11) Publication number:

0 050 044

A₁

(12

EUROPEAN PATENT APPLICATION

(21) Application number: 81304786.7

(22) Date of filing: `14.10.81

61 Int. Cl.³: C 09 J 3/12

C 09 J 3/14, C 08 L 9/00 C 08 L 23/16, C 08 L 57/02 C 08 L 91/00, C 08 K 5/09

30 Priority: 14.10.80 US 196212

Date of publication of application: 21.04.82 Bulletin 82/16

Designated Contracting States:
BE DE FR GB IT NL

BE DE FR GB IT NL

71) Applicant: Exxon Research and Engineering Company P.O.Box 390 200 Park Avenue Florham Park New Jersey 07932(US)

(72) Inventor: Agarwal, Pawan Kumar 237 Delaware Street Westfield New Jersey(US)

12) Inventor: Lundberg, Robert Dean 4 Brian Drive Bridgewater New Jersey(US)

Representative: Field, Roger Norton et al, 5 Hanover Square
London W1R OHQ(GB)

(54) Hot melt adhesive compositions.

This invention relates to hot melt adhesive compositions which include a highly unsaturated hydrocarbon rubber or neoprene, about 5 to about 100 parts by weight of neutralised sulphonated EPDM terpolymer per 100 parts by weight of the highly usaturated hydrocarbon rubber or neoprene, wherein the neutralised sulphonated EPDM terpolymer has about 5 to about 50 meq. of neutralised sulphonate groups per 100 grams of the neutralised sulphonated EPDM terpolymer, and about 25 to about 200 parts by weight of a hydrocarbon resin derived from polymerisation of petroleum or coal distillates consisting of dienes, mono- and di-olefins and cyclic olefins having 5 or 6 carbon atoms per 100 parts by weight of the highly unsaturated hydrocarbon rubber or neoprene.

HOT MELT ADHESIVE COMPOSITIONS

This invention relates to hot melt adhesive com-3 positions which include a highly unsaturated hydrocarbon 4 rubber, 5 to 100 parts by weight of a neutral-5 EPDM - ter-polymer per 100 parts by weight ized sulfonated 6 of the highly unsaturated hydrocarbon rubber, wherein the 7 neutralized sulfonated EPDM ter-polymer has 5 to 50 meg. of neutralized sulfonate groups per 100 grams of the neutralized sulfonated elastomeric polymer, and about 10 25 to 200 parts by weight of a hydrocarbon resin of a 11 12 petroleum or coal tar distillate, having 5 to 6 13 carbon atoms the hydrocarbon resin being composed of aliphatic dienes and monoolefins per 100 parts by weight of 14 15 the highly unsaturated hydrocarbon rubber. 16 Several U.S. Patents have described sulfonated 17 polymers such as sulfonated butyl and sulfonated EPDM in 18 adhesive applications (e.g. U.S. 3,867,247 and U.S. 19 3,801,531). It is important to distinguish the present 20 invention over those prior art systems. The former patent 21 22 is directed at a sulfonated butyl cement which is solvent 23 based and is employed to laminate various substrates. 24 is important to note that the present invention differs 25 dramatically from that patent as follows: 26 (a) The adhesives of the present invention are not deposited from solvents but are hot melt and require no 27 solvents. 28 The adhesives of the present invention in-29 corporate substantial levels of a highly unsaturated hydro-30 carbon rubber which is a critical component of these 31 systems. 32 The present invention may optionally include (c) 33 a preferential plasticizer capable of associating with the 34 metal sulfonate groups and thereby reducing the melt vis-35 cosity of the resulting blends to make the systems more 36 processable. 37

```
The present invention is directed at sul-
1
              (d)
2
   fonated
   whereas most of the prior art deals with sulfonated butyl
3
   rubber (e.g. U.S. 3,867,247).
             With regard to the latter point, historically
   EPDM systems do not possess good tack properties and sub-
   stantial art exists directed towards improving the adhesive
7
   characteristics of such systems. This problem becomes even
8
   more acute when EPDM is sulfonated to levels of 5 to 50
   milliequivalents (meq.) per 100 grams of polymer and
10
   neutralized. The resulting compositions have been widely
11
   used as the basis for thermoplastics elastomers (i.e. U.S.
12
   patent 4,157,922; 4,014,831; etc.). The use of these materi-
13
   als in such applications is, in part, a demonstration that
14
   the properties of such materials are just the opposite of
15
   those desired for adhesive. In fact such materials are
16
   remarkably devoid of tack or adhesion. The tack, therefore,
17
   of converting such physically crosslinked materials into
18
   suitable adhesive candidates is a particularly challenging
19
   one for two reasons:
                          (a)
                              the EPDM backbone is particularly
20
21 unsuited for that purpose being a very dry elastomer; (b)
22 the strong associations attributable to metal sulfonate
23 crosslinks further inhibit adhesion to any particular sub-
24 strate.
             Despite these handicaps there are some very good
25
26 reasons for solving the problems associated with converting
27 sulfonated EPDM into a good hot melt adhesive composition.
28 The excellent thermal stability inherent in the EPDM back-
29 bone is a very desirable property for adhesives which will
30 be exposed to high temperatures for long times. Most ad-
   hesives based on other elastomeric backbones can suffer de-
31
   gradation under those conditions.
32
             The present invention relates to unique and novel
```

