[0001] This invention relates to an improved method of preparing mined coal for its end
use and in particular to the preparation of mined coal as a feedstock for power generating
stations.
[0002] Co-pending patent application 55574/80 relates to a process of deashing coal which
comprises crushing mined coal into small sized particles, subjecting said mined coal
to wetting with a hydrocarbon liquid and forming agglomerates of carbonaceous material
in said coal, separating said carbonaceous agglomerates from non carbonaceous material
present in said coal, subjecting said carbonaceous agglomerates to vapour separation
treatment in the absence of oxidizing gases to separate the hydrocarbon liquid from
said carbonaceous material to produce the deashed coal product and recycling said
hydrocarbon liquid for use in wetting said mined coal.
[0003] This prior application was primarily concerned with recovery of oil from agglomerated
coal pellets in a fluidized bed in which the integrity of the pellet is retained.
This addresses the end use of the product as coke oven feed or similar application
in which product handleability is of importance.
[0004] In applications within both the coking and steaming coal industries where charging
or firing systems handling fine sized material are in use, the disintegration of the
agglomerate pellet is necessary at some stage.
[0005] Further the residence times required and the heat input required were substantial
in the disclosures of the prior patent application.
[0006] It is an object of this invention to provide a method in which low residence times
are achieved in the steam stripping operation. To this end the present invention provides
a method of separating an agglomerated mixture of coal particles and a liquid hydrocarbon
to form finely divided coal and recover the hydrocarbon liquid which comprises disintegrating
said agglomerates and subsequently and/or simultaneously subjecting agglomerates to
vapourphase separation in the presence of steam and in the absence of oxidizing gases
to recover the liquid hydrocarbon from the finely divided coal particles.
[0007] In a preferred form all of said agglomerates are above 1 mm in size, said steam temperature
is above 200°C, the residence time of the coal particles in the steam stripping zone
is less than 5 seconds and at least 70% of the coal product comprises particles less
than 0.3 mm and final product oil content less than 2.5%.
[0008] The exposure of the relatively high specific surface area of the particles after
disintegration of the agglomerate pellet during the stripping process in this case
offers the potential for the achievement of greatly enhanced heat and mass transfer
rates.
[0009] Comminution of the agglomerates prior to the vapour phase separation may be carried
out in any conventional comminution device. In a preferred method the agglomerates
are subjected to initial attrition to reduce the particle size of the agglomerates
and subsequently passing said agglomerates into the path of a high velocity stream
of steam to further reduce the coal particle size and to separate such hydrocarbon
liquid into a vapour phase.
[0010] Application of this invention to the use of coal-oil agglomerates offers several
advantages over the alternative method of steam stripping in a fluidized bed. Foremost
among these is the potentially large reduction in solids hold-up in the stripping
system and subsequent improvement of response times due to the reduction in residence
time in the steam stripping zone. Much of the complexity of the fluid bed system is
removed and control functions are related to steam flow and inlet temperature and
pressure alone.
[0011] Where the steam is introduced as a jet the velocity and the internal shape of the
particle entrainer may be chosen to be sufficient to disintegrate the agglomerates.
In this embodiment said agglomerates are passed into a high velocity stream of steam
to simultaneously separate the hydrocarbon liquid and to form the finely divided coal
particles.
[0012] The system at a commercial scale would still utilize underwater storage (tanks or
ponds) of the coal-oil agglomeration stage product and the slurry reclamation and
de-watering systems as specified in the prior process of 55574/80. This feed material
would be then fed to the front end of a conveying pipe to which superheated steam
would also be fed. An initial short section of the conveying pipe would be used to
achieve disintegration of the feed and the remainder to accomplish removal of the
oil from the coal surfaces to the gas stream. Disengagement of the solids from the
dry vapours would be achieved in a high efficiency cyclone system with the solids
discharging to a storage hopper prior to independent delivery of the fuel to the burners.
This then could be performed in lean or dense or phases in steam or air. The cyclone
overhead vapours are then totally condensed, and the hydrocarbon liquids separated
and returned to the agglomeration system.
