1 Veröffentlichungsnummer:

0 050 314 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(1) Anmeldenummer: 81108350.0

22) Anmeldetag: 15.10.81

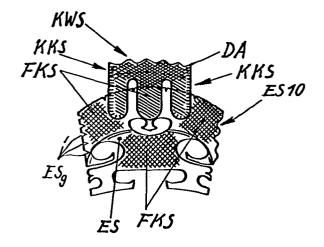
(f) Int. Cl.³: **G 10 D 3/02,** G 10 C 3/06, G 10 K 11/02

30 Priorität: 20.10.80 CH 7799/80

(DE) Anmelder: Ignatius, Georg, Höfe 58, D-7841 Malsburg

(3) Veröffentlichungstag der Anmeldung: 28.04.82 Patentblatt 82/17

(DE) Erfinder: Ignatius, Georg, Höfe 58, D-7841 Maisburg (DE)


Benannte Vertragsstaaten: AT BE CH DE FR GB IT LI LU NL SE Vertreter: Fiedler, Otto Karl, Dipl.-Ing., Rheinhöhe 9, D-7891 Küssaberg 1 (DE)

(54) Schwingkörper, insbesondere Resonanzkörper für Klangerzeugungsgeräte.

(5) Bei Schwing- bzw. Resonanzkörpern für Klangerzeugungsgeräte, insbesondere Musikinstrumente, besteht das Bedürfnis nach baulich einfach auszuführenden Konstruktionsmassnahmen zur gezielten Beeinflussung des Resonanzspektrums und der Klangqualität, insbesondere auch des Einschwingverhaltens und damit der Anspielbarkeit bei Musikinstrumenten.

Zur Lösung wird an der Oberfläche, insbesondere auch an der Kantenoberfläche, von Schwingkörpern – z.B. an einem saitentragenden Steg eines Streich- oder Zupfinstrumentes – eine Feinprofilierungs-Kerbstruktur (ES9, FKS, KKS) oder auch eine Kanten-Wellenstruktur (KWS) gebildet, die das Verhältnis der Biegesteifheit zur Schwingmasse herabsetzt und/oder eine Gliederung des Schwingkörpers in Teilschwingelemente und/oder eine Vergrößerung der wirksamen Schallabstrahlungsfläche bewirkt.

Diese Massnahmen kommen auch für mechanisierte Saiteninstrumente (Klavier) und für Blasinstrumente, auch für mechanisierte (Orgel), und für Hilfsgeräte wie Streichbögen in Betracht.

50 314 A

О Ш Schwingkörper, insbesondere Resonanzkörper,

für Klangerzeugungsgeräte

Die Erfindung bezieht sich auf einen Schwingkörper, insbesondere einen Resonanzkörper, für Klangerzeugungsgeräte, wie Musikinstrumente und Lautsprecher, bei dem auf mindestens einer Oberfläche eine Kerbstruktur gebildet ist. Die Erfindung bezieht sich ferner auf Saiteninstrumente, insbesondere Saiten-Streichinstrumente, mit einem an einen Haupt-Resonanzkörper angesetzten, sich wenigstens annähernd in Längsrichtung der Bespannung erstreckenden Halskörper, wobei dieser Halskörper oder andere Schwing- bzw. Resonanzkörperbestandteile ebenfalls mit einer Kerbstruktur versehen sein können.

Aus der DE-AS 12 53 564 ist eine Stegkonstruktion für Saiteninstrumente bekannt, bei der ein als Versteifungselement wirkender Steg oder "Stimmbalken" bzw. mehrere solcher Elemente, die eine seitliche Anlage- und Verbindungsfläche für den Anschluss an einen Resonanzboden aufweisen, mit durch Rillen gebildeter Kerbstruktur vorgesehen sind. Diese Rillen, die zueinander parallel oder überkreuzt angeordnet sein können, haben eine offene Querschnittsfläche, die in Bezug auf die Querschnittsabmessungen des Versteifungselementes vergleichsweise gross bemessen ist. Dies hat eine vergleichsweise starke Ungleichförmigkeit der Biegesteifheit des Versteifungselementes und eine ebensolche Ungleichförmigkeit der zusätzlichen Massenbelegung und Dämpfung an der Oberfläche des Resonanzbodens zur Folge. Der angestrebten Beeinflussung des Schwingungspektrums des gesamten Schwing- bzw. Resonanzgebildes sind daher enge Grenzen gesetzt.

Ferner ist aus der DE-AS 10 10 808 ein auf seiner inneren Oberfläche mit einer Kerbstruktur versehener Resonanzkörper für Blasinstrumente bekannt. Dort ist der vergleichsweise dickwandige Hohl-Resonanzkörper, nämlich der Tubus des Blasinstrumentes, mit einer Linienrasterung versehen, die durch Einkerben mit einem geeigneten Spitzwerkzeug hergestellt wird. Dieser Rasterung wird eine Beeinflussung der Tonqualität in Richtung weicherer "Holztöne" zugeschrieben. Eine wesentliche Beeinflussung des Eigenschwingverhaltens des Tubus durch diese Rasterung kommt jedoch nicht in Betracht, weil die Verformungssteifheit, vor allem die Längsbiegesteifheit, wegen der vergleichsweise grossen Wandstärke und insbesondere wegen der formsteifen, rohrförmigen Ausbildung von einer solchen Ober-

flächenrasterung praktisch unabhängig ist. Die Wirksamkeit der bekannten Massnahme kann somit allenfalls auf inneren Schall-Reflexionsverhältnissen bzw. deren Veränderung beruhen, nicht aber auf einer wesentlichen Veränderung des Schwingungsspektrums des klangbestimmenden Körpers.

Aufgabe der Erfindung ist demgegenüber die Schaffung eines Schwingkörpers bzw. Resonanzkörpers, der sich durch eine innerhalb des musikalisch relevanten Frequenzbereiches weitgehend beliebig und gleichmässig gestaltbare Spektral- bzw. Resonanzverteilung und damit durch eine insgesamt verbesserte Tonqualität sowie gegebenenfalls auch Lautstärke und verbessertes Einschwingverhalten für gewünschte Frequenzbereiche auszeichnen. Die erfindungsgemässe Hauptlösung dieser Aufgabe kennzeichnet sich bei einem Schwing- bzw. Resonanzkörper der eingangs erwähnten Art dadurch, dass die Kerbstruktur als das Verhältnis der Biegesteifheit zur schwingfähigen Masse des Schwingkörpers herabsetzende Feinprofilierung ausgebildet ist.

Ausgehend von einem Schwing- oder Resonanzkörper mit im wesentlichen unstrukturierter Oberfläche ergibt eine solche, als Feinprofilierung gestaltete Kerbstruktur mit ihren im Vergleich zu den Querschnittsabmessungen der zugehörigen Schwingkörperabschnitte geringen offenen Querschnittsfläche und mit ihrem demgemäss erreichbaren hohen Kerbdichte (Kerbzahl bezogen auf die Einheit der Schwingkörperoberfläche oder auf die Einheit der Schwingkörperberfläche oder auf die Einheit der Schwingkörperbreite quer zur Kerblängsrichtung bei linienförmigen Kerben) eine annähernd stetige Verteilung der

Veränderung der Biegesteifheit. Die Massenbelegung (auf die Flächeneinheit der Schwingkörperoberfläche bezogene Masse) wird bei einer solchen Feinprofilierung vergleichsweise wenig beeinflusst, so dass insgesamt eine gezielte Verschiebung von im Ausgangszustand oberhalb des relevanten Frequenzbereiches liegenden Resonanzfrequenzen in die oberen und mittleren Abschnitte des relevanten Frequenzbereiches erzielbar ist. Wesentlich hierbei ist auch, dass durch die gleichmässige räumliche Verteilung der Beeinflussung des Eigenschwingverhaltens innerhalb des Schwingkörpers abrupte Ungleichmässigkeiten innerhalb des Resonanzspektrums vermieden werden, die zu unerwünschten, verzerrungsartigen Ueberbetonungen eng begrenzter Frequenzbereiche führen können. Im allgemeinen kann aufgrund umfangreicher Versuche, insbesondere an Saiteninstrumenten, gesagt werden, dass mit einer Feinprofilierungs-Kerbstruktur der vorliegenden Art eine ausgeglichenere Klangqualität (voller, mehr oder weniger weich einsetzender, jedoch weittragender Ton) selbst bei einfachen, im Ausgangszustand hinsichtlich ihrer Tonqualität unbefriedigenden Musikinstrumenten erreichbar ist. Zu einem wesentlichen Teil dürfte dies auf die Verlagerung der abgestrahlten Schwingungsenergie aus störend oder nichtnutzbar hohen Frequenzbereichen in gewünschte Abschnitte des relevanten Frequenzbereiches zurückzuführen sein.