3:

³⁴ 35 hot melt adhesive compositions which comprise a blend of a 36 highly unsaturated hydrocarbon rubber, a neutralized sulfonated elastomeric polymer which is preferably an EPDM 38 terpolymer, and a hydrocarbon resin, wherein to the

- l compositions can be optionally added an ionic preferential
- 2 plasticizer oil, and/or a filler thereby modifying the
- 3 rheological and physical properties of the hot melt ad-
- 4 hesive compositions.
- 5 A. Hydrocarbon Rubber
- The highly unsaturated hydrocarbon elastomers are polyisoprene, polybutadiene, polypentenamer, natural rubber, styrene-
- butadiene rubber, styrene/butàdiene and styrene/isoprene block copolymers or mixtures thereof. Also possible is neoprene (polychloroprene).
- Polyisoprene and natural rubber are the preferred members of this group.
- 12 An excellent description of various types of
- 13 isoprene polymers is found in the "Encyclopedia of Polymer
- 14 Science and Technology", Vol. 7, page 782, Interscience
- 15 Publishers, Div. of J. Wiley & Sons 1967 edition. The poly-
- 16 isoprenes useful in the present invention vary in structure
- 17 and can be primarily cis 1,4 polyisoprene or primarily trans
- 18 1,4 polyisoprene. It is preferred that these material should not
- 19 be highly crystalline; it is preferred that they possess
- 20 little or no crystallinity in order that they impart a
- 21 suitable level of tack to the blends herein described.
- Polyisoprene can vary widely in molecular weight,
- 23 resulting in a significant difference in physical properties
- 24 of the polymer and its blends. The use of low molecular
- 25 weight polyisoprenes gives rise to a tacky product when in-
- 26 corporated in the blends of the present invention, while
- 27 physical properties of such blends such as peel strength
- 28 can suffer. The use of very high molecular weight polyiso-
- 29 prenes, however, can provide a more stringent control over
- 30 the levels and types of other polymers or tackifiers in-
- 31 corporated in the blends due to some decrease in compati-
- 32 bility. However, such high molecular weight polyisoprenes
- 33 can result in desirably high peel strengths. Generally, one uses
- 34 polyisoprenes which vary in number average molecular weight
- 35 from 4,000 to 500,000, preferably from 10,000 to 400,000.

- Similarly, the other highly unsaturated polymers
 such as natural rubber can be employed over a range of
 molecular weights. Obviously in the case of natural rubber,
- 4 the range of available molecular weights is more limited
- 5 than in the case of the synthetic polyisoprenes, neverthe-
- 6 less, those polymers which are commercially available are
- 7 satisfactory in the present invention. In those cases
- 8 where a lower molecular weight elastomer is desired, it can
- 9 be achieved by shear on a rubber mill which is a well-known
- 10 technique to lower the molecular weight.
- 11 B. Sulfonated Polymer and Process for Forming
- 12 The neutralized sulfonated elastomeric polymers of
- 13 this present invention are derived from unsaturated
- 14 EPDM terpolymers.
- 15 EPDM polymers are known in the rubber
- 16 industry as very dry rubbers meaning that they are rela-
- 17 tively non-tacky, and indeed are very limited in adhesive
- 18 applications for that reason. Therefore, the present in-
- . 19 vention is specifically attractive for sulfonated EPDM
 - 20 systems in that these materials possess a very high degree
 - 21 of ionic crosslinking which can be controlled by plasticiza-
 - 22 tion yet can be modified with the blends taught herein to
 - 23 have good adhesive qualities. This combination of good
 - 24 adhesion and adequate tensile properties is highly sought
 - 25 in a number of adhesive applications, yet is particularly
 - 26 difficult to achieve with the sulfonated ethylene propylene
 - 27 terpolymers. This invention will describe how such elasto-
 - 28 mers can be blended to achieve some of these desirable pro-
 - 29 perties.
 - The EPDM terpolymers are low unsaturation poly-
 - 31 mers having 1 to 10:0, more preferably 2 to 8, most preferably
 - 3 to 7 wt.% olefinic unsaturation defined
 - according to the definition as found
 - 34 in ASTM D-1418-64 and is intended to mean terpolymers con-
 - 35 taining ethylene and propylene in the backbone and a diene
 - 36 in the side chain. Illustrative methods for producing

```
these terpolymers are found in U.S. Patent 3,280,082;
   British Patent 1,030,289 and French Patent 1,386,600.
                                            The preferred poly-
4
   mers contain 40 to 65 wt.% ethylene and about
5
    1 to about 10 wt. % of a diene monomer, the balance of the
   polymer being propylene. Preferably, the polymer contains
6
    45 to 65 wt.%
                             more preferably 45
8
    60 wt. %, e.g., 50 wt. % ethylene and 2.6 to 8.0 wt. %,
9
    e.g. 5.0 wt.% diene monomer.
                                      Such EPDM polymers are sub-
    stantially moncrystalline meaning they possess less than
10
    20% crystallinity as determined by x-ray techniques.
11
    diene monomer is preferably a non-conjugated diene. Illus-
12
    trative of these non-conjugated diene monomers which may
13
14
    be used in the terpolymer (EPDM) are 1,4-hexadiene, di-
15
    cyclopentadiene, 5-ethylidene-2-norbornene, 5-methylene-
    2-norbornene, 5-propenyl-2-norbornene, and methyl tetra-
16
    hydroindene. A typical EPDM is Vistalon 2504 (Exxon Chemi-
17
    cal Co.), a terpolymer having a Mooney viscosity (ML, 1 +
18
    8, 212°F) of 40 and having an ethylene content of
19
20
    50 wt. % and a 5-ethylidene-2-norbornene content of
21
    5.0 wt. %. The Mn as measured by GPC of Vistalon
22
    2504 is 47,000, the \overline{M}v as measured by GPC is
23
    145,000 and the \overline{\text{Mw}} as measured by GPC is 174,000.
    Another EPDM terpolymer Vistalon 2504-20 is derived from
24
25
    Vistalon 2504 (Exxon Chemical Co.) by a controlled extru-
    sion process, wherein the resultant Mooney viscosity (ML,
26
27
    1 + 8, 212°F) is 20.
                           The Mn as measured by GPC of
28
    Vistalon 2504-20 is 26,000, the Mv as measured by
    GPC is 90,000 and the Mw as measured by GPC is about
29
    125,000. Nordel 1320 (DuPont) is another terpolymer having
30
    a Mooney viscosity (ML, 1 + 8, 212°F) of 25 and having
31
32
    53 wt. % of ethylene, 3.5 wt. % of 1,4-hexadiene,
    and 43.5 wt. % of propylene.
33
              Another EPDM terpolymer Vistalon (MD-76-5) is a
34
```

