyses of the solids residue for glycols gave 4% ethylene glycol, 4% diethylene glycol, and 1% triethylene glycol.

# 25 Example 2

A one liter autoclave was charged with 400 g. (0.855 g. mole) of ditallowamine (Armeen® 2T from Armak Company, Chicago, Illinois), 79.3 g. (1.283 g. mole) of boric acid, 27 g. (3.89% of total charge) of isopropyl alcohol and 188.1 g (4.275 g. mole) of ethylene oxide. The resulting mixture was heated to 100°C and digested until the reactor head pressure decayed to a constant value to yield a product having the following analysis: 88.4% solids, 1.09 meg/g. (67.3%) quaternary borate, 0.12 meg/g. (5.6%) of free amine, 4.7% ethylene glycol, 6.3% diethylene glycol, 1.5% triethylene glycol, and nil tetraethylene glycol.

## Example 3

A one liter Carp. 20 steel autoclave was charged with 400 g. (0.752 g. mole) of N-methyl-N-di(hydrogenated tallow)amine (Armeen® M2HT from Armak Company, Chicago, Illinois), 46.48 g. (0.752 g. mole) of boric acid, and 40.64 g. (6.3% of total charge) of water. The resulting mixture was heated to 80°C and 132 g. (3.01 g. mole) of ethylene oxide them added. The reaction mixture was heated at 80-90°C until the reactor pressure decayed to 0 psig. to yield a product having the following analyses: 0.983 meg/g (75.7%) quaternary borate, and 0.250 meg/g. free amine (13.3%) and nil acidic material.

# Example 4

A one liter 316 SS autoclave was charged with 400 g. (0.752 g.mole) of N-methyl-N-di(hydrogenated tallow)amine (Armeen® M2HT from Armak Company, Chicago, Illinois), 0.71 g. of para-toluenesulfonic acid mono-hydrate, 40.6 g. of water, and 78.1 g. (0.752 g. mole) of trimethyl-borate. The resulting mixture was heated to 80°C and 99.3 g (2.26 g. mole) of ethylene oxide then added. The reaction mixture was heated until the pressure of the vessel was no longer decreasing to yield a product having the following analyses: 0.979 meq/g. (66.6%) quaternary borate, 0.248 meq/g. (13.2%) free amine, nil acidic material, 5.7% water, and 77.7% solids.

#### Example 5

To a one liter Carp. 20 autoclave was charged with 400 g. (0.800 g. mole) of ditallowamine (Armeen © 2T from Armak Comapny, Chicago, 25 Illinois), 49.46 g. (0.800 g. mole) of boric acid, 43.25 g. of water and 7.6 g of paratoluenesulfonic acid monohydrate. The reactor was sealed, heated to 70°C, and 176 g. (4.0 g. mole) of ethylene oxide was added under 25 psig. maximum pressure. The resulting mixture was digested until a pressure of 0 psig. was obtained to yield a product having the following analyses: 0.12 meg/g. (6.53%) free amine, nil acidic material, 91.1% solids, and 1.054 meg/g (82.4%) quaternary borate.

#### Example 6

A one liter Carp. 20 steel autoclave was charged with 400 g. (0.757 g.

mole) of N-methyl-N-di(hydrogenated tallow) amine (Armeen<sup>®</sup> M2HT from Armak Company, Chicago, Illinois), 31.2 g. (0.505 g. mole) of boric acid, 40.9 g of water and 7.2 g. of paratoluenesulfonic acid monohydrate. The reactor was sealed, heated to 80°C, and ethylene oxide added incrementally, allowing for complete digestion between additions. Results of analyses are given below:

Table I

| 10 | Total moles of ethylene oxide added/mole amine | meq/g.<br>Quaternary<br>Borate | meg/g.<br>Free Amine | meq/g<br>Acidic Material |
|----|------------------------------------------------|--------------------------------|----------------------|--------------------------|
|    | 1                                              | 0.592                          | 0.879                | 0                        |
|    | 2                                              | 0.717                          | 0.704                | 0                        |
|    | 3                                              | 0.794                          | 0.590                | 0                        |
|    | 4                                              | 0.881                          | 0.425                | 0                        |
| 15 | 5                                              | 0.857                          | 0.369                | 0                        |
|    | 6                                              | 0.81                           | 0.385                | 0                        |
|    |                                                | ,                              |                      |                          |

A final sample was analyzed as 95.7% solids, 7% water, and 14.4% non-ionic.

