(1) Publication number:

0 055 627

A1

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 81306170.2

(22) Date of filing: 30.12.81

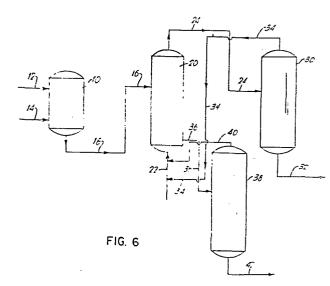
(51) Int. Ci.³: **C** 10 **G** 17/08 **C** 10 **G** 21/06

(30) Priority: 31.12.80 US 221844 31.12.80 US 221905

(43) Date of publication of application: 07.07.82 Bulletin 82/27

(84) Designated Contracting States: BE DE FR GB NL

(1) Applicant: Exxon Research and Engineering Company P.O.Box 390 200 Park Avenue Florham Park New Jersey 07932(US)


(72) Inventor: Bearden, Roby Jr. 505 Stanford Avenue Baton Rouge Louisiana(US)

(72) Inventor: Stuntz, Gordon Frederick 12523 Langer Drive Baton Rouge Louisiana(US)

(74) Representative: Somers, Harold Arnold et al, 5 Hanover Square London W1R OHQ(GB)

(54) Removal of metallic contaminants from petroleum fractions.

(57) A method for reducing the metal contaminant concentration in a petroleum fraction containing a metal contaminant is disclosed. The petroleum feedstock is contacted in a contacting zone (10) with SO₂ or a SO₂ precursor (14) at an elevated temperature after which the petroleum fraction is either deasphalted (Figure 6, 20) or vacuum distilled (Figure 7, 120). The petroleum fraction is thereby separated into a first fraction relatively lean in the metal contaminant and a second phase relatively rich in the metal contaminant.

Applicants: Exxon Research and Engineering Company 0055627

Ref: US221844/221905

Agent: H.A. Somers, 5 Hanover Square, London WIR OHQ, England.

REMOVAL OF METALLIC CONTAMINANTS FROM PETROLEUM FRACTIONS.

The present invention generally relates to

3 the removal of metallic contaminants from petroleum frac-

4 tions. Specifically, the present invention relates to

5 the removal of complex organo-metallic compounds, for

6 example, of the porphyrin type, and particularly those

7 compounds containing nickel and vanadium from residua by

8 deasphalting or from vacuum gas oils. Petroleum gas oils

9 normally contain iron, nickel, vanadium and other metal-

10 lic contaminants which have an adverse effect upon

11 petroleum processing operations. As the cut point, the

12 atmospheric equivalent of the highest boiling material

13 in the distillate increases, the fraction of the feed

14 recovered as distillate increases. However, as the cut

15 point is elevated, the metal concentration in the dis-

16 tillate also increases. In petroleum processing opera-

17 tions such as catalytic cracking the presence of these

18 metallic contaminants in the petroleum feed; e.g., in a

19 deasphalted oil, leads to rapid catalyst contamination

20 by metals causing an undesirable increase in the hydrogen

21 and coke makes, a loss in gasoline yield, a loss in con-

22 version activity and a decrease in the catalyst life.

23 The metal contaminant concentration generally is higher

24 in the heavier feedstocks. Thus, the removal of metal

25 contaminants is becoming more important as increasingly

26 heavy feedstocks are being refined and as additional

27 efforts are being directed at upgrading the residual

28 petroleúm fractions.

In the past, efforts have been directed at

30 the removal of metal contaminants from petroleum frac-

31 tions by a variety of methods including deasphalting

32 processes, hydrotreating processes and HF extraction.