[0013] Control of the residual oil level of the particulate coal product may be achieved
in this system by control of the inlet steam temperature and steam to oil mass ratio
both of which strongly influence the kinetics of mass transfer of the oil from the
coal surfaces. Further, the product is steam blanketed throughout the stripping and
storage systems and no oxidation of the particulate material or spontaneous combustion
prior to the burners need be risked.
[0014] Integration of the stripper as a conveyor into the boiler control systems of power
stations should be more readily achieved with this system than the prior fluid bed
system.
[0015] In another aspect the present invention provides a method of preparing mined coal
for use as fuel in steam generation comprising crushing mined coal into small sized
particles subjecting said mined coal to wetting with a hydrocarbon liquid and forming
agglomerates of carbonaceous material, separating said carbonaceous material from
non carbonaceous material present in said coal and subsequently disintegrating said
agglomerates and simultaneously and/or subsequently subjecting the disintegrated agglomerates
to a vapour phase separation in the presence of steam and in the absence of oxidizing
gases to recover said hydrocarbon liquid and form finely divided coal particles as
steam generating fuel.
[0016] The method of agglomeration is as described in co-pending application 55574/80.
[0017] A plant for preparing and delivering fuel to a steam generator comprising a storage
for a slurry of crushed, mined coal, apparatus for agglomerating said coal with a
hydrocarbon liquid, separation means for separating said coal agglomerates from the
water phase of said slurry, comminution apparatus to disintegrate said agglomerates,
means to dispense said disintegrated agglomerates into a stripper through which steam
is passed at vapour phase separating conditions to vaporize said hydrocarbon liquid
from said coal particles, separation apparatus to separate said coal particles and
recover said hydrocarbon liquid and means to convey said coal particles to said steam
generator. In an alternative embodiment said comminution apparatus is omitted, and
the velocity of steam and the internal shape of the particle entrainer which constitutes
said stripper is selected to disintegrate said agglomerate.
[0018] An example of one configuration of such a system at the pilot plant or commercial
scale is shown in Figure 1. In this scheme unstripped agglomerates are recovered from
a storage pond or tank 3 and pumped to a set of dewatering screens 4. Dewatered agglomerates
are then fed to a small hopper/feeder 5 at the front end of the stripper and waste
water is pumped out through line 6. Agglomerates fed to the stripping tube 7 are picket
up by the conveying steam 12 and pass through an initial short length of pipe constructed
internally to disintegrate the agglomerate material as it passes through. The remainder
of the tube provides the additional residence time for oil vapourisation. Stripped
solids then pass with the steam and hydrocarbon vapours to a cyclone 8 where the solids
are disengaged. The overhead vapours are then totally condensed in condenser 9, hydrocarbon
liquids separated with any coal fines from the water and returned to the agglomeration
plant. Solids exit from the cyclone to a surge hopper 10 from which they are then
air conveyed by line 13 to the burners 11 of the power generator plant.
[0019] The following is set out as an example of a preferred form of the invention.
[0020] A sample of coal was treated to the oil agglomeration process as set out in pending
application 55574/80. The agglomerating oil used was a light gas oil with a boiling
range of 240-340°C. The ash content was reduced form 26% on the feed coal (DCB, dry
coal basis), to 13.6% on the agglomerate (DCB).
[0021] The particle size of the agglomerates is given in Table 1 and the particle size of
the coal particles within the agglomerates is shown in Table 2. The oil and water
contents of the agglomerates were 12.3% (total agglomerate basis - TAB) and 4.8% respectively.

[0022] A continuous steam stripping rig was utilized in these examples. The rig is shown
in Figure 2. Saturated steam generated in boiler 21 at 791 kPa (100 psig) passes through
a pressure reducing valve 22 dropping the pressure into the 0-27,6 kPa (0-4 psig)
range. The steam then passes into a superheater 23 and from the superheater through
a jet 24 into an entrainer 25. Agglomerates are also fed from Hopper 27 to the entrainer
25 through a rotary valve 28. Breakdown of the agglomerates occurs under action of
the steam jet within the entrainer 25 and the particles are then transported through
a carrier pipe 29 of approximately 1 m in length within which oil is vapourized from
the agglomerate surface. The stripped solids are separated from the steam and oil
in a cyclone 30. The steam and oil are passed through a water cooled condenser 31
from which the oil and water can be separated as distinct liquid phases. The solids
are passed through ball valve 32.