terpolymer having a Mooney viscosity (ML, 1 + 8, 212°F) of

20, and Mn as measured by GPC of 60,000 and a

35

36

```
1 wt. % ethylene content of 55.
            The EPDM terpolymers of this invention have a
 3 number average molecular weight (Mn) as measured by GPC of
 ^4 about 10,000 to 200,000, more preferably of
 ^{5} 15,000 to 15,000 to 100,000, and most preferably of
 ^6 20,000 to 60,000. The Mooney viscosity (ML, 1 + 8,
 7 212°F) of the EPDM terpolymer is 5 to 50, more
 8 preferably 10 to 50, most preferably 10
 ^9 to 40. The \widetilde{\text{M}}\text{v} as measured by GPC of the EPDM ter-
10 polymer is preferably below 350,000 and more pre-
ll ferably below 300,000. The \overline{M}w as measured by GPC of
12 the EPDM terpolymer is preferably below 500,000 and
13 more preferably below 350,000.
            The sulfonated EPDM terpolymers are formed by
15 dissolving the elastomeric polymer in a non-reactive sol-
16 vent such as chlorinated aliphatic solvent, chlorinated
17 aromatic hydrocarbon, an aromatic hydrocarbon, or an ali-
18 phatic hydrocarbon such as carbon tetrachloride, dichloro-
19 ethane, chlorobenzene, benzene, toluene, xylene, cyclo-
20 hexane, pentane, isopentane, hexane, isohexane or heptane.
21 The preferred solvents are the lower boiling aliphatic
22 hydrocarbons. A sulfonating agent is added to the solution
23 of the elastomeric polymer and non-reactive solvent at a
24 temperature of -100°C to 100°C for a period of
25 time of 1 to 60 minutes, most preferably at
26 room temperature for 5 to 45 minutes; and most
27 preferably 15 to 30. Typical sulfonating agents
28 are described in U.S. Patents 3,642,728 and 3,836,511 The Sul-
29 fonating agents are selected from an acv1 sulfate, a mix-
30 ture of sulfuric acid and an acid anhydride or a complex of
31 a sulfur trioxide donor and a Lewis base containing oxygen,
32 sulfur, or phosphorus. Typical sulfur trioxide donors are
33 SO3, chlorosulfonic acid, fluorosulfonic acid, sulfuric acid,
34 oleum, etc. Typical Lewis bases are: dioxane, tetrahydro-
35 furan tetrahydrothiophene or triethyl phosphate. The most
```

