[0001] This invention relates to starch-bound paper, and provides non-asbestos alternatives
to starch-bound asbestos papers.
[0002] Starch-bound asbestos papers contain asbestos fibres as the predominant raw material,
these fibres being bound together with small amounts of hydrolysed starch to provide
the necessary strength and flexibility. Such papers find use for a variety of purposes,
e.g. as high temperature flexible insulation in electrical equipment. They are commonly
made in the form of flexible sheet of thickness 0.1-1.5 mm on conventional paper-making
machines such as the Fourdrinier. In the process, an aqueous slurry of the ingredients
which are to compose the product is progressively dewatered as a layer on a water-permeable
conveyor (usually of wire mesh), the dewatered layer being subsequently compressed
and dried.
[0003] Our British Patent Application 2 031 043A published April 1980 discloses a non-asbestos
product which comprises a matrix of unfired ball clay containing glassy inorganic
reinforcement and organic web-forming fibres and which contains hydrolysed starch
as complementary binder. However, although that product is made on paper-making machinery,
it is a board having a flexural strength of the order of 4 MPa ie inflexible compared
to paper, and the function of the starch in it is to enable the board to be remoulded
when wetted with water.
[0004] EP-A-027 705 (priority: 19.10.79; date of filing: 09.10.80; date of publication:
29.04.81) describes non-asbestos sheet material comprising a matrix of unfired ball
clay which is reinforced by vitreous fibres derived from wool-form material and by
organic web-forming fibres, the whole being bound together by hydrolysed starch; said
sheet material being made by dewatering on a water-permeable conveyor a layer of aqueous
slurry of unfired ball clay, wool-form vitreous fibres, organic web-forming fibres
and hydrolysed starch, and compressing and drying the dewatered layer; said aqueous
slurry containing, by weight of solids content,

the organic web-forming fibres in said slurry having a freeness in the range 60-90°
Schopper-Riegler; the sheet material being of thickness 0.1-1.5 mm and of flexibility
such that a specimen thereof measuring 50 mmx230 mm, with the 230 mm side parallel
to the grain of the material, shows no evidence of breaking when bent through 180°
around a mandrel of 50 mm diameter, with the use of just enough force to keep the
specimen in contact with the mandrel.
[0005] We have now found that useful alternatives to the non-asbestos flexible sheet material
of EP-A-027 705 can be made by substituting for the vitreous fibres (which are, of
course, silicate material) particles of the silicate mineral mica or the silicate
mineral chlorite, with the proviso that at least 75% by weight of those particles
should pass through a sieve of aperture 250,um. Additionally, the aqueous slurry employed
should have its solids content of ball clay in the range 30-60% by weight; and the
solids content of the silicate mineral in the slurry should be in the range 25-55%
by weight.
[0006] In the product of the present invention (referred to in the rest of the description
as 'paper'), the ball clay provides a flexible cohesive matrix. Ball clay is a fine-grained,
highly plastic, mainly kaolinitic sedimentary clay. (The terms 'kaolinitic' and 'kaolinite'
are mineralogical ones, indicating chemical composition and chemical structure; they
are not to be confused with their term 'kaolin', used to denote a highly refractory
clay which approaches the mineral kaolinite in chemical composition and structure
but which-by contrast with ball clay-is hardly plastic at all). Various types of ball
clay have varying proportions of kaolinite, micaceous material, and quartz, with small
amounts of organic matter and other minerals. Ball clays are used mainly in the manufacturing
of pottery and refractories, in admixture with other clays (such as the kaolin mentioned
earlier) to impart plasticity to them and to increase the green strength of the unfired
ware.
[0007] The function of the organic web-forming fibres is primarily to enable the paper to
be formed on conventional paper making machinery, but additionally those fibres impart
strength to the ball clay matrix of the finished paper, just as the mineral mica or
chlorite (the primary reinforcement) does. The organic web-forming fibres are preferably
cellulose fibres, but may alternatively be polyethylene or polypropylene fibres of
the kind commercially available under the name "Pulpex".
[0008] Mica and chlorite are non-fibrous charged-layer-silicate minerals. The structure
of mica is well known. The chlorites have structures containing infinite two-dimensional
ions of opposite electrical charge, the negatively charged layers having compositions
ranging from

the positively charged layers having the composition

Such non-fibrous charged-layer-silicate minerals are to be distinguished from non-fibrous
layer silicate minerals such as kaolinite, talc and pyrophyllite, where the infinite
2- dimensional layers (e.g.