[0023] Prior to feeding to the steam stripping unit, the agglomerates were part broken up
in a rod mill and screened to a top size of 1.18 mm.
[0024] Data on processing conditions for four runs carried out on the unit are set out in
Table 3. Feed and product size distributions and water and residual oil contents are
shown in Table 4.

[0025] The data show that a considerable degree of breakdown occurs in the entrainer. Variations
to the design geometry of the entrainer will effect the degree of breakdown as will
the velocity of steam at the jet. The examples given are indicative of process performance
only and should not be taken as limiting the scope of entrainment device claimed in
the patent.
[0026] Analysis of the data shows that residual oil levels of 0.5 to 2.5% (TAB) may be achieved
at residence times of less than 1 second.
[0027] As a comparative example, a sample of the total agglomerates of the size shown in
Table 1, were stripped using the alternative fluidized bed steam stripping technique
disclosed in pending application 55574/80. Comparative data are given in Table 5.
The data show that comparable oil removal can be achieved using the fast stripping
technique in less than 1 second, compared to the 5 minute residence time required
when using the fluidized bed technique.

As a further example of the present invention a stripping model was devised which
shows the effectiveness of the invention at the higher steam temperatures available
at power stations and also treats a much lower particle size range based on complete
comminution of the agglomerates. Development of this model for the kinetics of hydrocarbon
and water removal from the product of a coal-oil agglomeration process is based primarily
on consideration of that product in its disintegrated form. Exposure of the full surface
area of the finely ground constituent particles provides potential for heat and mass
transfer at greater rates than those obtained experimentally in the fluid bed steam
stripping of the primary agglomerate product.
[0028] Studies of the structure of agglomerated material with respect to internal voidage
and the location of both hydrocarbon and water within the structure has indicated
that,
(i) hydrocarbon is present in the agglomerate as surface film on coal particles and
in interparticle bridges as shown in Figure 2,
(ii) micropores within individual particles are water filled but that this would account
for less than 2wt.% water on dry coal basis,
(iii) the bulk of the water present occupies a portion of the remaining interparticle
voidage not occupied by hydrocarbon.
[0029] In translating the relative location of hydrocarbons and water in an agglomerate
structure to that obtained on 'instantaneous' disintegration of the original structure,
it is reasonable to assume that all hydrocarbon remains as an even surface film on
individual particles. Assignment of the location of the water is to a large extent
arbitrary and it has been assumed to exist as free droplets on a one to one basis
with coal particles at the equivalent bulk water composition. That is, each coal particle
in a representative size distribution is associated with a hydrocarbon film, typically
15 wt.%, and a water droplet typically 8 wt%. Although this is an unlikely occurrance
in a practical sense it reflects the approximate distribution of water within the
original agglomerate structure and the order of magnitude of water surface available
for heat and mass transfer. Other forms of drop size distribution are also examined
in the model.
[0030] Evaporation of hydrocarbon from the films on coal particles and of the water droplets
is accomplished by contacting the disintegrated agglomerate material with superheated
steam.
[0031] The model monitors heat and mass transfer as a function of time thus determining
the rates of hydrocarbon stripping from the coal particles, water evaporation and
degree of solids heating. Requires mass ratios of steam to hydrocarbon and the initial
degree of superheat in the steam are predicted.
[0032] The physical system represented by the model, with a number of simplifying assumptions,
is that of pneumatic conveying of agglomerate material in a steam atmosphere. A number
of stages can be identified in the system.
(i) induction of agglomerates at ambient conditions into a conveying pipe,
(ii) breakdown of this material to its constituent particles,
(iii) movement of the particles down the length of conveying pipe using superheated
steam as a carrier, (iv) disengagement of solids from steam and hydrocarbon vapours
in a cyclone,
(v) total condensation of cycloned vapours to recover hydrocarbon.
[0033] The model considers (i) and (ii) to be instantaneous and examines stripping as a
function of contact time with steam i.e. operations (iii) and (iv) are included. Condensation
is not included in the model.
[0034] The stripping model was run with the following input conditions.