- 1 preferred sulfonation agent for this invention is one of the acyl
- 2 sulfates
- 3 benzoyl, acetyl, propionyl and butyryl sulfate. The acyl
- 4 sulfate can be formed in situ in the reaction medium or pre-
- 5 generated before its addition to the reaction medium in a
- 6 chlorinated aliphatic or aromatic hydrocarbon.
- 7 It should be pointed out that neither the sul-
- 8 fonating agent nor the manner of sulfonation is critical,
- 9 provided that the sulfonating method does not degrade the
- 10 EPDM terpolymer backbone. The reaction is quenched with
- ll an aliphatic alcohol such as methanol, ethanol or iso-
- 12 propanol, with an aromatic hydroxyl compound, such as
- 13 phenol, as cycloaliphatic alcohol such as cyclohexanol or
- 14 with water. The sulfonated EPDM terpolymer has about 5 to
- 15 about 50 meq. sulfonate groups per 100 grams of sulfonated
- 16 polymer, more preferably 7 to 40; and most
- 17 preferably : 7 to 20. The meg. of sulfonate
- 18 groups per 100 grams of polymer is determined by both titra-
- 19 tion of the polymeric sulfonic acid and Dietert Sulfur
- 20 analysis. In the titration of the sulfonated polymer, the
- 21 polymer is dissolved in solvent consisting of 95 parts by volume of
- 22 toluene and 5 parts by volume of methanol at a concentration level of
- 23 50 grams per liter of solvent. The sulfonated EPDM ter-
- 24 polymer is titrated with ethanolic sodium hydroxide to an
- 25 Alizarin-Thymolphthalein end-point.
- 26 The sulfonated EPDM terpolymer is gel free and
- 27 hydrolytically stable. Gel is measured by stirring a given
- 28 weight of polymer in a solvent comprised of 95 vol-toluene-5 vol-
- 29 methanol at a concentration of 5 wt. %, for 24 hours,
- 30 allowing the mixture to settle, withdrawing a weighed sample
- 31 of the supernatant solution and evaporating to dryness.
- 32 Hydrolytically stable means that the acid function, in this
- 33 case the unneutralized sulfonate groups, will not be elimi-
- 34 nated under neutral or slightly basic conditions to a
- 35 neutral moiety which is incapable of being converted to
- 36 highly ionic functionality.

The sulfonated EPDM terpolymer is neutralised 1 by the addition of a solution of a basic salt to 3 the unneutralized sulfonated EPDM terpolymer dissolved in the mixture of the aliphatic alcohol and non-reactive solvent. The basic salt is dissolved in a binary solvent system consisting of water and/or an aliphatic alcohol. The counterion of the basic salt is a carboxylic acid having from 1 to 4 carbon atoms per molecule, a hydroxide, an alkoxide having about 1 to about 4 carbon atoms per molecule or a mixture thereof. The preferred neutralizing 11 agent is a metal acetate, more preferably zinc acetate. 12 Sufficient metal salt of the carboxylic acid is added to 13 the solution of the acid form of the elastomeric polymer to 14 effect neutralization. It is preferable to neutralize at 15 least 95% of the unneutralized sulfonate groups, more pref-16 erably 98%, most preferably 100%. Examples metal oxides useful in preparing metal sulfonates are MgO, CaO, BaO, ZnO, Ag,O, PbO, and Pb,O. Useful examples of metal hydroxides are NaOH, KOH, LiOH, Mg(OH) $_2$ and Ba(OH) $_2$. 20 Alternatively, the unneutralized sulfonated groups of the 21 unneutralized sulfonated EPDM terpolymer can be neutralized with an organic amine such as described in U.S. Patent 23 3,642,728 24 The neutralized sulfonated EPDM terpolymer is in-25 corporated into the hot melt adhesive composition at 26 5 to 100, more preferably about 10 to 90 and most preferably 15 to 75 parts by weight per 100 parts by weight of the highly unsaturated hydrocarbon rubber. 28 25 30 C. Plasticizers The metal sulfonate containing polymers at higher 31 sulfonate levels can possess extremely high melt viscosi-32 ties and are thereby difficult to process. The optional addition of ionic group (preferential) plasticizers markedly 35 reduces melt viscosity and frequently enhances physical prop-