#### Example 7

To a one liter 316 SS autoclave wad charged with 308 g. (0.617 g. mole) of ditallowamine (Armeen® 2T from Armak Company, Chicago, Illinois), 38.15 g. (0.617 g. mole) of boric acid and 5.88 g. (0.031 g. mole) of para-toluenesulfonic acid monohydrate. The resulting mixture was heated to 70°C and 136 g. (3.09 g. mole) of ethylene oxide was added at 20-25 psig. maximum pressure. The resulting mixture digested at 70°C until 0 psig. was obtained to yield a product having the following analyses: 1.028 meq/g. (80.2%) quaternary borate, 0.184 meq/g. (9.2%) free amine, 95.8% solids, and nil acidic material.

# Example 8

30 A 20 gallon steel reactor was charged with 76 lbs. (0.15 l b. mole) of

ditallowamine (Armeen® 2T from Armak Company, Chicago, Illinois), and 13.8 lb. (0.22 lb. mole) of boric acid. The resulting mixture was heated to 70°C, the system purged three times with nitrogen, and vented to 2 psig. on the last purge. To the reaction mixture was then added 26.4 lb. (0.60 lb. mole) of ethylene oxide over a 2½ hour period. The resulting mixture was allowed to digest at 70°C for twelve hours until the reactor pressure decayed to 2 psig to yield a product having the following analyses: 1.246 meg/g. (86.2%) quaternary borate, 0.088 meg/g. (5.2%) free amine, nil acidic material, 9.8 pH, Gardner color 7, 5.1% water, 2.8 moles of ethylene oxide per mole of amine/quat mixture (excluding glycol), 5.8% ethylene glycol, and 3.8% diethylene glycol.

## Example 9

A 20 gallon steel autoclave was charged with 76.0 pounds (0.15 lb. mole) of di-(hydrogenated tallow) amine (Armeen® 2HT from Armak Company, Chicago, Illinois), and 13.6 pounds (0.22 lb. mole) of boric acid. The reactor was sealed, purged three times with nitrogen and vented to 0 psig. To the reaction mixture was then added 26.4 lb. (0.6 lb. mole) of ethylene oxide over a four-hour addition period as the temperature of the vessel was held at 66-70°C. The resulting mixture was allowed to digest until the reactor pressure had decayed to 0 psig to yield a product having the following analyses: 95.6% solids, 1.209 meg/g (85.2%) quaternary borate, 0.032 meg/g. (2.0%) free amine, nil acidic material, 9.9 pH, 6.3% ethylene glycol, 7.2% diethylene glycol, m.t. 26°C. Nmr analysis showed 3.0 moles of ethylene oxide per mole of quaternary borate, exclusive of the ethylene glycol and diethylene glycol found to be present.

# Example 10 \

A one liter 316 SS autoclave was charged with 200 g. (0.602 g. mole) of N-tallow-1,3-diaminopropane (Duomeen® T from Armak Company, Chicago, Illinois), 74.5 g. (1.22 g. mole) of boric acid, 54.15 g. water and 5.8 g. of paratoluenesulfonic acid monohydrate. The reactor was sealed and heated to 80°C. To the reaction mixture was added 158.6 g. (3.61 g. mole) of ethylene oxide and heating was continued at 80-95°C until the reactor pressure was 0 psig. to yield a product having the following analyses: 83.34% solids, 0.425 meg/g. (52.5%) diquaternary borate and

0.280 meg/g. (14.3%) monoquaternary borate.