(i) agglomerate feed composition: 15 wt.% gas oil and 8 wt.% water on a dry, oil free
coal basis,
(ii) steam to gas oil ratios of 2 and 3 kg steam/kg gas oil,
(iii) steam inlet temperatures of 650°C and 450°C. Feed inlet temperatures were taken
as 15°C.
[0035] Particular size after disintegration ranged from 6 to 100 microns.
[0036] An initial run was performed such that total vaporization of both water and gas oil
was achieved. The total time required for stripping was 1.67 secs. for a steam/oil
ratio of 3 kg/kg and inlet steam temperature of 650°C. Steam and solids at the end
of this time were at 138°C.
[0037] The results are summarized in Table 6.

These results indicate two points. Firstly, that removal of hydrocarbon oils from
the surfaces of coil particles can be achieved in fractions of a second where end
use of particulate coal is acceptable. Secondly, that, dependent on the way in which
the water present in the structure is dispersed on disintegration of the agglomerate,
the potential exists to reduce the steam ratios and temperatures through removal of
the hydrocarbon oil before large scale vaporization of water has occurred.
[0038] Some of the advantages of the system of this invention over the current method of
fluid bed stripping are,
(i) in the case of fluid bed stripping residence times of 3-4 minutes requires hold-up
of large amounts of material in the bed. Here the hold-up is equivalent to solids
content of the lean phase stripper tube,
(ii) virtually instantaneous shut-off of the stripper can be achieved by control of
the steam flow only,
(iii) separation and recovery problems are minimised,
(iv) residual oil levels can be controlled via the steam inlet temperature.
[0039] Subsequent usage of the de-oiled particulate coal is independent of the stripping
system and lean or dense phase conveying to burners may be applied.
1. A method of separating an agglomerated mixture of coal particles and a liquid hydrocarbon
to form finely divided coal and recover the hydrocarbon liquid which comprises disintegrating
said agglomerates and subsequently and/or simultaneously subjecting the agglomerates
to vapourphase separation in the presence of steam and in the absence of oxidizing
gases to recover the liquid hydrocarbon from the finely divided coal particles.
2. A method as claimed in claim 1 in which the agglomerates are subjected to initial
attrition to reduce the particle size of the agglomerates and subsequently passing
said agglomerates into the path of a high velocity stream of steam to further reduce
the coal particle size and to separate said hydrocarbon liquid into a vapour phase.
3. A method as claimed in claim 1 in which said agglomerates are passed into a high
velocity stream of steam to simultaneously separate the hydrocarbon liquid to form
the finely divided coal particles and to separate the hydrocarbon liquid.
4. A method as claimed in any one of claims one to three wherein all of said agglomerates
are above 1 mm in size, said steam temperature is above 200°C, the residence time
of the coal particles in the steam stripping zone is less than 5 seconds and at least
70% of the coal product comprises particles less than 0.3 mm and final product oil
content less than 2.5%.
5. A method of preparing mined coal for use as fuel in steam generation comprising
crushing mined coal into small sized particles subjecting said mined coal to wetting
with a hydrocarbon liquid and forming agglomerates of carbonaceous material, separating
said carbonaceous material from non carbonaceous material present in said coal and
subsequently disintegrating said agglomerates and simultaneously and/or subsequently
subjecting the disintegrated agglomerates to a vapour phase separation in the presence
of steam and in the absence of oxidizing gases to recover said hydrocarbon liquid
and form finely divided coal particles as steam generating fuel.
6. A method as claimed in claim 5, wherein the disintegration and vapour phase separation
are carried out as defined in any one of claims 2 to 4.
7. A plant for preparing and delivering fuel to a steam generator comprising a storage
for a slurry of crushed, mined coal, apparatus for agglomerating said coal with a
hydrocarbon liquid, separation means for separating said coal agglomerates from the
water phase of said slurry, comminution apparatus to disintegrate said agglomerates,
means to dispense said disintegrated agglomerates into a stripper through which steam
is passed at vapour phase separating conditions to vaporize said hydrocarbon liquid
from said coal particles, separator apparatus to separate said coal particles and
recover said hydrocarbon liquid and means to convey said coal particles to said steam
generator.