33 U.S. Patent No. 2,926,129 is directed at the removal of

34 organometallic compounds and the deasphalting of a

35 petroleum fraction by heating the petroleum fraction at

36 a temperature of/(650-850°F) for 0.1 to 5 hours after which

37 the fraction is contacted with an acidic material soluble

```
in the petroleum fraction, such as HCl, to coagulate
   the metallic contaminants. A sludging component, such
2
   as a liquid SO2 is then added to the petroleum fraction
3
   at the rate of 0.1 to 3 volumes of SO, per volume of oil
    to promote precipitation of the asphaltene.
                                                   A solvent
5
   also is added to the fraction preferably at the rate of
   0.1 to 10 volumes per volume of oil to separate the
   asphaltene sludge fraction in a fractionating tower operated at temperatures of (30 to 300°F) and pressures of
8
9
   (25 to 500 psig). This patent also discloses in a table
10
   in column 5 that a less effective reduction in metals
11
   content in the recovered oil may be accomplished
12
   utilizing the solvent and liquid SO2, without the acid.
13
   Use of the process described in this patent is not
74
   desirable, since relatively large quantities of sulfur
15
   dioxide in the liquid state are required, which necessi-
16
    tates operating at high vessel pressures if high temper-
17
   atures are used and may necessitate the removal of the
18
   SO<sub>2</sub> from the recovered oil. Moreover, addition of an
19
    acid, such as HCl would require that the processing
20
    equipment be acid resistant. In addition, the presence
21
   of acidic compounds in the recovered oil would be
22
    injurious to catalysts used in subsequent processing.
23
               U.S. Patent No. 3,294,678 is directed at a
24
   deasphalting process for the separation and removal of
25
    asphaltenic material including organo-metallic complexes
26
    of nickel and variadium which comprises treating the
27
    petroleum fraction with an alkalinous bisulfide or bisul-
28
    fite in aqueous solution under appressure in the range
   of (150 to 2000 psig) in the presence of sufficient sulfur
    dioxide such that the partial pressure of the sulfur di-
31
    oxide is within the range of about [150 to about 1500 psig].
32
    The asphaltenic material including organo-metallic com-
33
    pounds is converted into a water-soluble sulfonic acid
34
    salt which is subsequently extracted. This process is
35
    not desirable because of the additional steps of separat-
36
    ing the water fraction from the petroleum fraction and
```

37

separating the sulfonic acid salts from the asphaltenic material.

U.S. Patent No. 2,969,320 discloses a method 3 for removing tetraethyl lead from gasoline and other 4 hydrocarbon liquids by injecting sulfur dioxide into the liquid to form an insoluble lead sulfide which may sub-6 sequently be removed by filtration. This method does 7 not disclose or suggest removal of metals such as nickel 8 and vanadium from petroleum fractions by heating in the 9 presence of sulfur dioxide prior to deasphalting or dis-10 tillation. 11

12

13

14

15

16

17

18

19

U.S. Patent No. 3,095,368 describes a method for selectively removing iron, nickel and vanadium from an asphaltic petroleum feedstock by deasphalting the oil and subsequently contacting the oil with a mineral acid to coagulate the metallic compound. The metallic compounds are then separated. This process requires the use of mineral acids which are corrosive and requires additional processing steps.

In a paper presented at the 1980 meeting of 20 the Division of Petroleum Chemistry of the American 21 Chemical Society, Bukowski and Gurdzinska disclosed a 22 method for reducing the adverse catalytic effect of 23 metal contaminants present in the distillate from 24 atmospheric residuum. The method included the heat 25 treating of the atmospheric residuum in the presence of 26 cumene hydroperoxide (CHP) for up to six hours at 120°C. 27 This step increased the distillate fraction obtained 28 from the atmospheric residuum feed and decreased the 29 metals content of the distillate which subsequently was 30 used as feed for a catalytic cracking unit. This pro-31 cedure is not advantageous due to the relatively high 32 cost of the CHP required and the long treatment times 33 involved. 34

British Patent Application No. 2,031,011

describes a method for reducing the metals and asphaltene
content of a heavy oil by hydrotreating the oil in the

- presence of a catalyst including a metal component from
- 2 Group Ib, IIb, IIIa, Va, VI, and VIII of the Periodic
- 3 Table followed by deasphalting. This process is not
- 4 preferred since relatively large quantities of hydrogen
- 5 are required in addition to a large investment in hydro-
- 6 treating reactors and process equipment.
- 7 Accordingly, it is desirable to provide a
- g process which reduces the metals concentration in
- g petroleum feedstocks to sufficiently low levels without
- 10 the addition of large amounts of acidic materials.
- It is also advantageous to provide a process
- 12 which will reduce the metals concentration in the
- 13 petroleum fraction without an excessive amount of equip-
- 14 ment and without the addition of a large number of addi-
- 15 tional processing operations.