### Example 11

A two-liter 316 SS autoclave was charged with 500 g. (1.89 g. mole) of distilled tallowamine (Armeen® TD from Armak Company, Chicago, Illinois), 116.7 g. (1.89 g. mole) of boric acid, 17.9 g. of paratoluenesulfonic acid monohydrate, and 221 g. of isopropyl alcohol. The autoclave was sealed and the contents heated to 90°C. To the reaction mixture was added 249 g. (5.65 g. mole) of ethylene oxide and resulting mixture was heated until the pressure reached 7 psig. to yield a product having the following analyses: nil acidic material, 0.492 meg/g. (17.4%) free amine, and 51.6% (1.125 meg/g.) quaternary borate. An additional 1.51 g. mole (66.5 g.) of ethylene oxide was added to the reaction mixture and digestion continued until a pressure of 6 psig was obtained to yield a product having the following analyses: 1.256 meg/g. (57.6%) quaternary borate, 0.126 meg/g (4.4%) free amine, nil acidic material, 76.4% solids, and 10.75 pH.

#### Example 12

A one liter Parr autoclave (316 SS) was charged with 184.4 g. (0.543 g. mole) of N-tallow-1,3-diaminopropane (Duomeer® T from Armak Company, 20 Chicago, Illinois), 67.0 g. (1.084 g. mole) of boric acid, 67.3 g. (1.084 g. mole) of ethylene glycol and 62.8 g. of isopropyl alcohol. The resulting mixture was heated to 90°C, purged twice with 40 psig of nitrogen, An additional 2.71 g. mole of ethylene oxide was added over a 40 minute period. The resulting mixture was heated for about two additional hours to yield a product having the following analyses: 12.4% ethylene glycol, 3.3% diethylene glycol, nil triethylene glycol, Gardner color of 8, 73.3% solids, nil acidic material, and 1.54 meg/g. quaternary borate (from standard sodium tetraphenylboron titration). Titration with standard acid solution gave 2-14 meg/g. Thus, 0.089 meg/g. (4.2%) of diamine remain, 0.515 meg/g. (35.2%) of diquaternary borate and 0.510 meg/g. (29.5%) of monoquaternary borate were produced.

### Example 13

A one liter Carpenter 20 steel autoclave was charged with 300 g. (1.123 g. mole) of distilled tallowamine (Armeen® TD from Armak Company,

Chicago, Illinois), 104.2 g. (1.686 g. mole) of boric acid and 101 g. of isopropyl alcohol. The resulting mixture was heated to 80°C and 198 g. (4.49 g. mole) of ethylene oxide was added. The resulting mixture was then heated until the pressure decayed to 0-3 psig. to yield a liquid product having the following analyses: 70.4% solids, 1.240 meg/g. (62.6%) quaternary borate, 0.191 meg/g. (5.1%) free amine, nil acidic material, 3.9% ethylene glycol, 2.4% diethylene glycol, 0.2% triethylene glycol, and nil tetraethylene glycol.

### Example 14

A one liter Parr autoclave was charged with 208.5 g. (0.564 g. mole) of dicocoamine (Armeen® 2C from Armak Company, Chicago, Illinois), 43.6 g. (0.704 mole) of boric acid, 43.7 g. (0.704 mole) of ethylene glycol and 39.0 g. of mineral oil. The resulting mixture was heated to 90°C, the system purged twice with nitrogen (45 psig), and vented to 8 psig. on 15 the last purge. To the reaction mixture was then added 113.g. (2.56 mole) of ethylene oxide over a 3 hour period. The resulting mixture was allowed to digest at 90°C for 4.7 hours to yield a product having the following analyses: 1.19 meg/g. (61.9%) quaternary borate, 0.03 meg/g. (1.2%) free amine, and nil acidic material.

#### 20 Example 15

A one liter Carpenter 20 steel autoclave was charged with 400 g. (0.757 g. mole) of N-methyl-N-di(hydrogenated tallow)amine, 46.79 g. (0.757 g. mole) of boric acid, 40.91 g. (2.27 g. mole) of water and 7.2 g. (0.0379 g. mole) of paratoluene-sulfonic acid. The resulting mixture was heated to 80°C, after which time ethylene oxide was added incrementally, allowing for complete digestion between additions. Results are shown in Table II.