8. A plant as claimed in claim 7 wherein said comminution apparatus is omitted and
the velocity of steam and the internal shape of the particle entrainer which constitutes
said stripper is selected to disintegrate said agglomerates.
1. Procédé de séparation d'un mélange aggloméré de particules de charbon et d'un hydrocarbure
liquide pour former du charbon finement divisé pour récupérer l'hydrocarbure liquide,
qui consiste à désintégrer lesdits agglomérats et à soumette ensuite et/ou simultanément
les agglomérats à une séparation en phase vapeur en la présence de vapeur d'eau et
en l'absence de gaz oxydants pour récupérer l'hydrocarbure liquide à partir des particules
de charbon finement divisées.
2. Procédé comme revendiqué dans la revendication 1, dans lequel les agglomérats sont
soumis à une attrition initiale pour réduire les dimensions de particules des agglomérats
et ensuite on fait passer lesdits agglomérats dans le trajet suivi par un courant
de vapeur à grande vitesse afin de réduire encore les dimensions des particules de
charbon et de séparer ledit hydrocarbure liquide en une phase vapeur.
3. Procédé comme revendiqué dans la revendication 1, dans lequel on fait passer lesdits
agglomérats dans un courant de vapeur à grande vitesse afin de séparer simultanément
l'hydrocarbure liquide pour former les particules de charbon finement divisé et pour
séparer l'hydrocarbure liquide.
4. Procédé comme revendiqué dans l'une quelconque des revendications 1 à 3, dans lequel
tous lesdits agglomérats ont des dimensions supérieures à 1 mm, ladite température
de vapeur est supérieure à 200°C, le temps de séjour des particules de charbon dans
la zone d'extraction par vapeur est inférieur à 5 secondes et au moins 70% du charbon
produit contiennent des particules inférieures à 0,3 mm, tandis que la teneur en huile
du produit final est inférieure à 2,5%.
5. Procédé de préparation de charbon extrait pour une utilisation comme combustible
pour la génération de vapeur, consistant à broyer du charbon extrait sous forme de
particules de petites dimensions, à soumettre ledit charbon extrait à un mouillage
avec un hydrocarbure liquide, à former des agglomérats de matière carbonée, à séparer
ladite matière carbonée d'une matière non carbonée existant dans ledit charbon et
ensuite à désintégrer lesdits agglomérats et à soumettre simultanément et/ou ultérieurement
les agglomérats désintégrés à une séparation en phase vapeur en la présence de vapeur
d'eau et en l'absence de gaz oxydants pour récupérer ledit hydrocarbure liquide et
pour former des particules de charbon finement divisées servant de combustible de
génération de vapeur.
6. Procédé comme revendiqué dans la revendication 5, dans lequel la désintégration
et la séparation en phase vapeur sont effectuées comme défini dans l'une quelconque
des revendications 2 à 4.
7. Installation de préparation et de distribution de combustible à un générateur de
vapeur, comprenant un système de stockage d'une boue de charbon extrait et broyé,
un appareil pour agglomérer ledit charbon avec un hydrocarbure liquide, un moyen de
séparation pour séparer lesdits agglomérats de charbon à partir de la phase aqueuse
de ladite boue, un appareil de broyage pour désintégrer lesdits agglomérats, un moyen
pour distribuer lesdits agglomérats désintégrés dans un extracteur dans lequel on
fait passer de la vapeur d'eau dans des conditions de séparation en phase vapeur afin
de faire vaporiser ledit hydrocarbure liquide à partir des particules de charbon,
un appareil séparateur pour séparer lesdites particules de charbon et pour récupérer
ledit hydrocarbure liquide et un moyen pour transporter lesdites particules de charbon
jusqu'au générateur de vapeur.
8. Installation comme revendiqué dans la revendication 7, dans laquelle ledit appareil
de broyage est omis et la vitesse de la vapeur et le profil interne du dispositif
d'entraînement de particules qui constituent ledit extracteur sont sélectionnés pour
désintégrer lesdits agglomérats.