16 SUMMARY OF THE INVENTION

- The subject invention is directed at a method
- 18 for reducing the metal contaminant concentration in a
- 19 petroleum fraction containing the metal contaminant and
- 20 which may contain an asphaltenic component comprising
- 21 the steps of:
- a. contacting the petroleum fraction in a
- 23 contacting zone with an effective amount of a metal
- 24 rejection agent selected from the class consisting of
- 25 sulfur dioxide and precursors of sulfur dioxide at an
- 26 elevated temperature; and
- b. thereafter either:
- I. contacting the petroleum fraction with a
- 29 deasphalting agent to form a first fraction relatively
- 30 lean in asphaltene and metal contaminant and a second
- 31 fraction relatively rich in asphaltene and the metal
- 32 contaminant, after which the first and second fractions
- 33 are separated; or,
- 34 II. passing the petroleum fraction into a
- 35 vacuum separation zone wherein the petroleum fraction
- 36 containing the metal contaminant is separated into a
- 37 distillate having a relatively low metal contaminant

- concentration and a bottoms having a relatively high
 metal contaminant concentration.
- In a preferred embodiment the petroleum frac-
- 4 tion, comprising atmospheric distillation column bottoms,
- 5 is passed into a contacting zone maintained at a temper-
- 6 ature ranging between about 200°C and 450°C for about
- 7 0.01 to about 5 hours, said contact time varying
- 8 inversely with temperature in the presence of about 0.5
- 9 to about 5.0 weight percent sulfur dioxide in the vapor
- 10 phase, based upon the weight of the petroleum fraction.
- 11 The petroleum fraction is then deasphalted or vacuum
- 12 distilled. In deasphalting the petroleum fraction is
- 13 contacted in a deasphalting zone with an effective
- 14 amount of a deasphalting agent or solvent such as pro-
- 15 pane, butane, pentane or hexane and then separated into
- 16 a first fraction relatively lean in asphaltene and metal
- 17 contaminant and a second fraction relatively rich in
- 18 asphaltene and metal contaminants. Solvent from said
- 19 first and second fractions preferably is recovered and
- 20 recycled to the deasphalting zone. For example, when
- 21 propane is used as the solvent, the solvent to feed
- 22 ratio typically ranges from about 2:1 to 6:1. The actual
- 23 solvent to feed ratio used will be a function of the
- 24 solvent and the feed characteristics. These ratios are
- 25 known by those skilled in the art.
- In vacuum distillation, the petroleum fraction,
- 27 after passing through the contacting zone, is transferred
- 28 to a vacuum distillation column where the fraction is
- 29 separated into a distillate relatively low in metals con-
- 30 tent having at least one component boiling above about
- 31 520°C'at atmospheric pressure, preferably above about
- 32 565°C and most preferably above about 590°C and a bottoms
- 33 having a relatively high metals content.
- 34 BRIEF DESCRIPTION OF THE DRAWINGS
- Figure 1 is a plot of the equilibrium weight
- 36 percent of the nickel on cracking catalyst as a function
- 37 of the parts per million of nickel in the feed at typical