Table II

|    | Total moles of ethylene oxide added/mole amine | meq/g.<br>Quaternary<br>Borate | meq/g.<br>Free Amine |
|----|------------------------------------------------|--------------------------------|----------------------|
|    | 1                                              | .4865                          | .975                 |
| 5  | 2 .                                            | .6415                          | .812                 |
|    | 3                                              | .7457                          | .641                 |
|    | 4                                              | .9138                          | .388                 |
|    | 5                                              | .9828 ·                        | .297                 |
|    | 6                                              | 1.015                          | .167                 |
| 10 | 7                                              | .9974                          | .131                 |

## Example 16

A one liter 316 SS autoclave was charged with 400 g. (0.792 g. mole) of di-(hydrogenated tallow) amine (Armeen® 2HT), 48.96 g. (0.792 g. mole) of boric acid and 72.07 g. (0.783 g. mole) of glycerine. The mixture was heated to 100°C and ethylene oxide added incrementally, allowing for complete reaction between additions. Results of analyses are shown below:

Table III

| 2.0 | Totale moles of ethylene oxide added/mole amine | meg/g.<br>Quaternary<br>Borate | meq/g.<br>Free<br>Amine | meq/g.<br>Acidic<br>Material | ΡĦ   | Gardner<br>color |
|-----|-------------------------------------------------|--------------------------------|-------------------------|------------------------------|------|------------------|
|     | 2                                               | .048                           | 1.001                   | .282                         | 8.3  | 1-2              |
|     | 4                                               | .824                           | 0.362                   | 0                            | 10   | 4-5              |
|     | 6                                               | .715                           | 0.351                   | 0                            | 11.3 | 3                |
|     |                                                 |                                |                         |                              |      |                  |

25 A final sample analyzed as 93.3% solids, and 34.2% nonionic.

### Example 17

A one liter Parr autoclave was charged with 219.5 g. (0.918 mole) of N,N-dimethylcocoamine (Armeen® DMCD from Armak Company, Chicago, Illinois), 71.0 (1.15 mole) of boric acid and, 71.3 (1.15 mole) of ethylene glycol. The resulting mixture was heated to 90°C, the system purged twice with nitrogen (45 psig.), and vented to 8 psig. on the last purge. To the reaction mixture was then added 83 g. (1.89 mol) of ethylene oxide over a 2.25 hour period. The resulting mixture was allowed to digest at 90°C for 3.25 hours and cooled to 60°C to yield a product having the following analysis: 1.95 meg/g (67.5%) quaternary borate, 0.11 (2.6%) free amine, and nil acidic material.

### Example 18

A one liter Parr autoclave was charged with 215.0 g. (1.075 mole) of cocoamine (Armeen® CD from Armak Company, Chicago, Illinois), 83.1 g.

15 (1.34 mole) of boric acid, 83.4 g. (1.34 mole) of ethylene glycol and 30 g. of isopropylalcohol. The resulting mixture was heated to 85°C, the system purged twice with nitrogen (45 psig.), and vented to 8 psig. on the last purge. The reaction mixture was heated to 90°C and then 244 g. (5.55 mole) of ethylene oxide were added. The resulting mixture was allowed to digest at 90°C for 12 hours to yield a product having the following analysis: 1.55 meg/g. (61%) quaternary borate, 0.25 (7.2%) free amine, and nil acidic material.

#### Example 19

A one liter Parr autoclave was charged with 193.3 g. (0.743 mole) of 4-oxa-heptadecylamine (Armeen® EA-13 from Armak Company, Chicago, Illinois), 57.5 g. (0.929 mole) of boric acid, 57.3 g. (0.929 mole) of ethylene glycol and 25.1 g. of isopropyl alcohol. The resulting mixture was heated to 75°C, the system purged twice with nitrogen (45 psig), and vented to 8 psig. on the last purge. To the reaction mixture was then added 134 g. (3.04 mole) of ethylene oxide over a 3 hour period. The resulting mixture was allowed to digest at 75°C for 4.5 hours to yield a product having the following analyses: 0.819 meg/g. (62.2%) quaternary borate, 0.190 meg/g. (6.6%) free amine, and nil acidic material. Also, provided by the present invention is a method for softening fabrics by contacting said fabric with an effective softening amount of

a compound of the present invention or a composition containing such compounds in order to impart "softness" quality to the fabric. The term "effective" softening amount refers to that quantity of a compound or composition of the present invention sufficient to produce desirable softening, antistat and/or rewet properties in the treated textile fabrics. Such quantities are readily ascertained by one of ordinary skill in the art. Typically the fabrics are contacted with the compounds or compositions which are in the form of a solution.