Zum Erfindungsgegenstand gehören ferner verschiedene Zusatzmassnahmen an Schwingkörpern der vorliegenden Art, die eine
besondere Wirksamkeit in Verbindung mit einer Feinprofilierungs-

Kerbstruktur entfalten, jedoch gegebenenfalls auch unabhängig davon mit Vorteil anwendbar sind. Hierzu gehört an erster Stelle eine Ausführung der Kerbstruktur in Form von Einschnitten, welche den Schwingkörper in Teilschwingelemente gliedern. Die so entstehenden Teilschwingelemente innerhalb des Gesamt-Schwingkörpers weisen infolge ihrer verkleinerten Maximalabmessungen im allgemeinen erhöhte Resonanzfrequenzen auf, die gegebenenfalls mit Hilfe einer unterlagerten Feinprofilierungs-Kerbstruktur in gewünschte Abschnitte des relevanten Frequenzbereiches verlagert werden können. Insbesondere hat es sich in diesem Zusammenhang als vorteilhaft erwiesen, die Einschnitte zur Gliederung des Schwingkörpers in Teilschwingelemente bei der Anwendung auf langgestreckte Versteifungselemente des Schwingkörpers in Form von wellenförmigen Oberflächenformen auszuführen. Insbesondere hat eine wellenförmige Gestaltung der Längskanten solcher Versteifungselemente markante Verbesserungen der Tonqualität erbracht, und zwar vor allem bei Saiteninstrumenten mit Hohl-Resonanzkörper. Eine solche, vergleichsweise sanft geschwungene Wellenform erlaubt es, die Forderung nach Vermeidung von abrupten Formübergängen mit grösseren Kontursprüngen und entsprechend abrupten Aenderungen der Biegesteifheit innerhalb des Schwingkörpers zu erfüllen.

An zweiter Stelle der Zusatzmassnahmen steht eine Ausbildung der Kerbstruktur als die wirksame Flächenausdehnung einer äusseren Schallabstrahlungsfläche vergrössernde Feinprofilierung.

Das Kerbprofil braucht in diesem Fall nicht unbedingt mit einer wesentlichen Beeinflussung der Biegesteifheit des betroffenen Schwingkörperteiles verbunden zu sein, jedoch kann eine solche Beeinflussung gegebenenfalls gleichzeitig mit Vorteil verwirklicht sein. Während bei der blossen Beeinflussung der Biegesteifheit grundsätzlich sehr geringe bis verschwindend geringe freie Profilquerschnittsflächen für die Kerbstruktur ausreichen , ist für die Funktion einer vergrösserten Schallabstrahlungsfläche eine gewisse Oeffnung des Kerbprofils erforderlich. Besonders vorteilhaft ist hierbei eine Profilausbildung mit in Richtung der Schallabstrahlung divergierenden Profilflanken. Im Gegensatz zu der bekannten Rasterung der Tubusinnenfläche eines Blasinstrumentes, wie sie eingangs erwähnt wurde, ergibt eine solche äussere, vergrösserte Schallabstrahlungsfläche eine intensivere und gleichmässigere Kopplung des Schwinggebildes mit der schallübertragenden Atmosphäre.

Als weitere Zusatzmassnahme, die wiederum gemäss praktischen Versuchsergebnissen bevorzugt in Verbindung mit einer Feinprofilierungs-Kerbstruktur anzuwenden ist, bezieht sich auf Schwingkörper für Saiteninstrumente mit einem Haupt-Resonanzkörper, im allgemeinen einem entsprechenden Hohlkörper, mit dem ein sich im wesentlichen in Längsrichtung der Bespannung erstreckender Holzkörper verbunden ist. Diese Zusatzmassnahme besteht darin, im Bereich des Halskörpers mindestens einen vorzugsweise wenigstens annähernd angeschlossenen Hohlraum

zu bilden. Eine solche Hohlraumbildung ergibt vorwiegend eine Betonung der mittleren und tieferen Abschnitte des relevanten Frequenzbereiches sowie erfahrungsgemäss insbesondere eine grössere Weichheit des Tones und eine verbesserte-Ansprache bei der Tonerzeugung. Dies dürfte auch auf die verminderte Dämpfung und Vergleichmässigung des Schwingungverhaltens innerhalb des gesamten Resonanzkörpers zurückzuführen sein. Die gleiche Massnahme der Hohlraumbildung kann übrigens mit Vorteil auch für andere Ansatzkörper und Versteifungskörper angewendet werden, die mit dem Resonanzkörper eines Streichinstrumentes verbunden sind, beispielsweise die innerhalb des Hohl-Resonanzkörpers angeordneten Eckversteifungen, aber auch für äussere, stabförmige Ansatzkörper.

Hervorzuheben ist, dass die erfindungsgemässen Klangverbesserungsmassnahmen auch bei der Anwendung für Bögen zum Spielen von Streichinstrumenten bemerkenswerte Wirkungen, insbesondere hinsichtlich leichterer Ansprache und Weichheit des Tones, hervorbringen. Dies gilt vor allem für die Anbringung von flächenhaften Feinprofilierungs-Kerbstrukturen, die besonders an aus Kunststoff bestehenden Bögen mit geringem Aufwand herstellbar sind und dort überraschende Effekte haben.

Kerbstrukturen und Wellenkonturen, insbesondere im Bereich von vorspringenden Körperkanten, sind unter Berücksichtigung der speziellen Verhältnisse mit deutlichen Klangverbesserungseffekten auch bei Lautsprechern der verschiedenen bekannten Bauarten anwendbar. Hierfür kommen zunächst die resonanzbestim-

menden Gehäuseelemente und äussere, schallabstrahlende Bauteile in Betracht, aber auch Schwingmembranen und Koppelelemente. Membranen können z.B. mit noppenartigen Elementen besetzt oder mit feinen Lochstrukturen versehen werden, weil hier Einschnitte zur Kerbenbildung im allgemeinen nicht in Betracht kommen.

Die Erfindung wird weiter anhand der in den Zeichnungen dargestellten Ausführungsbeispiele erläutert. Hierin zeigt:

- Fig. 1 eine Innenansicht der Resonanzdecke eines üblichen
 Streichinstrumentes, beispielweise einer Violine, mit
 verschiedenen Versteifungselementen und erfindungsgemässen Unterteilungseinschnitten,
- Fig. 2 bis
 Fig. 2e das Seitenprofil verschiedener Versteifungselemente
 gemäss Fig. 1,
- Fig. 3 das Seitenprofil des Bassbalkens gemäss Fig. 1,
- Fig. 4 die Innenansicht des Resonanzbodens eines Zupfinstrumentes mit mehreren Versteifungselementen,
- Fig. 5 einen Teilquerschnitt des Resonanzkörpers nach
 Fig. 4 mit dem Seitenprofil eines Versteifungselementes in grösserem Massstab,
- Fig. 6 eine schematische Draufsicht des Resonanzkörpers eines Flügels mit einer erfindungsgemässen Einschnittanordnung,
- Fig. 6a in grösserem Massstab den Querschnitt eines Versteifungselementes am Resonanzkörper des Flügels nach
 Fig. 6, und zwar mit erfindungsgemässen Einschnitten,

- Fig. 7 in grösserem Massstab einen Teilquerschnitt eines flächenhaften Resonanzelementes mit erfindungsgemässen Einschnitten.
- Fig. 8 eine Seitenansicht eines Stimmstockes mit zwei verschiedenen Formen von erfindungsgemässen Einschnitten,
- Fig. 9 einen Steg eines Streichinstrumentes mit erfindungsgemässen Randeinschnitten,
- Fig. 10 und
- Fig. 11 je eine wellenförmige Längskantenprofilierung eines

 Versteifungselementes bzw. Steges für ein Saiten
 Streichinstrument bzw. -Zupfinstrument
- Fig. 12 einen Klavier-Rahmen mit Feinprofilierungs-Kerbstrukturen und wellenförmigen Längskantenprofilierungen an verschiedenen Schwingkörperelementen,
- Fig. 13 und
- Fig. 14 eine höckerartige bzw. lochartige Feinprofilierungs-Kerbstruktur für eine Schwingkörperoberfläche in schematischer Darstellung,
- Fig. 15 und
- Fig. 16 eine linienrasterförmige bzw. punktrasterförmige Verteilung von Feinprofilierungselementen nach Fig. 13 oder 14,

- Fig. 17 den Halskörper eines Saiteninstrumentes mit an verschiedenen Oberflächenabschnitten eingearbeiteter
 Feinprofilierungs-Kerbstruktur,
- Fig. 18 den Saitenhalter eines Streichinstrumentes mit Feinprofilierungs-Kerbstruktur,
- Fig. 19 einen Bogen für ein Streichinstrument, ebenfalls mit Feinprofilierungs-Kerbstruktur,
- Fig. 20 einen Tubusabschnitt eines Blasinstrumentes mit Feinprofilierungs-Kerbstruktur,
- Fig. 21 ein Mundstück für ein Blechblasinstrument mit Feinprofilieruns-Kerbstruktur,
- Fig. 22 einen mit Hohlraum versehenen Saiteninstrument-Halskörper im Längsschnitt. und
- Fig. 23 bis
- Fig. 26 verschiedene Querschnittsformen eines Halskörpers nach Fig. 22.