- fluid catalytic cracking conditions.
- 2 Figure 2 is a plot of the weight percent of
- 3 the feed which is converted to hydrogen as a function
- 4 of the nickel content of the catalyst under typical
- 5 catalytic cracking conditions.
- Figure 3 is a plot of nickel and vanadium
- 7 content in a distillate produced from a typical heavy
- 8 feed as a function of the cut point.
- 9 Figure 4 illustrates the volume percent of a
- 10 typical feed which is distilled as a function of the cut
- 11 point.
- Figure 5 is a plot of the weight percent of
- 13 the feed which is converted to coke as a function of
- 14 the nickel content on the catalyst under typical
- 15 catalytic cracking operating conditions.
- Figure 6 is a simplified process flow diagram
- 17 illustrating one method for practicing the subject inven-
- 18 tion.
- 19 Figure 7 is a simplified process flow dia-
- 20 gram illustrating another method for practicing the sub-
- 21 ject invention.
- 22 DETAILED DESCRIPTION OF THE INVENTION
- 23 Figures 1-5 graphically illustrate the
- 24 importance of reducing the nickel and vanadium content
- 25 of catalytic cracking feedstocks. Generally, vanadium
- 26 is considered to exhibit about one-quarter of the
- 27 adverse catalytic effect of nickel on a weight equivalent
- 28 basis. The adverse catalytic effect of nickel and
- 29 vanadium is discussed in an article by Cimbalo, Foster
- 30 and Wachtel in "Oil and Gas Journal" May 15, 1972,
- 31 pages 112-122, the disclosure of which is incorporated
- 32 herein by reference.
- Figure 1 illustrates the relationship between
- 34 the nickel content of the feed and the corresponding
- 35 nickel content of the catalyst under typical cat crack-
- 36 ing conditions. Figure 2 illustrates the weight percent
- 37 of the feed converted to hydrogen as a function of the

nickel concentration of the catalyst. Figure 3 illus-1 trates the increase in vanadium and nickel content of 2 the distillate from a typical residual petroleum frac-3 tion as a function of the cut point where the subject invention has not been practiced. Typically, in the 5 production of vacuum gas oils, the cut point is limited 6 to a maximum temperature of approximately 565°C. Above 7 this temperature the metals concentration in the distil-8 late increases sharply as shown by the curves for the 9 nickel and vanadium concentrations. Figure 4 illus-10 trates the percent of a typical heavy petroleum feed 11 which is distilled into a vacuum gas oil distillate as 12 a function of the cut point. It should be noted that, 13 as the cut point increases, the volume percent of the 14 feed recovered as distillate increases. Use of the sub-15 ject invention results in reduced metals content in the 16 distillate at a given cut point or increased yield with 17 substantially the same metals content utilizing a higher 18 cut point. Figure 5 illustrates the weight percent of 19 the feed converted to coke as a function of the nickel 20 content on the catalyst. While Figures 1, 2 and 5 are 21 directed at the detrimental effects of nickel on hydro-22 gen and coke production, vanadium and other metals, such 23 as iron and copper may also be present in petroleum frac-24 tions. These metals are less catalytically active, but 25 also may contribute to excessive hydrogen and coke pro-26 duction. As used herein the term "metal contaminant" 27 is defined to include all of the aforementioned metals. 28 In the data shown in Figures 2 and 5 a com-29 mercially available silica-alumina zeolite catalyst 30 sold under the tradename CBZ-1, manufactured by 31 Davison Division, W.R. Grace and Company was used. The 32 CBZ-1 catalyst used was first steamed at 760°C for 16 33 hours after which the catalyst was contaminated with 34 the indicated metals by laboratory impregnation, followed 35 by calcining at about 540°C for four hours. Tests were 36 run using a microcatalytic cracking (MCC) unit. The MCC 37