erties. To the neutralized sulfonated EPDM terpolymer is

36

- 1 added, in either solution or to the crumb of the sulfonated
- 2 EPDM terpolymer, a preferential plasticizer which is
- a carboxylic acid having 5 to
- 4 30 carbon atoms, more preferably 8 to 22 carbon atoms
- 5 per molecule or a basic salt of these carboxylic acids.
- 6 wherein the metal ion of the basic salt is
- 7 aluminum, ammonium, lead or an ion of a metal of Groups
- 8 IA, IIA, IB and IIB of the Periodic Table of Elements and OFA
- 9 mixture thereof. The carboxylic acids may be
- lauric, myristic, palmitic or
- 11 stearic acids or a mixture thereof; e.g., zinc stearate,
- 12 magnesium stearate or zinc laurate.
- The preferential plasticizer may be incorporated into
- 14 the neutralized sulfonated EPDM terpolymer at 3 to 75, more
- preferably at 7 to 50, and most preferably at about 10 to 30 parts by.
- l weight based on 100 parts by weight of the neutralised sulphonated polymer.
- 18 The metallic salt of the carboxylic acid can also be used
- 19 as neutralizing agent. In the case of the neutralizing
- 20 agent and plasticizer being the identical chemical species,
- 21 additional metallic salt is added over the required levels
- 22 of neutralization. Alternative preferential
- 23 plasticizers are amines, amides such as
- 24 stearamide, ammonium and amine salts of carboxylic acids or
- 25 mixtures thereof. The preferred plasticizers are carboxylic
- acids having about 8 to about 22 carbon atoms per molecule,
- 2 metallic salts of these carboxylic acids or a
- 28 mixture thereof. The resultant neutralized sulfonated
- 29 elastomeric polymer with preferential plasticizer is iso-
- 30 lated from the solution by conventional steam stripping and
- 31 filtration.
- 32 D. Commercial Tackifier Resins
- 33 To the hot melt adhesive composition is added a
- 34 commercial tackifying resin having a softening point of
- 35 0 to 160°C, more preferably 50 to
- 36 140°C and most preferably 70 to 120°C. A variety of

```
commercial tackifier resins are available. Some of these
    resins contain and/or binene base polyterpene resins
    as the main ingredient while others are derived from the
 3
   polymerization of petroleum or coal distillates which con-
    sist of aliphatic dienes, mono and di-olefins and cyclic
 5
   olefins having 5 or 6 carbon atoms per molecule. The latter
    type of tackifiers have primarily piperylene and/or isoprene
7
    structure. A general but excellent description of tacki-
    fying resins derived from petroleun derivatives can be found
    in, for example, Encyclopedia of Polymer Science and
10
    Technology, Vol. 9, Pages 853 to 860, chapter by John
11
    Findlay, published by John Wiley & Sons, NY (1968).
12
              Typical but non-limiting tradenames of these com-
13
   mercial tackifiers are Wingtak of Goodyear, Escorez of
14
   Exxon, Piccolyte of Hercules and Zonrez of Arizona Chemicals.
15
   Recently these and various other companies have also started
16
    marketing relatively higher softening point resins.
17
    are generally modified aliphatic hydrocarbon resins and/or
18
    hydrogenated polycyclics. The physical appearance of these
19
    commercial tackifying resins varies, depending upon their
20
    softening point, they can be either viscous liquids or
21
    light-colored solids at room temperature. Most often their
22
    initial color (Gardner) is 3.0 to 7.0 and the
23
    density from 0.7 to 1.0 gm/cm3 at room temperature.
24
    The acid number of these resins is usually less than 1.
25
    In general, the molecular weight of these commercial tacki-
26
    fying resins is not homogeneous, it spreads the number
27
28
    average molecular weight Mn can be from 300 to
29
    5000 and more preferably 500 to 2000 and most
    preferably 700 to 1600.
30
              As well-known to those familiar with the use of
31
32
    tackifying resins, because of their wide range compatability,
    any of them can be used with sulfonated polymers in proper
33
    formulation, which will yield adhesive systems of varying
34
    physical characteristics. To cite an example in the present
35
    invention, the tackifying resins used are those based on
36
```

- 1 hydrocarbon resins.
- 2 These hydrocarbon tackifier resins are incorpo-
- 3 rated into the hot melt adhesive composition at 25 to
- 200, more preferably 30 to 200, and most preferably 35 to 150 parts by weight per 100 parts by weight of the highly unsaturated hydrocarbon rubbers.

7 E. Method of Forming Blend Adhesive Composition

- 8 The blend compositions of the highly unsaturated
- 9 hydrocarbon rubber, neutralized sulfonated elastomeric poly-
- 10 mer with or without preferential plasticizer and the hydro-
- ll carbon tackifier resin can be formed by techniques well-
- 12 known in the art. For example, the blend composition of
- 13 the hot melt adhesive can be compounded on a hot two-roll
- 14 mill. Other methods known in the art which are suitable
- 15 for making these compositions include those methods employed
- 16 in the plastic and elastomer industries for mixing polymer
- 17 systems. An excellent polymer blend composition of this
- 18 invention can be obtained through the use of a high shear
- 19 batch intensive mixer called the Banbury. Alternatively,
- 20 economic advantages in terms of time and laborsavings can
- 21 be obtained through the use of a Farrel Continuous Mixer,
- 22 a twin screw extruder, or tandem extrusion techniques which
- 23 are continuous mixing types of equipment. The Banbury
- 24 mixing device is the preferred batch-type mixer, and the
- 25 twin screw extruder is the preferred continuous mixer.
- 26 F. Extended Blend Adhesive Composition
- To the blend composition of the hot melt adhesive
- 28 compositions can be added fillers which are .
 - tale, ground calcium carbonate,
- 30 water precipitated calcium carbonate, delaminated, calcined
- 31 or hydrated clay, silica, a carbon black, or a mixture
- 32 thereof. These fillers are incorporated into the blend
- 33 composition at 5 to 800, more preferably at 50 to 500; and most

preferably at 75 to 300 parts by weight per 100 parts by weight of the highly unsaturated hydrocarbon rubber. Typically, these fillers have a particle size of 0.03 to 20 microns, more preferably 0.3 to 10, and most preferably 0.5 to 10. The oil absorption as measured by grams of oil absorbed by 100 grams of filler is about 10 to 100, more preferably 10 to 85 and most preferably 10 to 75. Typical fillers employed in this invention are illustrated in Table I.