Die in Fig. 1 dargestellte Resonanzdecke trägt neben einem Bassbalken VI ein aus drei schmalen, zueinander parallel angeordneten Rippen bestehendes Versteifungselement V2 mit einer Einsenkung als Ansatzstelle für den Stimmstock sowie vier kleiner Einzel-Versteifungsrippen, die im Winkel zu den vorgenannten Versteifungselementen angeordnet und in Figurgen 2b bis 2e innerhalb von Fig. 1 mit ihren Seitenprofilen angedeutet sind. Das Seitenprofil des Versteifungselementes V2 ist in Fig. 2a, dasjenige des Bassbalkens in Fig. 3 gesondert dargestellt. Die zusätzlichen Versteifungselemente zeichnen sich durch vergleichsweise geringe Masse und entsprechende Dämpfung in bezug auf die damit erzielte Erhöhung der Biegesteifigkeit und damit der Schwingfähigkeit des gesamten Resonanzkörpers bei höheren Frequenzen aus. Die hierfür massgebenden Eigenschaften, insbesondere eine vergleichsweise geringe Querschnittsbemessung.

Gemäss vorliegender Erfindung sind die Versteifungselemente durch quer zu ihrer Längsrichtung angeordnete und sich nur über einen Teil des Querschnittes der Versteifungselemente erstreckende Einschnitte in eine grössere Anzahl von Teilschwingkörpern gegliedert. Im mittleren Bereich des Bassbalkens V1 sind in Längsrichtung dieses Versteifungselementes gleichmässig verteilt angeordnete Einschnitte ES1 angebracht, die mit einer vergleichsweise grossen Tiefe vom Profilscheitel ausgehend in Richtung zum Profilfuss des Versteifungselementes eingreifen. Die restliche Querschnittshöhe ist im Hinblick auf

die statische und dynamische Funktion des Versteifungselementes ausreichend bemessen.

Im Endbereich des Bassbalkens sind demgegenüber Einschnitte ES2 angebracht, deren gegenseitiger Abstand und Eingriffstiefe in den Profilquerschnitt zum Ende des Bassbalkens hin abnimmt. Dies trägt der geringeren Gesamt-Querschnittshöhe des Profils in diesem Bereich Rechnung. Ausserdem ist im Hinblick auf die statische Biege-Tragfunktion die Dicke der Einschnitte äusserst gering gehalten, so dass praktisch nur eine Durchtrennung der Zugfasern vorliegt, während in Druckrichtung wegen der Elastizität des Materials, im allgemeinen Holz, nach dem Einbringen der Einschnitte wieder formschlüssige Anlage zwischen den einzelnen Teilschwingkörpern gegeben ist. Damit bleibt eine gewisse Biegessteifheit und Schwingfähigkeit, auch in Richtung quer zur Profilhöhe, erhalten. Entsprechende Einschnitte ES2 können auch am anderen Ende des Bassbalkens vorgesehen werden (nicht dargestellt). Insbesondere kommt auch eine gleichmässige Erstreckung der Einschnittanordnung über die gesamte Länge des Bassbalkens in Betracht. Die Bemessung, Formgebung und Anordnung der Einschnitte bietet eine breite Variationsmöglichkeit für die Einstellung unterschiedlicher Klangbildeffekte.

Für das zusätzliche Versteifungselement V2 sind nach Fig. 2a
Einschnitte ES2 im Profilscheitel angebracht. Die Eingriffstiefe der Einschnitte nimmt entsprechend der Gesamt-Querschnitts-

höhe nach beiden Enden des Elementes hin ab. Gleiches gilt für die Einschnittdicke. Eine derartige Ausführung mit gegliederten, zusätzlichen Versteifungselementen hat sich vor allem im oberen Teil des mittlern Hörbarkeits-Frequenzbereiches als überraschend wirksam in Richtung einer Verbesserung der Klangfülle erwiesen.

Eine andere Kerbstruktur mit Aufgliederung des Schwingkörpers und mit einer Vergrösserung der wirksamen Schallabstrahlungsfläche ist bei der Resonanzdecke nach Fig. 1 im Kantenbereich angedeutet. Es hat sich überraschend, jedoch durch wiederholte praktische Versuche an verschiedenen Saiteninstrumenten und insbesondere Streichinstrumenten eindeutig gezeigt, dass auch mit solchen, im Hinblick auf die Flächenausdehnung des betroffenen Schwingkörpers, hier der Resonanzdecke, kleinen Einschnitten eine deutliche Wirkung in verbesserten Tonvolumen erreichbar ist.

In den Kantenbereichen A und B dürfte teilweise auf das Zusammenwirken von Resonanzdecke und Zarge zurückzuführen sein.

In diesen Bereichen stellt sich das aus der Zarge und den beiderseits mit dieser verbundenen Kantenabschnitten der Resonanzdecke bzw. des Resonanzboden bestehende Gebilde als HochkantBiegeträger nach Art eines I-Trägers dar. Bei einem solchen
Gebilde entsprechen die erwähnten Kantenabschnitte den Flanschen
des Trägers, die für die Biegesteifheit massgebend sind.
Eine örtliche Verminderung der Biegesteifheit quer zur Ebene

von Resonanzboden und Resonanzdecke bedeutet hier also insgesamt eine Zunahme der in den gewünschten Frequenzbereichen schwingfähigen Bestandteile des Resonanzkörpers.

Gemäss Fig. 1 sind die Einschnitte ES4 in den Kantenbereichen A und B zu diesem Zweck mit vergleichsweise weit geöffneten Querschnitt nach Art von V-Kerben ausgebildet. Gegebenenfalls kann eine solche Einschnittanordnung auf dem gesamten Umfang von Resonanzdecke und Resonanzboden vorgesehen werden, insbesondere auch an den Kanten C und D der Schall-Löcher der Resonanzdecke. Letzteres ergibt eine deutlich grössere Weichheit des Tones.

Bei der Resonanzdecke nach Fig. 1 als flächenhaftem Schwingkörper ist ferner eine Aufgliederung durch sich flächenhaft
erstreckende Feinprofilierung dargestellt, und zwar mittels
Einschnitten mit linienförmiger Längserstreckung auf einer
Flächenseite oder auch auf beiden zueinander entgegengesetzt
orientierten Flächenseiten des Schwingkörpers. Solche Einschnitte ES7 sind in Fig. 7 an einem schematisch wiedergegebenen Teilquerschnitt eines flächenhaften Schwingkörpers
dargestellt, und zwar für beiderseitige Einschnitte. Es
handelt sich hier um Einschnitte mit geringer Schnittdicke,
jedoch mit vergleichsweise grosser Eingriffstiefe. Praktische
Versuche haben gezeigt, dass auch mit einer noch wesentlich
geringeren Eingriffstiefe bedeutende klangliche Effekte erzielbar sind. Im Falle beidseitiger Einschnittanordnung ist
eine versetzte Anordnung der Einschnitte an beiden Flächen-

seiten im Hinblick auf die Erhaltung ausreichender Biegefestigkeit und Biegesteifheit des Gesamtgebildes wesentlich.
Hinsichtlich der Linienführung der Einschnitte kommen unterschiedliche Typen in Betracht, von denen eine Auswahl in Fig. 1
angedeutet ist. Dabei handelt es sich jeweils um mindestens
eine Schar von Einschnitten, die im allgemeinen über grössere
Flächenbereiche des Schwingkörpers erstreckt ist.

In einem ersten Bereich E sind nach Fig. 1 zueinander parallel verlaufende, kreisbogenförmige Einschnitte in einer grösseren Anzahl angebracht. Im Bereich F befindet sich eine Schar von zueinander spitzwinklig angeordneten Einschnitten, hier in einer gleichmässig verteilten Radialanordnung. Diese Schar von Radialschlitzen überlagert im Beispielsfall die kreisbogenförmigen Schlitze gemäss Bereich E. Wie nicht besonders dargestellt ist, können die bogenförmigen Einschnitte auch mit einer geschlossenen, hier also kreisförmigen Linienführung eingebracht werden. Auch eine sprialförmige Linienführung ist anwendbar und ergibt ähnliche Effekte wie eine Schar von konzentrischen Einschnittlinien. In der Herstellung mittels automatisch gesteuerten Werkzeuge bietet die Spiralform gewisse Vorteile.

Weiterhin ist im Bereich G der Resonanzdecke nach Fig. 1 eine Schar von geradlinigen, im wesentlichen parallelen Einschnitten dargestellt, deren gegenseitiger Abstand bei den im Randbereich der Resonanzdecke liegenden Einschnitten vermindert ist. Die

Variation der Einschnittabstände stellt im übrigen ein leicht beherrschbares Mittel zur Einstellung gewünschter Schwingungsformen in ihrer Verteilung über die Schwingkörperfläche dar. Weiterhin befindet sich im Bereich H wiederum eine Schnittanordnung mit zwei rechtwinklig überlagerten Scharen von zueinander parallelen Einschnitten. Eine solche Schnittanordnung eignet sich insbesondere zur gleichmässigen Aufgliederung grösserer Flächenbereiche.