The compounds of the present invention were evaluated with respect to their fabric softening properties. For the purposes of the evaluations, the following compounds alkoxylated quaternary ammonium borates were evaluated as aqueous compositions:

|   | Compo- | •                                                              |     |
|---|--------|----------------------------------------------------------------|-----|
|   | sition |                                                                |     |
|   | No.    | Ingredients                                                    | ક   |
|   | I      | Poly(oxyethylene)(6)ditallowylammonium borate                  | 2.  |
| 5 |        | Methyl-poly(oxyethylene) (15) cocoammonium chloride            | 0.  |
|   |        | Water                                                          | 97. |
|   | II     | Poly(oxyethylene) (5)di(hydrogenated-tallowyl)ammonium borate  | 2.  |
|   |        | Methyl-poly(oxyethylene) (15) cocoammonium chloride            | 0.  |
|   |        | Water                                                          | 97. |
| , | III    | Poly(oxyethylene) (4) di(hydrogenated-tallowyl ammonium borate | 2   |
|   |        | Methyl-poly(oxyethylene)(15)cocoammonium chloride              | 0   |
|   |        | Water                                                          | 97  |
|   | IA     | Poly(oxyethylene)(6)ditallowylammonium borate                  | 3   |
|   |        | Water                                                          | 97  |
| ; | v      | Poly(oxyethylene) (4)di(hydrogenated-tallowyl)ammonium borate  | 3.  |
|   |        | Water                                                          | 97. |
|   | VI     | Poly(oxyethylene) (4) ditallowylammonium borate                | 2.  |
|   |        | Methyl-poly(oxyethylene) (15) cocoammonium chloride            | 0.  |
|   |        | Water                                                          | 97. |
| ) | VII    | Dimethyl-bis(2-hydroxyethyl) cocoammonium borate               | 3.  |
|   |        | Water                                                          | 97. |
|   | VIII   | Poly(oxyethylene) (5) cocoammonium borate                      | 3.  |
|   |        | Water                                                          | 97. |
|   | IX     | Poly(oxyethylene) (4) ditallowylammonium borate                | 2.  |
|   |        | Methyl-poly(oxyethylene) (15) cocoammonium chloride            | 0.  |
|   |        | Water                                                          | 97. |

The percent indicates percentage by weight of an aqueous composition.

Fabric softness was evaluated by an experienced panel of persons feeling treated and untreated fabrics and comparing the softness of the treated fabric with an untreated control fabric. For purposes of determining the 5 fabric softening properties of the compounds of the present invention, cotton towels were evaluated following 1 and 5 wash-dry cycles. The fabrics were treated during each cycle. For comparison, control fabrics were run for 1 and 5 wash-dry cycles without any softening agent being added to any cycle. The compounds of the present invention were found to significantly soften the fabrics tested when compared to untreated fabrics.

In addition the compounds of the present invention were evaluated with respect to their rewet characteristics (a measure of the absorbancy of fabrics). The rewet characteristics were judged by measuring the height 15 to which water rose in a strip of fabric whose end was immersed in water. A cotton strip, 2" x 18" is suspended into a 1 liter graduated glass cylinder containing a 3" depth of a 0.1% solution of Drimarence Bordeaux Z-BL dye. About one inch of the strip is immersed in the solution. The height of the coloration produced by the dye on the cloth 20 strip is measured after 5, 10, 20 and 30 minutes. The higher and faster the dye rises, the greater the rewet or absorbancy of the sample fabrics. The results in Table IV and V illustrate the rewet characteristics of fabrics treated with the compounds of the present invention and untreated fabrics (controls). The results are the average of duplicate samples.