in kaolinite) are uncharged.
[0009] The hydrolysed starch is preferably a farina starch. The paper may also contain a
small proportion, suitably in the range of 1-10%, of rayon fibres, to impart green
strength to the sheet material between the dewatering and drying operations, and also
to impart additional strength to the finished paper.
[0010] The density of the paper will ordinarily be in the range 700-1100 kg/m
3, its tensile strength at least 3 MPa and its burst strength at least 40 KPa.
[0011] The papers of the invention may be impregnated with other materials, such as resins,
to give special properties for particular purposes. They may have surface coatings
e.g. of shellac varnish or synthetic resin applied to them. They may also be given
a backing e.g. of manilla paper, to increase mechanical strength, especially tensile
strength, when that is required in the wrapping of conductors and the like, and they
may be incorporated in double or multiple layer constructions with glass threads between
adjacent paper layers to give particularly high strength, as when wrapping cables.
[0012] The invention is further illustrated by the following Example.
Example
A. Preparation of stock
[0013]
(i) Lapponia pulp (bleached softwood sulphate pulp) in sheet form was made into an
aqueous slurry of solids content about 3% by weight and treated in a disc refiner
until its freeness value was 90° Schopper Riegler.
(ii) The pulp of (1) (500 g. dry weight=16.7 kg wet weight) was added to 90 litres
of water in a mixing tank, and the diluted pulp was agitated vigorously for 1 minute.
There were then added, with vigorous stirring: silicate mineral (mica or chlorite),
at least 75% by weight of which passes through a sieve of aperture 250 pm; ball clay
(90% passing a sieve of aperture 5 µm); rayon fibre (3 denier; chopped to 3-8 mm fibre
length); farina starch (5% aqueous solution, prepared by heating at 100°C for 5-10
minutes); in proportions such that the solids content of the resulting slurry was
made up of 46% silicate mineral, 5% cellulose fibres, 40% unfired ball clay, 5% rayon
fibres and 4% hydrolysed starch.
(iii) The slurry of (ii) was diluted to 1-3% solids content.
B. Preparation of paper
[0014] The stock (slurry) of A above was made into flexible sheet material in an entirely
conventional way on a Fourdrinier flat wire paper machine, such as is described in
chapters 10 and 11 of "Paper and Board Manufacture" by Julius Grant, James H. Young,
and Barry G. Watson (Publishers: Technical Division, the British Paper and Board Industry
Federation, London, 1978). The slurry is progressively dewatered as it travels on
the water-permeable conveyor of the machine, and the dewatered material is consolidated
by pressing between rollers, and then dried to low moisture content (suitably 2% by
weight). The properties of the paper thus obtained were:-

[0015] To pass the flexibility test referred to, a specimen of paper (50 mmx230 mm, with
the 230 mm side parallel to the grain) should show no evidence of breaking when bent
through 180°C around a mandrel of 50 mm diameter, with use of just enough force to
keep the specimen in contact with the mandrel.
1. Non-asbestos flexible sheet material of thickness 0.1-1.5 mm comprising a matrix
of unfired ball clay which is reinforced by silicate material and by organic web-forming
fibres, the whole being bound together by hydrolysed starch; said sheet material being
made by dewatering on a water-permeable conveyor a layer of aqueous slurry, and compressing
and drying the dewatered layer; said aqueous slurry containing, by weight of solids
content,

the organic web-forming fibres in said slurry having a freeness in the range 60-90
0 Schopper-Riegler; the sheet material being of flexibility such that a specimen thereof
measuring 50 mmx230 mm, with the 230 mm side parallel to the grain of the material,
shows no evidence of breaking when bent through 180° around a mandrel of 50 mm diameter,
with the use of just enough force to keep the specimen in contact with the mandrel;
characterised in that said silicate material consists of particles of the mineral
mica or chlorite, at least 75% by weight of which pass a seive of aperture 250,am,
the particles forming not more than 55% by weight of the solids content of said slurry
and the ball clay forming not less than 30% by weight of the solids content of said
slurry.
2. Non-asbestos sheet material according to claim 1, in which the organic web-forming
fibres are cellulose fibres.
3. Non-asbestos sheet material according to claim 1 or 2, which includes rayon fibres
as additional reinforcement.
4. Non-asbestos sheet material according to claim 3, in which the content of rayon
fibres is 1-10% by weight.
1. Matière en feuille flexible sans amiante d'épaisseur de 0,1 à 1,5 mm comprenant
une matrice d'argile figuline non cuite qui est renforcée per une matière silicatée
et par des fibres organiques formant tissu, le tout étant lié par de l'amidon hydrolysé;
ladite matière en feuille étant fabriquée en essorant sur un transporteur perméable
à l'eau une couche de suspension aqueuse, et en comprimant et séchant la couche essorée;
ladite suspension aqueuse ayant pour teneur en poids en solides