1. Verfahren zum Trennen eines agglomerierten Gemisches aus Kohleteilchen und einem
flüssigen Kohlenwasserstoff zum Bilden fein verteilter Kohle und Rückgewinnen des
Kohlenwasserstoffes, welches Zerkleinern der Agglomerate und anschließende und/oder
gleichzeitige DampfphasenAbscheidung der Agglomerate in Anwesenheit von Dampf und
in Abwesenheit oxidierender Gase umfasst, um den flüssigen Kohlenwasserstoff aus den
fein verteilten Kohleteilchen rückzugewinnen.
2. Verfahren nach Anspruch 1, bei welchem die Agglomerate zunächst einer mechanischen
Abtragung unterworfen werden, um die Teilchengröße der Agglomerate zu vermindern,
und anschließend die Agglomerate in die Bahn eines Hochgeschwindigkeits-Dampfstromes
gebracht werden, um die Kohleteilchengröße weiter zu verringern und den flüssigen
Kohlenwasserstoff in Dampfphase abzuscheiden.
3. Verfahren nach Anspruch 1, bei welchem die Agglomerate in einen Hochgeschwindigkeits-Dampfstrom
zum gleichzeitigen Abscheiden der flüssigen Kohlenwasserstoffe zur Bildung feinverteilter
Kohleteilchen und zum Abziehen des flüssigen Kohlenwasserstoffs gebracht werden.
4. Verfahren nach einem der Ansprüche 1-3, bei welchem alle Agglomerate eine Größe
von mehr als 1 mm haben, die Dampftemperatur oberhalb von 200°C liegt, die Verweilzeit
der Kohleteilchen in der Dampf-Abziehzone weniger als 5 Sekunden beträgt und mindestens
70% des Kohleproduktes Teilchen einer Große von weniger als 0,3 mm und einen Endgehalt
an Öl von weniger als 2,5% aufweisen.
5. Verfahren zum Aufbereiten von Grubenkohle zur Verwendung als Brennstoff bei der
Dampferzeugung, wobei die Grubenkohle in Teilchen kleiner Große gebrochen oder gemahlen
und danach mit einem flüssigen Kohlenwasserstoff befeuchtet wird und Agglomerate kohlenstoffhaltigen
Materials gebildet werden, worauf das kohlenstoffhaltige Material und das in der Kohle
enthaltene nicht kohlenstoffhaltige Material getrennt werden und anschließend die
Agglomerate zerkleinert und gleichzeitig und/oder nachfolgend einer Dampfphasenabscheidung
in Anwesenheit von Dampf und in Abwesenheit von oxidierenden Gasen unterzogen werden,
um den flüssigen Kohlenwasserstoff rückzugewinnen und fein verteilte Kohleteilchen
als dampferzeugenden Brennstoff zu bilden.
6. Verfahren nach Anspruch 5, bei welchem die Zerkleinerung und die Dampfphasenabscheidung
wie in einem der Ansprüche 2 bis 4 beansprucht erfolgen.
7. Anlage zum Aufbereiten und Speisen von Brennstoff zu einem Dampferzeuger mit einem
Speicher für einen Schlamm aus gebrochener bzw. gemahlener Grubenkohle, einer Vorrichtung
zum Agglomerieren dieser Kohlen mit einem flüssigen Kohlenwasserstoff, Trennmitteln
zum Trennen der Kohleagglomerate von der Wasserphase des Schlamms, einer Zerkleinerungsvorrichtung
zum Zerkleinern der Agglomerate, Mitteln zum Abgeben der zerkleinerten Agglomerate
in eine Abziehvorrichtung, durch welche Dampf unter Dampfphasen-Abscheidebedingungen
geleitet wird, um den flüssigen Kohlenwasserstoff aus den Kohleteilchen zu vaporisieren,
einer Abscheidevorrichtung zum Abscheiden der Kohleteilchen und zum Rückgewinnen des
flüssigen Kohlenwasserstoffs und Mitteln zum Fördern oder Kohleteilchen zum Dampferzeuger.
8. Anlage des Anspruch 7, bei welcher die Zerkleinerungsvorrichtung weggelassen ist
und die Dampfgeschwindigkeit und die innere Gestaltung des Teilchenförderers, welche
die Abziehvorrichtung bildet, so gewählt sind, daß die Agglomerate zerkleinert werden.