Table IV

|    | composition used in treatment | <pre>dye height (cm.) time of measurement (min.)</pre> |      |      |      |
|----|-------------------------------|--------------------------------------------------------|------|------|------|
|    | of fabric                     | 5                                                      | 10   | 20   | 30   |
| 30 | control (untreated)           | 12.5                                                   | 15.8 | 19.8 | 23.2 |
|    | · I                           | 4.8                                                    | 5.0  | 7.5· | 8.5  |
|    | II                            | 3.8                                                    | 4.6  | 5.6  | 6.5  |
|    | III                           | 4.0                                                    | 5.0  | 6.0  | 6.8  |
|    |                               | 1                                                      |      |      |      |

25

Table V

| composition used in | <pre>dye height (cm.) time of measurement (min.)</pre> |      |      |      |
|---------------------|--------------------------------------------------------|------|------|------|
| treatment of fabric | 5                                                      | 10   | 20   | 30   |
| control (untreated) | 13.0                                                   | 16.6 | 21.2 | 24.2 |
| IV                  | 4.5                                                    | 5.3  | 6.8  | 8.0  |
| v                   | 3.6                                                    | 4.6  | 6.0  | 6.8  |
| VI                  | 3.8                                                    | 4.8  | 5.5  | 6.4  |

5

# Table VI

| composition used in | ·                                                                      | <pre>dye height (cm.) time of measurement (min.)</pre>                                           |                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                |  |
|---------------------|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| treatment of fabric | 5                                                                      | 10                                                                                               | 20                                                                                                                                                                                                                              | 30                                                                                                                                                                                                                                                                                                             |  |
| control (untreated) | 13.0                                                                   | 16.0                                                                                             | 21.5                                                                                                                                                                                                                            | .25.0                                                                                                                                                                                                                                                                                                          |  |
| VII                 | 10.0                                                                   | 12.6                                                                                             | 16.0                                                                                                                                                                                                                            | 18.0                                                                                                                                                                                                                                                                                                           |  |
| VIII                | 10.6                                                                   | 13.6                                                                                             | 17.2                                                                                                                                                                                                                            | 19.6                                                                                                                                                                                                                                                                                                           |  |
| IX                  | 5.2                                                                    | 6.5                                                                                              | 7.8                                                                                                                                                                                                                             | 8.8                                                                                                                                                                                                                                                                                                            |  |
|                     | composition used in treatment of fabric control (untreated)  VII  VIII | composition used in time of treatment of fabric 5  control (untreated) 13.0  VII 10.0  VIII 10.6 | composition used in treatment of fabric         time of measure           5         10           control (untreated)         13.0         16.0           VII         10.0         12.6           VIII         10.6         13.6 | composition used in treatment of fabric         time of measurement (min treatment of fabric           5         10         20           control (untreated)         13.0         16.0         21.5           VII         10.0         12.6         16.0           VIII         10.6         13.6         17.2 |  |

It has been found that the compounds of the present invention when applied to fabric will increase the antistatic properties of the fabric. The antistatic characteristics were measured by comparing the static ("cling" tendency) properties of treated fabrics with an untreated fabric. The treated fabrics were given a rating relative to the control. For nylon control fabrics, a rating of 10 is given, for 100% polyester control fabrics, a rating of 8 is given and for a 65/35 polyester/cotton fabric a rating of 5 is given. A rating for the treated fabric less than the rating for the control is an indication of the antistatic characteristics of the composition employed to treat the fabrics. The results in Table VII illustrate the rating found for various fabrics treated with compositions containing the compounds of the present invention.

Table VII

| composition |                |            | Antistatic Rating<br>Fabric |                        |  |  |  |
|-------------|----------------|------------|-----------------------------|------------------------|--|--|--|
|             | used in fabric | 100% Nylon | 100% Polyester              | 65/35 Polyester/Cotton |  |  |  |
| 5           | control        |            |                             |                        |  |  |  |
|             | (untreated)    | 10         | 8                           | 5                      |  |  |  |
|             | I              | 3          | 1                           | 1                      |  |  |  |
| İ           | II             | 7          | 4                           | 2 ·                    |  |  |  |
| <u> </u>    | III            | ı          | 1                           | 1 .                    |  |  |  |
| 10          | IV             | 4          | 2                           | 1                      |  |  |  |
|             | v              | · 1        | 1                           | 1                      |  |  |  |
|             | VI             | 2          | 1                           | 1                      |  |  |  |
|             | VII            | 1          | 1                           | 1                      |  |  |  |
|             | VIII           | . 3        | 2                           | 1                      |  |  |  |
| 15          | IX             | 1          | 1                           | 1                      |  |  |  |
|             |                |            |                             |                        |  |  |  |