In Fig. 4 und 5 ist die Anwendung von Scheiteleinschnitten an Biege-Versteifungselementen am Beispiel des Resonanzkörpers eines Zupfinstrumentes dargestellt, beispielsweise einer Laute. Nach Fig. 4 weist die Resonanzdecke eine Mehrzahl von quer zur Bespannung angeordneten Biegeträgern V3 auf. Im Beispiel sind in Trägerlängsrichtung gleichmässig verteilt angeordnete Einschnitte ES5 von vergleichsweise grosser Schnittdicke und vergleichsweise geringer Eingriffstiefe angedeutet. Damit lässt sich eine beachtliche Verbesserung des Klangbildes sogar an einfachen, fabrikmässig hergestellten Instrumenten erreichen. Die vergleichsweise geringe Eingriffstiefe lässt die Biegetragfunktion im Hinblick auf die Flachbodenausführung des Resonanzkörpers ausreichend bestehen.

Fig. 6 zeigt die Anwendung einer Schwingkörperunterteilung durch Scharen von linienförmigen Einschnitten am Beispiel eines Flügel-Resonanzbodens. Im Bereich K befinden sich zueinander rechtwinklig angeordnete Linieneinschnitte nach Art

des Bereiches H in Fig. 1, während der Bereich L in Fig. 6
die für grössere Flächenausdehnungen in der Herstellung bequemere, einfache Parallelanordnung zeigt. Hier kommt beispielsweise - wie strichliert angedeutet - die Anordnung von
zwei sich kreuzenden Einschnittscharen auf beiden zueinander
entgegengesetzten Flächenseiten eines Schwingkörpers in Betracht. Ausserdem sind in Fig. 6 Biege-Versteifungselemente
V4 angedeutet, deren Querschnitt in Fig. 6a dargestellt ist.
Hier sind Scheiteleinschnitte ES6 gebildet, die in Anbetracht
der statischen Tragfunktion nur eine vergleichsweise geringe
Eingriffstiefe haben. Gleichwohl ergibt sich wegen der Quererstreckung über die gesamte Breite der Biegeträger eine bemerkenswerte Klangverbesserung. Die bereits angezonene Fig. 7
zeigt Einschnittsformen, die auch in den Bereichen K und L
bei der Gliederung eines Flügel-Resonanzbodens anwendbar sind.

Eine Anwendung für die Gliederung von stabförmigen Schwingkörpern ist am Beispiel eines Stimmstockes an sich üblicher
Art, beispielsweise für Streichinstrumente, in Fig. 8 angedeutet. Eingehende praktische Untersuchungen haben gezeigt,
dass auch ein solches Uebertragungselement im Hinblick auf
seine Biegschwingfähigkeit durch Gliederung und Feinprofilierungs-Kerbstruktur einer erheblichen Wirkung auf das
Klangbild fähig ist. Im oberen Bereich des Stimmstockes ist
eine Mehrzahl von zueinander parallel verlaufenden und den
Stabumfang geschlossen umgreifenden, wellenförmigen Einsenkungen Es8 und mit einer zusätzlichen Feinprofilierung vor-

wendelförmig umgreifende, im Profil wellenförmige Einsenkung ebenfalls mit Feinprofilierung, wiedergegeben ist.

Diese Ausführung eignet sich besonders für vergleichsweise
schlanke Stäbe, weil die Knickfestigkeit weniger beeinflusst
wird. Eine solche Strukturierung kommt auch für stabförmige
Ansatzelemente, wie Stachel an Violoncelli, in Betracht.

Endlich zeigt Fig. 9 die Anwendungsmöglichkeit von Einschnitten ES9 in Form von Randeinkerbungen für den Steg einer Violine, der ausserdem mit einer flächenhaften Einsenkung (ES) zur Verminderung der Schwingmasse und Dämpfung versehen ist. Es hat sich gezeigt, dass besonders durch die Kombination von Randeinkerbungen mit einer solchen Massenverminderung eine beachtliche Verbesserung in Richtung grösserer Ausgeglichenheit des Tones und grösseren Tonvolumens erreichbar ist. Gegebenenfalls kann eine Anordnung von Randeinkerbungen im Gegensatz zum dargestellten Beispiel gemäss Fig. 9 an beiden Seitenkanten des Steges, gegebenenfalls auch an anderen Umfangskantenabschnitten, vorgesehen werden.

Ferner ist in Fig. 9 an einer Seitenkante des Steges eine wellenförmige Profilierung ES10 angedeutet. Eine solche Wellenprofilierung wurde sowohl für sich als auch in kombinierter Anwendung mit einer Feinprofilierung erprobt, wobei letztere ebenfalls längs der Kantenbereiche und darüberhinaus auch auf der vorderen und hinteren Planfläche des Steges aufgebracht wurde. Es ergab sich, dass die wellenförmige Kanten-

profilierung bereits für sich einen merklich verbessernden Einfluss auf die Tonqualität hat, in wesentlich stärkerem Masse allerdings bei kombinierter Anwendung der vorgenannten Feinprofilierungs-Kerbstrukturen.

In Fig. 9 ist noch ein andersartiges Zusatzelement für Musikinstrumente, insbesondere für Saiten- und Streichinstrumente
angedeutet, nämlich ein an sich bekannter Dämpfungskörper DA,
der wie der ihn tragende Steg mit flächenhaften Kerbstrukturen
FKS aus sich z.B. schneidenden Linearkerbenscharen versehen
ist. Auch sich längs der vorspringenden Körperkanten erstreckende Kerbstrukturen KKS, entsprechend im wesentlichen den Einschnitten ES9, und eine wellenförmige Kanten-Konturierung
KWS, ähnlich der wellenförmigen Profilierung ES10, sind für
den Dämpfungskörper anwendbar. Ein mit wenigstens einem Teil,
vorzugsweise aber mit der Gesamtheit solcher Strukturen versehener Dämpfungskörper hat bei praktischen Ausführungen eine
wesentliche Verfeinerung und einen grösseren Klangreichtum
innerhalb des angestrebten, gedämpften Klangbildes ergeben.

Fig. 10 zeigt ein stegförmiges Versteifungselement für gewölbte oder gekrümmte Resonanzböden oder Resonanzecken von Hohlraum-Resonanzkörpern von Streichinstrumenten. Die freie Längskante des Versteifungselementes ist mit einer hier vergleichsweise langwelligen, stetig wechselnd gekrümmten Profilierung versehen. Solche wellenförmigen Längskantenprofile sind auch für die in Fig. 1 dargestellten Versteifungselemente, insbesondere für einen Bassbalken, geeignet. Die bereits einleitend erwähnte Gliederungswirkung ohne abrupte Steifheitsänderungen innerhalb des Schwingkörpers lassen sich damit auf einfache Weise verwirklichen.

Fig. 11 zeigt einen stetig mit grader Unterkante, wie sie für ebene Resonanzplatten beispielsweise in Saiten-Zupfinstrumenten und Klavieren oder dergleichen verwendet werden. Die freie Längskante des Steges ist entweder, wie im linken Abschnitt von Fig. 11 angedeutet, mit einer - hier vergleichsweise kurzwelligen Profilierung mit Anlage der Saiten S auf den Profilköpfen oder aber, wie im rechten Abschnitt von Fig. 11 gezeigt, geradlinig in Verbindung mit über die Steglänge verteilt angeordneten Aussparungen AS ausgebildet. Diese Aussparungen bilden Hohlräume innerhalb des Steg-Schwingkörpers und haben eine ähnliche Wirkung wie die Wellenprofilierung

der Längskante. Der Vorteil der letztgenannten Ausführung besteht in der freizügigen Gestaltbarkeit der Aussparungen unabhängig von der allgemeinen vergleichsweise engen Saitenanordnung.

Die in Fig. 12 gezeigte Bespannungs- und Resonanzanordnung für ein Klavier umfasst in üblicher Weise einen flächenhaften, massiven Metallrahmen RA, hinter dem eine Resonanzplatte RS in schwingungsübertragender Kopplung mit dem Rahmen angeordnet ist. Die in üblicher Weise über Kreuz geführte Saitenbespannung ist mit nicht näher bezeichneten Zapfen üblicher Art am Rahmen befestigt und durch mehrere langgestreckte, bogenförmig ausgebildete Stege ST für die erwähnte Schwingungskopplung mit der Resonanzplatte verbunden.