les fibres organiques formant tissu de ladite suspension ayant un indice de raffinage
compris entre 60 et 90° Schopper-Riegler; la matière en feuilles étant d'une souplesse
telle qu'un spécimen de cette matière mesurant 50x230 mm, le côté de 230 mm étant
parallèle au grain de la matière, ne présente aucun signe de rupture lorsqu'on le
ploie à 180° autour d'un mandrin de 50 mm de diamètre, avec juste assez de force pour
maintenir le spécimen en contact avec le mandrin; caractérisée en ce que ladite matière
silicatée est composée de particules du minéral mica ou chlorite, dont au moins 75%
en poids passent au tamis d'ouverture de 250,um, les particules ne formant pas plus
de 55% en poids de la teneur en solides de ladite suspension et l'argile figuline
ne formant pas moins de 30% en poids de la teneur en solides de ladite suspension.
2. Matière en feuille sans amiante selon la revendication 1, caractérisée en ce que
les fibres organiques formant tissue sont des fibres cellulosiques.
3. Matière en feuille sans amiante selon la revendication 1 ou 2, caractérisée en
ce qu'elle comporte des fibres de rayonne en tant que renforcement supplémentaire.
4. Matière en feuille sans amiante selon la revendication 3, caractérisée en ce que
la teneur en fibres de rayonne est de 1 à 10% en poids.
1. Biegsames Nichtasbest-Bahnmaterial mit einer Dicke von 0,1 bis 1,5 mm aus einer
Matrix aus einem nichtgebrannten plastischen Ton, der durch ein Silikatmaterial und
durch organische bahnbildende Fasern verstärkt ist, wobei das ganze durch hydrolysierte
Stärke miteinander verbunden ist, und wobei das Bahnmaterial hergestellt wird durch
Entwässern einer Schicht aus einer wäßrigen Aufschlämming auf einer wasserdurchlässigen
Fördereinrichtung sowie durch Verpressen und Trocknen der entwässerten Schicht, und
wobei die wäßrige Aufschlämmung, bezogen auf das Gewicht des Feststoffgehalts, folgende
Bestandteile enthält

wobei die organischen bahnbildenden Fasern in der Aufschlämmung ein Mahlgrad zwischen
60 und 90° Schopper-Riegler besitzen, das Bahnmaterial eine solche Flexibilität besitzt,
daß eine Probe davon mit einer Abmessung von 50x230 mm, wobei die 230 mm-Seite parallel
zu dem Korn des Materials verläuft, keine Anzeichen eines Brechens aufweist, wenn
sie um 180° un einen Dorn mit einem Durchmesser von 50 mm gebogen wird, wobei gerade
soviel Kraft angewendet wird, un die Probe in Kontakt mit dem Dorn zu halten, dadurch
gekennzeichnet, daß das Silikatmaterial aus Teilchen des Minerals Glimmer oder Chlorit
besteht, wobei wenigstens 75 Gew.-% durch ein Sieb mit einer Öffnung von 250 µm hindurchgehen,
die Teilchen nicht mehr als 55 Gew.-% des Feststoffgehalts der Aufschlämmung ausmachen
und der plastiche Ton zu nicht weniger als 30 Gew.-% des Feststoffgehalts der Aufschlämmung
beiträgt.
2. Nichtasbest-Bahnmaterial gemäß Anspruch 1, dadurch gekennzeichnet, daß die organischen
bahnbildenden Fasern aus Zellulosefasern bestehen.
3. Nichtasbest-Bahnmaterial nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß sie
Reyon-Fasern als zusätzliche Verstärkung enthalten.
4. Nichtasbest-Bahnmaterial nach Anspruch 3, dadurch gekennzeichnet, daß der Gehalt
an Reyon-Fasern 1 bis 10 Gew.-% beträgt.