In evaluating the compounds of the present invention with respect of their rewet and antistatic characteristics, fabrics treated with compositions containing the compounds of the present invention were run for 5 wash-dry cycles before testing. The fabrics were treated with a compound or composition of the present invention during each cycle. For comparison, control fabrics were run for 5 wash-dry cycles without any "softening" agent being added to any cycle.

The above examples illustrate that the compounds of the present invention and compositions containing such compounds are effective in softening textile fabrics.

The compounds of the present invention may be employed in fabric softening compositions, such as, for example: rinse cycle fabric softening compositions, liquid detergent fabric softening compositions and dryer application fabric softening compositions. The compounds of the present invention may be employed alone or in combination with one or more other fabric softening compounds as the active fabric softening ingredient in such compositions.

Rinse cycle fabric softening compositions contain from 1-10 parts by weight of at least one compound of this invention and from 90-99 parts by weight of adjuvants, for example, from about 0.2-0.5 parts by weight optical brightner, from about 0-5 parts by weight of a dispersant and from about 84.5-98.8 parts by weight of inert liquid extender preferably water, all parts being by weight of the total composition. Preferably, rinse cycle fabric softening compositions of this invention contain from 3-6 parts by weight of at least one compound of this inventions, together with adjuvants.

10 Liquid detergent fabric softening compositions contain from about 3-10 parts by weight of at least one compound of this invention and from about 90-97 parts by weight of adjuvants, for example, from about 25-35 parts by weight of a non-ionic detergent such as an ethoxylated alkyl phenol or ethoxylated alcoholetc., from about 5-15 parts by weight ethanol, from about 4-6 parts by weight triethanolamine, from about 0.1-1 parts by weight sulfuric acid, from about 0-5 parts by weight of a dispersant and from about 28-62.9 parts by weight of an inert liquid extender, preferably water, all parts being by weight of the total composition. Preferably, liquid detergent fabric softening compositions contain from 5-7 parts by weight of at least one compound of this invention, together with adjuvants.

Liquid detergent fabric softening compositions, such as described above, may contain in addition to a non-ionic detergent, an anionic detergent such as a sodium alkyl benzene sulfonate or a sodium xylene sulfonate etc. Such compositions should contain a total of from about 25-35 parts by weight of non-ionic and anionic detergents.

Dryer applicatio fabric softening compositions contain from 50-80 parts by weight of at least one compound of this invention and from 20-50 parts by weight of adjuvants such as for example, fatty esters, fatty 30 alcohols and/or sugar esters. Preferably, dryer application fabric softening compositions of this invention contain from 70-75 parts by weight of at least one compound of this invention.

The compositions are prepared by admixing the active ingredients (compound of this invention) with an adjuvant including diluents, extenders, carriers, and conditioning agents to provide compositions in the form of solutions, dispersions or emulsions.

The fabric softening compositions of this invention may contain as a

conditioning agent one or more surface-active agents in amounts sufficient to render a given composition more readily dispersable in water. The incorporation of a surface-active agent into the compositions greatly enhance their efficacy. By the term "surface-active agents", it is understood that wetting agents, dispersing agents, suspending agents and emulsifying agents are included therein. Anionic, cationic and non-ionic agents can be used with equal facility.

Other components appropriate to the type of compositions being formulated may also be present. Such components are preservatives, bactericides, whether effective to protect the composition or to treat fabrics, viscosity controllers, coloring and perfuming materials and the like.

Another desirable characteristic of the compounds of the present invention is the fact that they readily form stable emulsions and thereby may be readily formulated into stable aqueous compositions. This property of being cold-water dispersible is generally unexpected for quaternary ammonium compounds and is most desirable by users of such compounds. In addition, emulsions and formulated aqueous compositions containing compounds of the present invention are stable to heat and freeze thaw cycles.