Auf der dem Rahmen zugewandten und sich mit Abstand von diesem erstreckenden Frontoberfläche der Resonanzplatte RS, die in Fig. 12 teilweise sichtbar ist, sind im Beispiel flächenhafte Feinprofilierungs-Kerbstrukturen FKS in Form sich schneidender Scharen von Linearkerben eingearbeitet. Hierfür kommen beispielsweise Einschnitte mit einem Profil nach Art der in Fig. 7 gezeigten in Betracht. Entsprechend kann auch die rückseitige Oberfläche mit solchen Kerbstrukturen versehen sein. Das Resonanzgebilde gewinnt dadurch die Schwingfunktionen eines Gebildes mit wesentlich grösseren Abmessungen. Die erzielten Verbesserungen hinsichtlich Tonfülle, Tragweite und Anspracheverbesserungen sind beträchtlich.

Weiterhin ist auch der Rahmen in der angedeuteten Weise mit flächenhaften Feinprofilierungs-Kerbstrukturen FKS sowie darüberhinaus mit sich längs der Rahmenkanten erstreckenden Feinprofilierungs-Kerbstrukturen KKS versehen. Letztere sind beispielhaft nur an der linken Aussenkante des Rahmens angedeutet. Diese Feinprofilierung kann grundsätzlich über sämtliche Rahmenkanten erstreckt werden, auch über die Kanten der Rahmenausnehmungen. Sodann ist an der rechten Rahmenkante in Fig. 12 eine wellenförmige Kantenprofilierung KWS angedeutet, die ebenfalls grundsätzlich an allen Rahmenkanten und auch in Ueberlagerung mit einer Kanten-Feinprofilierung vorgesehen werden kann. Weiterhin kommen für die Stege ST ebenfalls mit wellenförmiger Kantenprofilierung und/oder mit Ausnehmungen gemäss Fig. 11 sowie gegebenenfalls zusätzlich mit Feinprofilierungen im Oberflächen- und Kantenbereich versehene Elemente in Betracht. Insgesamt nehmen bei einer solchen Ausführung praktisch alle Konstruktionselemente des Schwingkörpers an der Resonanzbildung und an der Ausfüllung der Resonanzspektrums teil.

In Fig. 13 und 14 sind weitere Gestaltungsmöglichkeiten einer Feinprofilierungs-Kerbstruktur angedeutet. Fig. 13 zeigt eine flächenhaft erstreckte Anordnung von höcker- oder noppenförmigen Vorsprüngen als Feinprofilierungselemente FPV an einem flächenhaften Resonanzgebilde, beispielsweise einer Resonanzplatte RS. Diese Feinprofilierungselemente können grundsätzlich mit Hilfe an sich üblicher Bearbeitungsmethoden aus dem Vollen der Resonanzkörperoberfläche herausgearbeitet

werden. Dabei können die Profilierungselemente vorteilhaft innerhalb einer flächenhaften Einsenkung ES des Resonanz-körpers von vergleichsweise geringer Tiefe untergebracht werden, so dass ihre Spitzen mit der ursprünglichen Oberfläche des Resonanzkörpers fluchten. Bei grossflächigen Profilierungen dieser Art empfiehlt sich jedoch das - gegebenenfalls mechanisiert und automatisiert auszuführende - Aufsetzen entsprechender Profilkörper auf eine Resonanzkörperoberfläche. Geeignete Klebeverfahren hierfür stehen in der einschlägigen Technologie zur Verfügung.

Demgegenüber sind in Fig. 14 ebenfalls allseitig umgrenzte bzw. punktförmige, jedoch als Höhlungen oder Einsenkungen ausgebildete Feinprofilierungselemente FPH 1 bis FPH 4 mit unterschiedlichen Profil- und Flankenformen im Querschnitt einer Resonanzplatte RS angedeutet. Divergierende Profilflankenformen entsprechend den Elementen FPH 1 und FPH 2, insbesondere konvex gekrümmte Profilflankenformen gemäss FPH 2, eignen sich besonders für eine Verbesserung der Schallabstrahlunsverhältnisse, während voluminösere Querschnittsformen gemäss FPH 3 und FPH 4 für eine gegebenenfalls angestrebte, stärkere Beeinflussung der Biegesteifheit oder sogar der Massenbelegung bevorzugt in Betracht kommen. Entsprechende Profilformen können übrigens auch für vorspingende Profilierungselemente FPV gemäss Fig. 13 angewendet werden. Auch für linienförmige Feinprofilierungselemente bzw. Einschnitte kommen in Hinblick auf die verschiedenen angestrebten Effekte solche unterschiedlichen Profilformen mit

Vorteil zur Anwendung.

Die punktförmigen Feinprofilierungselemente FPV und FPH lassen sich insbesondere auf ausgedehnten Oberflächenabschnitten von Resonanzkörpern in linienförmiger Anordnung nach Art einer Linearkerbenschar herstellen, wie dies in Fig. 15 angedeutet ist. Infolge der aneinandergereihten Einzelelemente ergibt sich eine Wirkung ähnlich derjenigen von mehreren sich schneidenden Kerbscharen, jedoch mit einer vergleichsweise stärkeren Vergrösserung der wirksamen Schallabstrahlungsfläche. Aehnliche Strukturen mit in verschiedenen Richtungen längs der Oberfläche gezielt stärkeren oder schwächeren Auswirkungen auf die Biegesteifheit lassen sich vorzugsweise mit punktrasterförmigen Anordnungen von Feinprofilierungselementen erzielen, wie dies in Fig. 16 dargestellt ist.

Als weitere Anwendungsbeispiele für Feinprofilierungs-Kerbstrukturen sind in den Fig. 22 bis 21 verschiedene Musikinstrumente bzw. Hilfgeräte zur Klangerzeugung schematisch abschnittsweise wiedergegeben. Nach Fig. 17 sind beispielsweise aus Linearkerbscharen bestehende Feinprofilierungs-Kerbstrukturen FKS an der Oberfläche des Griffbrettes GR sowie des Halskörpers HK, am Halsansatz HA und am Kropf KR sowie an den Wirbeln WR einer Violine angedeutet. Entsprechendes gilt für die Darstellung in Fig. 18 bezüglich des Saitenhalters SH. Ueberraschende Effekte haben sich ferner auch durch die Anwendung auf Bögen für Streichinstrumente ergeben,

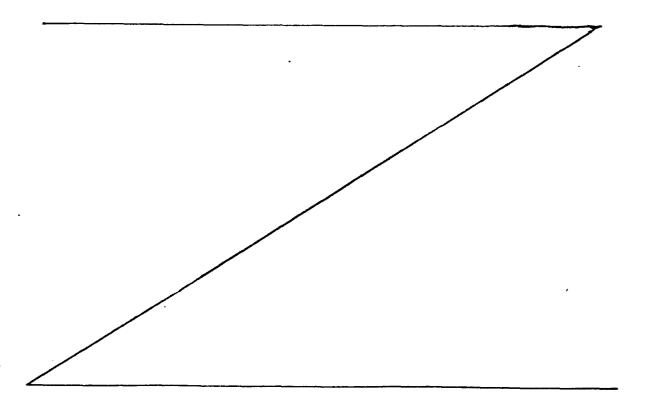
wie ein solcher schematisch in Fig. 19 angedeutet ist. Die Feinprofilierungs-Kerbstrukturen FKS sind hier in Form von sich in Umfangsrichtung erstreckenden Einschnitten an der Stange SG sowie in Form von sich kreuzenden Einschnitten am Frosch FR, aber auch im Bereich der vergleichsweise grossflächig ausgebildeten Spitze SP des Bogens eingearbeitet. Auch für die Klangabstrahlenden und Resonanzbestimmenden Elemente von Blasinstrumenten sind entsprechende Anwendungen erprobt worden. Fig. 20 zeigt schematisch den Endabschnitt eines Tubus mit Kanten- und Flächen-Kerbstrukturen KKS bzw. FKS. Besonders die Anordnung längs der Mündungskante hat sich als wirksam erwiesen. Auch für Mundstücke von Blechblasinstrumenten, wie ein solches schematisch in Fig. 21 angedeutet ist, kommen solche Kanten- und Flächen-Kerbstrukturen in Betracht, wobei sich verbesserte Anblaseigenschaften ergeben haben.

In den Fig. 22 bis 26 sind Anwendungsbeispiele der zum Erfindungsgegenstand gehörenden Hohlraumbildung innerhalb von üblicherweise massiven Bestandteilen eines Streichinstrumentes dargestellt. Fig. 22 zeigt einen Hohl-Halskörper HHK mit einem rohrförmigen Längshohlraum Hl, der sich längs des Griffbrettes GR erstreckt, sowie quer dazu angeordnete, kürzere Hohlräume H2 und H3 in Form von Querbohrungen im Bereich des Halsansatzes HA bzw. des Kropfes KR. Das dem Halsansatz HA an der Innenseite des Resonanz-Hohlkörpers gegenüberliegende, an sich übliche Verstärkungselement VE ist ebenfalls mit mehreren Bohrungen zur Bildung von Hohl-räumen H4 versehen.