ب	. •		TANLE I			
263			Oil Absorption grams of oil/ 100	Specific	Avg. Particle Size	:
# v)	Filler	Code No	grams of filler	Gravity	Micron	110
.	Calcium Carbonate Ground	Atomite	1.5	2.71		6.6
ر 8	Calcium Carbonate Pre-	Purecal U	35	2.65	.0304	9.3
6	Delaminated Clay	Polyfil bL	30	2.61	4.5	6.5-7.5
01	Hydrated Clay	Suprex		2.6	7 -	0.4
_	Calcined Clay	Leecap K	50-55	2.63	-	5.0-6.0
	Magnesium Silicate	Mistron Vapor	07-09	2.75	2	9.0-7.5

1 G. Oil Extended Adhesive Compositions

- 2 It is observed that the blend composition of the
- present invention can also include oils further to improve
- 4 low temperature properties and tack characteristics of the
- 5 resulting adhesive. Levels of oil of 1 to 100
- 6 parts by weight per 100 parts of the highly unsaturated
- 7 hydrocarbon rubber can be incorporated, more preferably
- 8 1 to 90 parts. Oils are particularly useful
- 9 when high levels of petroleum resin tackifiers are used
- 10 since such materials can harden the resulting composition.
- 11 Oils can further soften and reduce the cost. Typical oils
- 12 that can be used may be low viscosity aromatic, naphthenic
- 13 or paraffin petroleum oils, having less than 2 wt. % polar
- 14 type compounds. Typical oils are illustrated in Table II.

-			- 1	TUDEE LI			
~ 5.	2. 3 TYPE 011	Oil Code No	Viscosity	Mu	% Polars	% Aromatic	% Saturates
7	4 Paraffinic	Sunpar 115	1.55	400	0.3	12.7	87.0
2	Paraffinic	Sunpar 180	750	570	0.7	17.0	82.3
9	Paraffinic	Sunpar 2280	2907	720	1.5	22.0	76.5
7	7 Aromatic	Flexon 340	120	. 0	1.3	70.3	28.4
8	8 Naphthenic	Flexon 765	505	ß	6.0	20.8	78.3

H. Method of Fabrication of Adhesive Compositions 1 Because of the significant advances in the pack-2 3 aging technology, the hot melt adhesive compositions can be used by conventional polymer fabricating techniques. After the blending is complete, the adhesive mass can either be extruded and/or calendered to a uniform thickness on top of the substrate which could be paper, cloth, aluminum foil or glass fabric. The temperature and throughput of the extru-8 sion are variable depending upon the viscosity of the 9 10 tackifying mass and the desired coating thickness. Typically the temperature of extrusions and rolls may be from 11 about 200° to 400°F. The substrates or backings to which 12 the pressure sensitive adhesive compositions are applied 13 may be of various porous or nonporous types and they may be organic or inorganic in nature. Most generally, these 15 16 materials are those which are customarily employed in pressure sensitive tapes, either the cloth or paper backed 17 types or tape backings made of synthetic materials, for 18 19 example, polyesters such as the copolymer of ethylene gly-20 col with terephthalic acid, vinyls such as a copolymer of vinylidene chloride and vinyl chloride, or a copolymer of 21 22 vinylidene chloride with acrylonitrile, cellophane, cellulose acetate, polyvinyl chloride, polyvinyl acetate, poly-23 24 propylene, polyethylene, ethylene-propylene plastic copolymer. Sheetings and tapes of cloth or textiles of either 25 26 natural or synthetic fiber origin, such as glass fiber cloth, wood and finally sheets or strips of metals such as 27 steel, copper, aluminum, and alloys thereof can also be 28 29 In general, the backings employed are those which have heretofore been conventionally employed in preparing 30 pressure sensitive labels, tapes, sheetings and the like 31 32 and the selection of any particular substrate material is 33 not a specific novel feature of the present invention. 3.1 35 The advantages of the hot melt adhesive composi-36 tions of the present invention can be more readily