As previously mentioned, the quaternary ammonium borate compounds of the present invention are less corrosive to ferrous and stainless steel than similar compounds which are chloride salts. The fact that the compounds of the present invention are less corrosive than similar chloride compounds is unexpected and advantageous to the art.

Another advantageous and unexpected characteristic of the compounds of the present invention is that the pH of the quaternary ammonium borates is about a pH 10. This enables one to employ the borates of the present invention as starting materials for the production of quaternary

30 ammonium compounds containing anions other than borate.

In addition to the above mentioned uses, the compounds of this invention also may be useful as precipitants and carriers for use in the manufacture of antibiotics. The compounds may also be used as combing aids and hair conditioners and in paper making as softeners, debonders and antistatic agents. Furthermore, the compounds may be used as processing aids in foundries, in metal-working as emulsifiers and corrosion inhibitors and in surface modified clays, paints, oils and lubricants. In

addition, the compounds of this invention may be used in drilling mud compositions and as foaming and silt suspending agents, A particular advantage is the use of the compounds of this invention in cosmetics wherein they would be a desirable replacement for quaternary ammonium 5 chlorides.

Although the present invention has been described in conjunction with preferred embodiments, it is also understood that modifications and variations may be resorted to without departing from the spirit and scope of the invention as those skilled in the art readily understand.

AAM 4644

#### CLAIMS

## 1. A compound of the formula

wherein R is selected from the class consisting of aliphatic radicals containing from about 6 to about 22 carbon atoms, a

$$R_5 - C_m H_{2m} \rightarrow$$

group wherein  $R_5$  is alkoxy containing from 6 to 22 carbon atoms and m is an integer of from 2 to 6, and a

group, wherein  $R_6$  is alkyl containing from 1 to 20 carbon atoms, z is an integer of from 1 to 10 and each  $R^4$  is independently hydrogen or methyl;  $R_1$  is independently selected from the class consisting of

groups, wherein x is an integer of from 1 to 20 and each R'' is independently hydrogen or methyl;  $R_2$  is methyl or a group selected from the class represented by  $R_1$ ;  $R_3$  is a group selected from the class represented by R or  $R_2$ .

#### 2. A compound of the formula

wherein R is selected from the class consisting of aliphatic radicals containing from about 6 to about 22 carbon atoms, a

$$R_5 - (-C_m H_{2m} -)$$

5

group wherein R<sub>5</sub> is alkoxy containing from 6 to 22 carbon atoms and m is an integer of from 2 to 6, and a

group, wherein  $R_6$  is alkyl containing from I to 20 carbon atoms, z is an integer of from I to 10 and each R' is independently hydrogen or methyl; each  $R_{\underline{I}}$ , which may be the same or different, is independently selected from the class consisting of

groups, wherein x is an integer of from 1 to 20 and each R'' is independently hydrogen or methyl; n is an integer of from 2 to 6; a and b are independently 0 or 1 provided that the sum of a + b is greater than zero; and c is the sum of a + b.

- 15 3. A compound according to claim I wherein R and R<sub>3</sub> are selected from the group of aliphatic radicals containing from 12 to 18 carbon atoms.
  - 4. A compound according to claim 3 of the formula

wherein each x is independently an integer from 1 to 10.

5. A compound according to claim 3 of the formula

wherein x is an integer of from 1 to 10.

- 6. A compound according to claim 2 wherein R is selected from the group of aliphatic radicals containing from 12 to 18 carbon atoms.
- 7. A compound according to claim 6 wherein each  $R_1$  is a  $\frac{-(-CH_2CH_2O-)-}{x}$ H group.
  - 8. A compound according to claim 7 of the formula

- wherein n is 3 and each x is independently an integer of from 1 to 10.
  - 9. A composition for providing a textile fabric with a finish imparting softness and/or antistatic properties which comprises an effective amount of a compound of one of the preceding claims.
- 15 10. A method for softening textile fabrics comprising contacting said textile with an effective amount of a composition of claim 9.