Fig. 23 zeigt im Querschnitt einen Hals-Längshohlraum Hl, der durch leistenförmige, sich in Halslängsrichtung erstreckende Versteifungselemente VS zusätzlich gegliedert ist. Eine stärkere Gliederung ergibt sich mit einer Querschnittsstruktur gemäss Fig. 24, die eine Mehrzahl von sich in Halslängsrichtung erstreckenden, rinnenförmigen Hohlräumen Hla umfasst. Besonders herstellungsgünstig ist die Ausführung eines Längskanals Hlb nach Fig. 25, da mit einem einfachen Bohrwerkzeug herstellbar. Ausserdem ergeben sich durch die kreisförmige Querschnittform intensive Hohlraumschwingungen. Auch hier ist eine Längsgliederung mittels eines leistenförmigen Verstärkungselementes VS zusätzlich vorgesehen. Fig. 26 zeigt im Querschnitt die bereits erwähnten Hohlräume H2 und H4 im Bereich des Halsansatzes und des inneren Verstärkungselementes VE.

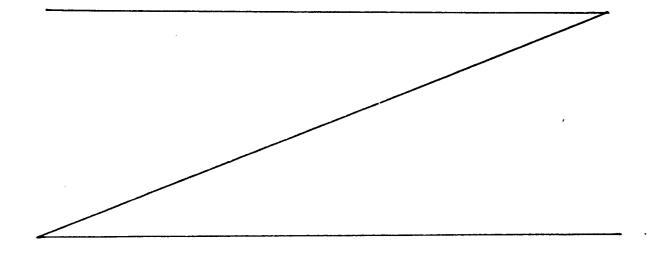
Patentansprüche

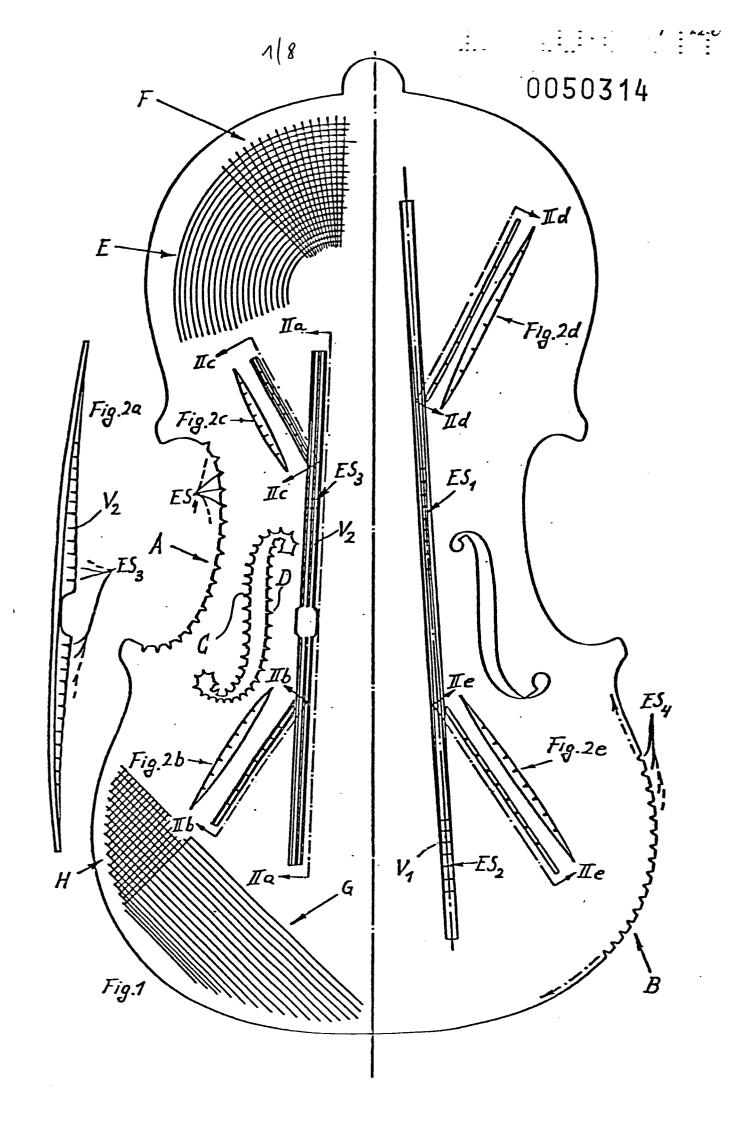
- 1. Schwingkörper, insbesondere Resonanzkörper, für Klangerzeugungsgeräte, wie Musikinstrumente und Lautsprecher, bei dem auf mindestens einer Oberfläche eine Kerbstruktur gebildet ist, dadurch gekennzeichnet, dass die Kerbstruktur als das Verhältnis der Biegesteifheit zur schwingfähigen Masse des Schwingkörpers herabsetzende Feinprofilierung ausgebildet ist.
- 2. Schwingkörper, insbesondere Resonanzkörper, für Klangerzeugungsgeräte, wie Musikinstrumente und Lautsprecher, bei dem auf mindestens einer Oberfläche eine Kerbstruktur gebildet ist, insbesondere nach Anspruch 1, dadurch gekennzeichnet, dass die Kerbstruktur durch eine Mehrzahl von den Schwingkörpern in Teilschwingelemente gliedernde Einschnitten gebildet ist.
- 3. Schwingkörper nach Anspruch 2, gekennzeichnet durch mindestens ein langgestrecktes Versteifungselement mit wellenförmiger Oberflächenform, insbesondere Längskantenform.
- 4. Schwingkörper, insbesondere Resonanzkörper, für Klangerzeugungsgeräte, wie Musikinstrumente und Lautsprecher, bei dem auf mindestens einer Oberfläche eine Kerbstruktur gebildet ist, insbesondere nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Kerbstruktur als die wirksame Flächenausdehnung einer äusseren Schallabstrahlungsfläche vergrössernde Feinprofilierung ausgebildet ist.
- 5. Schwingkörper nach einem der vorangehenden Ansprüche, insbesondere flächenhaft ausgebildeter Schwingkörper, gekennzeichnet durch wenigstens eine mindestens teilweise durch linienförmige Einschnitte gebildete Kerbstruktur.


- 6. Schwingkörper nach Anspruch 5, dadurch gekennzeichnet, dass die Kerbstruktur wenigstens eine Schar (E, G, L) von zueinander wenigstens annähernd parallelen Einschnitten (ES7) aufweist.
- 7. Schwingkörper nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass die Kerbstruktur wenigstens eine Schar (F) von
 gegeneinander unter einem spitzen Winkel verlaufenden
 Einschnitten aufweist.
- 8. Schwingkörper nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die Kerbstruktur wenigstens eine Schar (E) von bogenförmigen, insbesondere von wenigstens annähernd kreisbogenförmigen Einschnitten, aufweist.
- 9. Schwingkörper nach Anspruch 8, dadurch gekennzeichnet,
 dass wenigstens ein Teil der Einschnitte in sich geschlossen verlaufende Kurven bildet.
- 10. Schwingkörper nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass mindestens zwei sich auf einer Flächenseite des Schwingkörpers schneidende Einschnittscharen vorgesehen sind.
- 11. Schwingkörper nach einem der Ansprüche 5 bis 10, dadurch gekennzeichnet, dass auf zueinander entgegengesetzten Flächenseiten des Schwingkörpers mindestens zwei sich kreuzende Einschnittscharen vorgesehen ist.

- 12. Schwingkörper nach einem oder mehreren der vorangehenden Ansprüche, insbesondere flächenhaft ausgebildeter Schwingkörper, gekennzeichnet durch wenigstens eine Kerbstruktur, die durch mindestens eine flächenhaft ausgedehnte, im wesentlichen zusammenhängende Einsenkung mit einer Mehrzahl von darin eingeschlossenen Profilerhöhungen gebildet ist.
- 13. Schwingkörper nach einem der vorangehenden Ansprüche, insbesondere flächenhaft ausgebildeter Schwingkörper, gekennzeichnet durch mindestens eine Kerbstruktur, die wenigstens abschnittsweise durch eine Mehrzahl von innerhalb wenigstens einer Oberfläche des Schwingkörpers angeordneten, im wesentlichen allseitig begrenzten, insbesondere punktförmig ausgebildeten Profileinsenkungen gebildet ist.
- 14. Schwingkörper nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass die Profilerhöhungen bzw. -einsenkungen höcker- bzw. trichterförmig, insbesondere kegel- oder pyramidenstumpfförmig begrenzt ausgebildet sind.
- 15. Schwingkörper nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass die Profilerhöhungen bzw. -einsenkungen wenigstens abschnittsweise punktrasterförmig verteilt angeordnet sind.
- 16. Schwingkörper nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass die Profilerhöhungen bzw. -einsenkungen wenigstens abschnittsweise linienrasterförmig verteilt angeordnet sind.