- l appreciated by reference to the following examples and
- 2 tables. Unless otherwise specified, all measurements are in
- 3 parts per hundred by weight.
- 4 Example I
- Five hundred grams of an EPDM terpolymer (MD-76-5)
- 6 was dissolved under agitation in 5000 ml. of n-hexane at
- 7 about 40°C. After all this polymer was dissolved, the
- 8 solution was cooled to low temperature and 17.22 ml. of
- 9 active anhydride (182.25 mmoles) was added. After that,
- 10 while stirring the mixture 6.31 cc of 95% H,SO₄ (11.50 mmol)
- 11 was added dropwise, the stirring of the solution was con-
- 12 tinued for an additional 30 minutes for the sulfonation
- 13 reaction to complete. After this period, the sulfonation
- 14 reaction was inactivated by adding 28.63 gm of zinc acetate
- 15 dissolved in 400/20 ml. mixture of CH₃OH/H₂O. Antioxidant
- 16 2246 (2.5 gm) was then added to the cement and stirring was
- 17 continued for an additional 30 minutes. The resultant
- 18 neutralized sulfonated EPDM terpolymer was isolated by steam
- 19 stripping. It was then washed with distilled water and
- 20 pulverized with water in a Waring Blender, followed by
- 21 filtering by a rubber drum. The final drying of the poly-
- 22 mer was done in an aromatic dryer at 100°C.
- The sample is identified as neutralized sulfonated
- 24 EPDM terpolymer 1-1.
- The preparation technique of a sulfonated EPDM
- 26 terpolymer Zn salt having 15 meq. sulfonate groups (Samples
- 27 1-2) were the same as above of Sample 1-1. The only differ-
- 28 ence was in the amount of various chemical ingredients re-
- 29 quired for the sulfonation and neutralization reaction.
- 30 The amount of acetic anhydride used (for Sample 1-2) was
- 31 13.40 ml (141.75 mmoles), H_2SO_4 4.91 cc (87.50 mmoles) and
- 32 zinc acetate 23.05 gms.
- The sulfur analysis on Samples 1-1 and 1-2 was
- 34 done by Dietert Sulfur analysis and these polymers were
- 35 found to have sulfonate groups of 20 meg. and 15 meg. per
- 36 100 gm of sulfonated polymer.

l Example 2

- The neutralized sulfonated EPDM terpolymers of
- 3 Example 1 (1-1 and 1-2), polyisoprene and a tackifier resin
- 4 such as Wingtak Plus or Escorez 1310 were dry blended in
- 5 the proportion as indicated in Table III and subsequently
- 6 mixed into a homogenous blend on a hot two roll mill at
- 7 about 150°C for about 15 minutes. Blends 2-6, 2-7, 2-8 and
- 8 2-9 additionally include ionic preferential plasticizer.
- 9 Blend 2-5 is a presently used commercial formulation for
- 10 hot melt adhesive compositions.

ll Conclusions

- 12 Table IV illustrates various qualitative and
- 13 quantitative properties of these blends. It can be readily
- 14 noted that the blends incorporating the sulfonated polymers,
- 15 Blends 2-1 and 2-2, are not only very tacky but have rela-
- 16 tively good green strength. The strength of such materials
- 17 can be controlled by the proper changes in the formulations
- 18 and/or by adding the preferential plasticizers. Thus, for
- 19 example, samples 2-6 and 2-7 are not only very tacky but
- 20 have extremely high green strength. Such systems are ex-
- 21 cellent for various pressure sensitive adhesive applica-
- 22 cations, especially as hot melt adhesives. Because of their
- 23 high green strength, these materials will undergo very
- 24 little creep deformations and thus their shelf use life can
- 25 be expected to be significantly better over those conven-
- 26 tional adhesives. In accordance with their high strength,
- 27 their high temperature properties will also be improved,
- 28 and thus for example, laminates prepared using such ad-
- 29 hesives will not be expected to distort due to flow or fail-
- 30 ure if subjected to sudden temperature or pressure changes.
- 31 Some quantitative numbers on the peel strength of
- 32 these blends are listed in the fifth column of Table IV.

		ı,
	•	
١	-	d
٠	-	۰
£	-	
:	-	
ξ	•	

Blends of Polymers with Petroleum Resins

Parts by Welght	-1 2-2 2-3 2-4 2-5 2-6 2-7 2-9	42.5 35.0 35.0 20.0 15.0	15.0 15.0 10.0 5.0	7.5	50.0	50.0 50.0 50.0 80.0	50.0	3.0	2.0 2.0 1.0
	2 2-3	47.0 42.5	0.	7.5	1 1 1 1	50.0 50.0	\$ # # # # # # # # # # # # # # # # # # #	2 4 1	1 1 1
	2-1 2-	42.5 47	7.5 3	# # # # # # # # # # # # # # # # # # #	! !	50.0 50	; ; ;	t t t	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Blend No	Polyfsoprene	Sulfo EPDM Zn Salt (~20 meq.)	Sulfo EPDM Zn Salt (~15 meq.)	Kraton 1107 *	Wingtak Plus	Escorez 1310	Zinc Stearate	Stearic Acid
m	4	2	9	8 6	10	11	12	13	14

*Kraton 1107 is a block copolymer of the structure ABA in which A is a block of styrene to 30,000. B is an elastic block of isoprene (~ 858) having a number average molecular (total \sim 15% by weight) whose number average molecular weight is in the range of 10,000 weight of about 100,000. 16 17