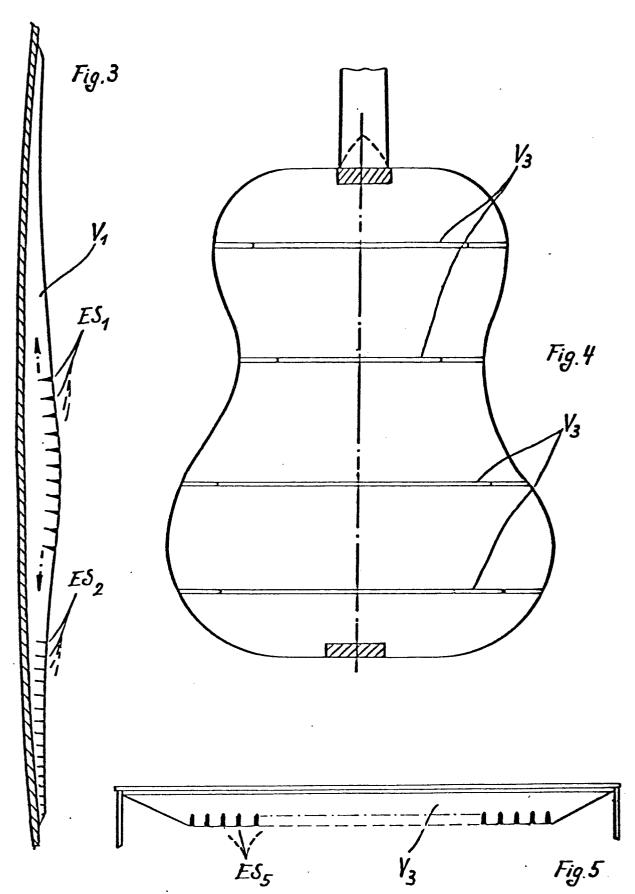
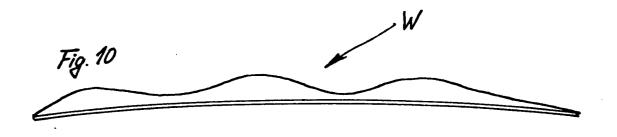
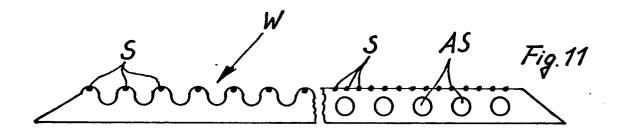
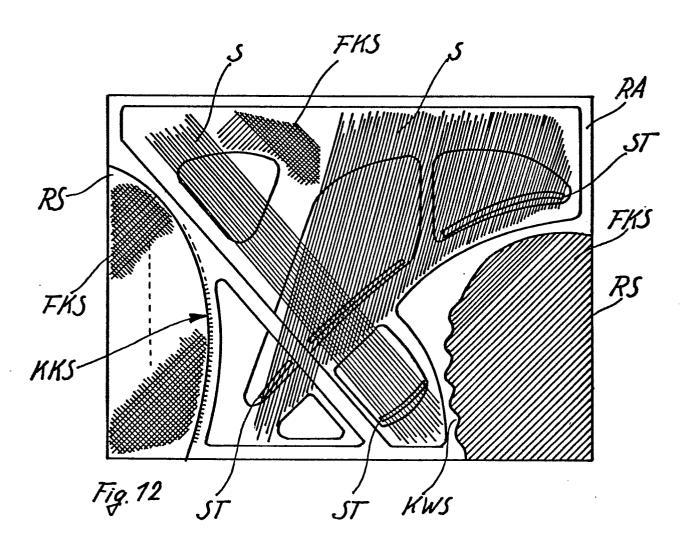
- 17. Schwingkörper nach einem oder mehreren der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Kerbstruktur durch mindestens ein auf einer Oberfläche des Schwing-körpers angebrachtes Zusatzelement gebildet ist.
- 18. Schwingkörper nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Flächendichte der Profileinsenkungen bzw. Profilerhöhungen wenigstens abschnittsweise mehr als 10/cm², vorzugsweise mehr als 25/cm², beträgt.
- 19. Schwingkörper nach Anspruch 18, dadurch gekennzeichnet, dass die Flächendichte der Profileinsenkungen bzw. Profilerhöhungen wenigstens abschnittsweise in einem Bereich zwischen 50/cm² und 100/cm² liegt.
- 20. Schwingkörper nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Flächendichte und die Profiltiefe der Feinprofilierung wenigstens abschnittsweise entsprechend einem Verhältnis der freien Oberfläche zur Profilhüllfläche (SF/HF) von wenigstens 1,2 zu 1, vorzugsweise von wenigstens 1,5 zu 1, bemessen ist.
- 21. Schwingkörper nach einem der vorangehenden Ansprüche, insbesondere flächenhaft ausgebildeter Schwingkörper, dadurch gekennzeichnet, dass die Feinprofilierung eine Vielzahl von Profileinsenkungen mit in Richtung der Schallabstrahlung divergierenden Profilflanken aufweist.

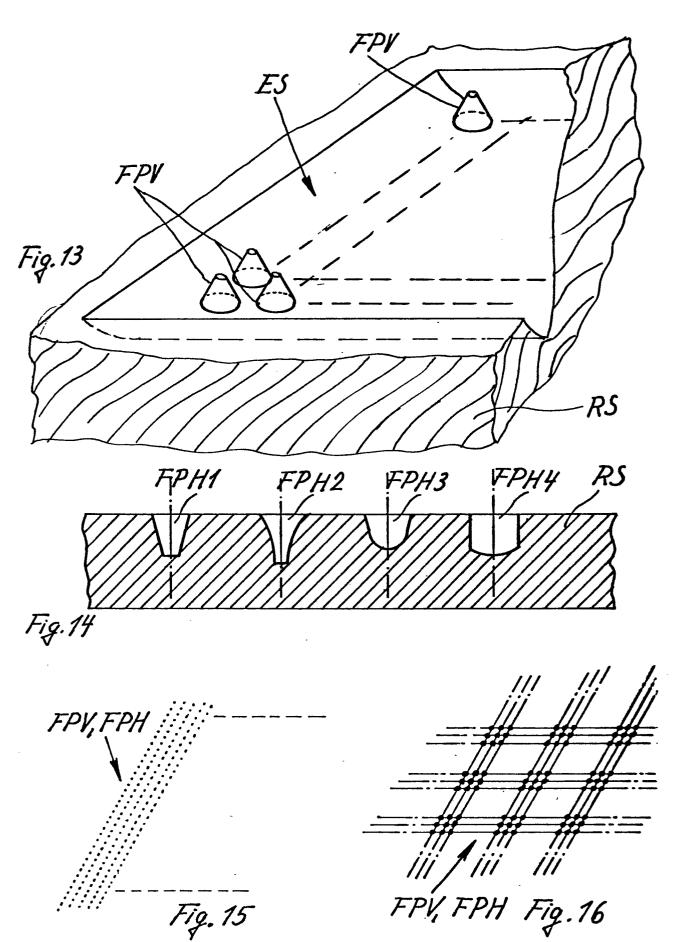

- 22. Schwingkörper nach einem der vorgehenden Ansprüche, insbesondere nach Anspruch 20, dadurch gekennzeichnet, dass die Profilflanken der Einsenkungen wenigstens teilweise in Richtung zum lichten Querschnitt der Einsenkung hin konvex ausgebildet sind.
- 23. Schwingkörper nach einem der vorangehenden Ansprüche, insbesondere flächenhaft ausgebildeter Schwingkörper, dadurch gekennzeichnet, dass die Feinprofilierung im Bereich einer äusseren Schallabstrahlungsfläche des Gerätes angeordnet ist.
- 24. Schwingkörper nach Anspruch 23, dadurch gekennzeichnet,
 dass die Feinprofilierung im Bereich einer konvex gekrümmten oder gewölbten äusseren Schallabstrahlungsfläche,
 inbesondere innerhalb eines wulstartig ausgebildeten Kantenbereiches einer Schallabstrahlungsfläche, angeordnet ist.
- 25. Schwingkörper nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Feinprofilierung an einem saitentragenden Element, insbesondere einem Saitenhalter oder Rahmen eines Saiteninstrumentes, insbesondere auch eines mechanisierten Zupfinstrumentes (Klavier etc.) angeordnet ist.
- 26. Schwingkörper nach einem der vorangehenden Ansprüche, für ein Saiteninstrument mit einem die Bespannung zwischen beiderseitigen Einspannungen quer gegen einen Resonanz-körper abstützenden Steg, insbesondere für ein Streichinstument, dadurch gekennzeichnet, dass die Feinprofilierung über wenigstens einen Abschnitt der Oberfläche und/oder über wenigstens einen Kantenabschnitt des Steges