	Peel Strength	Force	0.6 1.5 2.7 2.0 11.9 1.7 10.2
	٠.	Clarity	Clear Clear Light Yellow Light Yellow Clear Light Yellow Light Yellow Light Yellow
TABLE IV	•	Tackiness	Very Tacky Very Tacky Tacky Tacky Tacky Very Tacky Very Tacky Slightly Tacky
•		Green Strength	Medium Medium Nedium High Verý High Very High High
		Blend No	2-1 2-2 2-3 2-4 2-5 2-7

The peel strength values were obtained by a method similar to ASTM D-429 adhesion test. In brief, the samples were sandwiched between mylar sheets and pressed to a thick-4 ness of about 25 mils using a hot press. Rectangular strips of 1/2" width and 3" long were cut and 90° peel tests were performed on an Instron at room temperature. The resin free sections of the mylar film were clamped into air jaws to avoid any slippage during pulling. The samples were pulled at 5"/min. crosshead speed. The force and elongation of the samples were recorded on a strip recorder. The force necessary to separate the mylar sheets was taken as the peel strength of the blend. The initial peak values are reported in the fifth column of Table IV.

CLAIMS

- 1. A hot melt adhesive composition which comprises:
 - (a) a highly unsaturated hydrocarbon rubber or neoprene;
- (b) about 5 to about 100 parts by weight of a neutralised sulphonated EPDM terpolymer per 100 parts by weight of said highly unsaturated hydrocarbon rubber or neoprene, said neutralised sulphonated EPDM terpolymer having about 5 to 50 meq. of neutralised sulphonated groups per 100 grams of said neutralised sulphonated EPDM terpolymer; and
- (c) about 25 to about 200 parts by weight of a hadyrocarbon resin of a petroleum or coal tar distillate per 100 parts by weight of said highly unsaturated hydrocarbon rubber or neoprene.
- 2. A composition according to claim 1 wherein said highly unsaturated hydrocarbon rubber is polyisoprene.
- 3. A composition according to either of claims 1 and 2 wherein said EPDM terpolymer consists of about 40 to about 65 wt. % of ethylene, of about 25 to about 53 wt. % of propylene and of about 2 to about 10 wt. % of a nonconjugated diene.
- 4. A hot melt adhesive composition according to claim 3 wherein said nonconjugated diene is 5-ethylidene-2-norbornene.
- 5. A composition according to any one of the preceding claims wherein the neutralised sulphonate groups are neutralised with a counterion selected from ammonium, aluminum, antimony, iron, lead and Groups IA, IIA, IB and IIB of the Periodic Table of Elements.
- 6. A composition according to any one of the preceding claims which includes about 3 to about 75 parts by weight of an ionic preferential plasticizer per 100 parts by weight of said neutralised sulphonated EPDM terpolymer, wherein said preferential plasticizer is a carboxylic acid having about 8 to about 22 carbon atoms per molecule, a metallic salt of said carboxylic acid, an amides having an aliphatic group of about 8 to about 22 carbon atoms, an amine, a urea, a thiourea or a mixture thereof.

- 7. A composition according to any one of the preceding claims which includes about 5 to about 800 parts by weight of a filler per 100 parts by weight of said highly unsaturated hydrocarbon resin, said filler being calcium carbonate, silica, a carbon black, a clay, talc or a mixture thereof and/or less than about 100 parts by weight of an oil having less than 2 wt. % polars per 100 parts by weight of said highly unsaturated hydrocarbon resin or neoprene.
- 8. A composition according to any one of the preceding claims wherein said hydrocarbon is derived from the polymerisation of petroleum or coal distillates which consist of aliphatic dienes, mono- and diolefins and cyclic olefins having 5 or 6 carbon atoms per molecule.
- 9. A composition according to any one of the preceding claims which includes from about 1 to about 100 parts by weight of an oil per 100 parts by weight of said highly unsaturated hydrocarbon resin, said oil being an aromatic, naphthenic or paraffinic basestock.

EUROPEAN SEARCH REPORT

EP 81304786.7

Category	Citation of document with indic			Relevant	CLASSIFIC APPLICATI	ATION OF THE
	passages			to claim	C 09	J 3/12
	No relevant docu	ments have b	een			J ·3/14
	disclosed.					•
						L 9/00
Ī	•				C 08	L 23/16
	•				C 08	L 57/02
					C 08	L 91/00
			·		C 08	K 5/09
	• *	•				
	•					
					TECHNICA SEARCHEI	L FIELDS D (Int. Cl.3)
				-		• • • • • • • • • • • • • • • • • • •
	•				- C 09	J
	•				Č 08	L ·
		•				
					-4	
					CATEGORY	OF
					CATEGORY CITED DOC	UMENTS
1					X: particularly	
- 1					A: technologic O: non-written	
					P: intermediat	
					T: theory or pr	inciple underly
					the invention	
ı					D: document c	
					application	
					L: citation for a	other reasons
			_		&: member of	the same pater
x	The present search repo	rt has been drawn up for al	I claims		family, correspond	ing document
ace of se	·	ate of completion of the se	arch	Examiner		
	VIENNA 1503.1 08.78	01-12-1981			KAHOV	EC