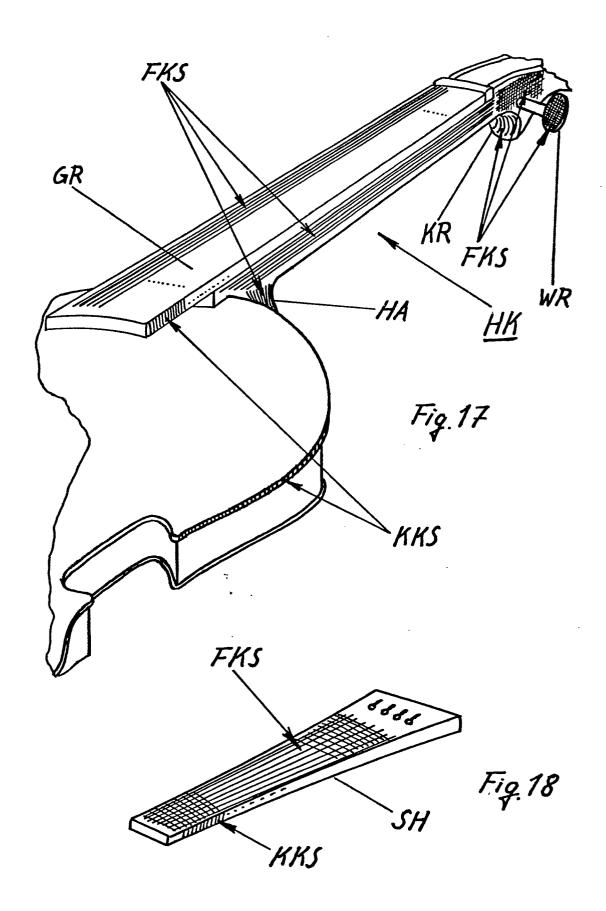

- 27. Schwingkörper nach einem der vorangehenden Ansprüche, in Form eines Resonanzkörpers mit einem stabförmigen Ansatzkörper, insbesondere einem innerhalb des Resonanzkörpers angeordneten Stimmstock und/oder einem an den Resonanzkörper aussen angesetzen Stützstab (Stachel), insbesondere für ein Saiteninstrument, dadurch gekennzeichnet, dass die Feinprofilierung wenigstens über einen Abschnitt der Oberfläche des stabförmigen Ansatzkörpers erstreckt ist.
- 28. Schwingkörper nach einem der vorangehenden Ansprüche, gekennzeichnet durch die Ausbildung als Streichbogen zur
 Schwingungserregung eines Saiteninstumentes mit einer
 als Feinprofilierung ausgebildeten Kerbstruktur.

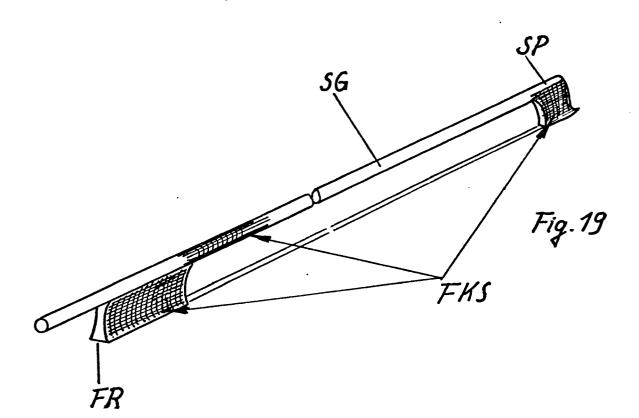
- 29. Schwingkörper nach Anspruch 28, dadurch gekennzeichnet,
 dass die Feinprofilierung wenigstens über einen Abschnitt
 der Oberfläche eines stangenförmigen Längsträgers des
 Streichbogens erstreckt und insbesondere als den
 Bogenumfang wenigstens teilweise umgebende Rillenprofilierung oder linienrasterförmige Punktprofilierung ausgebildet ist.
- 30. Schwingkörper nach Anspruch 28 oder 29, dadurch gekennzeichnet, dass die Feinprofilierung im Bereich der Bogenspitze
 und/oder im Bereich der griffseitigen Bespannungshalterung angeordnet ist.
- 31. Schwingkörper nach einem der vorangehenden Ansprüche, gekennzeichnet durch die Ausbildung als resonanzbestimmendes
 und/oder schallabstrahlendes Element eines Blasinstrumentes,
 insbesondere auch eines mechanisierten Blasinstrumentes
 (Orgel) mit einer als Feinprofilierung ausgebildeten Kerbstruktur.
- 32. Schwingkörper nach Anspruch 31, dadurch gekennzeichnet, dass die Feinprofilierung wenigstens über einen Abschnitt der Aussenfläche eines Blasinstrumentes-Tubus erstreckt ist.
- 33. Schwingkörper nach Anspruch 31 oder 32, dadurch gekennzeichnet, dass die Feinprofilierung über wenigstens einen
 Abschnitt der Oberfläche im Mündungsbereich, insbesondere
 im Mündungskantenbereich, erstreckt ist

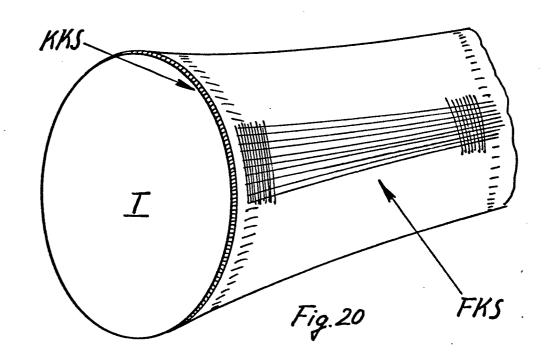
- 34. Schwingkörper, insbesondere Resonanzkörper, für Saiteninstrumente, insbesondere Saiten-Streichinstrumente, mit
 einem mit einem Haupt-Resonanzkörper verbundenen, sich
 wenigstens annähernd in Längsrichtung der Bespannung erstreckenden Halskörper, insbesondere mit einer Kerbstruktur nach einem oder mehreren der vorangehenden Ansprüche,
 dadurch gekennzeichnet, dass im Bereich des Halskörpers
 mindestens ein vorzugsweise wenigstens annähernd geschlossener Hohlraum gebildet ist.
- Jämpfungskörper für Musikinstrumente, insbesondere Saitenund Streichinstrumente, insbesondere zum Aufsetzen oder
 Anklemmen im Bereich des saitenabstützenden Steges eines
 Saiten- oder Streichinstrumentes, gekennzeichnet durch
 mindestens eine flächenhafte und/oder an einer vorspringenden Kante des Dämpfungskörpers (DA) gebildete Kerboder Wellenstruktur (FKS, KKS, WKS).

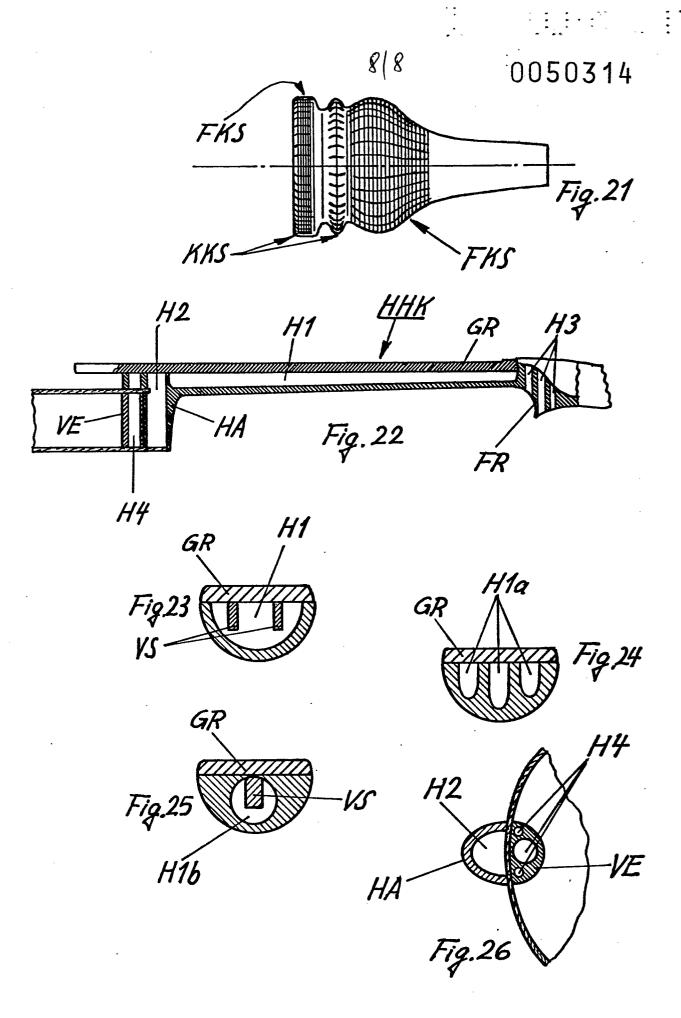






Fig.9








0050314