- unit comprised a captive fluidized bed of catalyst kept
- 2 at a cracking zone temperature of 500°C. Tests were run
- 3 by passing a vacuum gas oil having a minimum boiling
- 4 point of about 340°C and a maximum boiling point of about
- 5 565°C through the reactor for two minutes and analyzing
- 6 for hydrogen and coke production. It can be seen that
- 7 as the nickel concentration on the catalyst increases,
- 8 the undesired hydrogen and coke yields also increase.
- 9 Thus, it can be appreciated that a process which would
- 10 provide a cat cracking feedstock of lower metals content
- 11 would be particularly useful.
- Referring to Figure 6, one method for prac-
- 13 ticing the subject invention is shown. In this figure
- 14 valves, pumps, piping, instrumentation and equipment not
- 15 essential to the understanding of the subject invention
- 16 have been eliminated for clarity. A petroleum fraction
- 17 is shown entering contacting zone 10 through line 12. A
- 18 metals rejection agent is added to zone 10 through line
- 19 14. Typically contacting zone 10 will comprise a process
- 20 vessel whose size is a function of the feed rate through
- 21 line 12 and the desired residence time. After the
- 22 requisite residence time in zone 10, the petroleum frac-
- 23 tion is transferred through line 16 to a deasphalting
- 24 zone 20 which comprises a countercurrent mixing tower,
- 25 in which the petroleum fraction is contacted with a sol-
- 26 vent entering through line 22 to form a first fraction
- 27 relatively lean in metal contaminant and asphaltene and
- 28 a second fraction relatively rich in metal contaminant
- 29 and asphaltene. The first fraction comprising a deas-
- 30 phalted oil and solvent mixture is then transferred from
- 31 the top of tower 20 through line 24 to a separation zone
- 32 30, comprising a flash distillation tower, in which the
- 33 mixture is separated into a deasphalted oil fraction
- 34 relatively low in asphaltenic and metal compounds exiting
- 35 zone 30 through line 32 and a solvent fraction which
- 36 exits zone 30 through line 34 and is recycled to zone 20
- 37 through line 22. The second fraction comprising a molten

```
a sphaltene fraction containing a small amount of solvent
2 is withdrawn from the bottom of tower 20 and fed via
3 line 36 to flash separation zone 38 wherein the mixture
4 is separated into an asphalt stream, exiting through line
5 42, and a solvent stream which is returned via lines 40
6 and 22 to mixing zone 20. The operating conditions for
7 deasphalting operations are dependent upon the type of
g solvent, solvent to oil ratio and the characteristics of
9 the feedstock to the deasphalting operation. These vari-
10 ables are known by those skilled in the art. A discussion
11 of deasphalting operations in general may be found in
12 Advances in Petroleum Chemistry and Refining, volume 5,
13 pages 284-291, John Wiley and Sons, New York, New York
14 (1962), the disclosure of which is incorporated herein
15 by reference.
               Referring to Figure 7, another method for
16
17 practicing the subject invention is shown. A petroleum
18 fraction is shown entering contacting zone 110 through
19 line 112. A metal rejection agent is added to zone 110
20 through line 114. Typically contacting zone 110 will
21 comprise a process vessel whose size is a function of the
22 feed rate through line 112 and the desired residence time.
23 After the requisite residence time in zone 110 the petro-
24 leum fraction is transferred through line 116 to a vacuum
25 separation zone 120 in which the feedstock is separated
26 into a distillate 122 and a bottoms product 124.
               The composition of the petroleum feedstock
27
28 passed into contacting zones 10 and 110 is not critical.
29 Typically this will comprise the bottoms from an atmos-
30 phéric distillation having an initial atmospheric boiling
31 point of above about 285°C which has a total elemental
32 metal contaminant content ranging between about 1 and
33 about 2000+ parts per million by weight (WPPM), although
34 other feedstocks having high metal content may also be
         To avoid unnecessary product contamination as well
36 as to minimize costs, the amount of metal rejection agent
37 used should be the lowest amount which will give effective
```

```
results at the desired operating conditions.
                                                                                                        The amount
  2 of metal rejection agent required will be a function of
  3 the specific agent used and the metal content of the feed.
  4 The metal rejection agent may be selected from the class
  5 consisting of vapor phase sulfur dioxide and precursors
  6 of vapor phase sulfur dioxide, such as sulfurous acid,
  7 ammonium bisulfite and alkyl metal bisulfites. Of these,
  8 the most preferred compound based upon cost and effective-
  9 ness is sulfur dioxide. Typically, the concentration of
10 SO2 added to the high metals feed will range from about
11 0.5 to about 5.0 weight percent of the feed, preferably
12 about 1 to about 3 weight percent. If a precursor of SO2
13 is used, the precursor concentration should be sufficient
14 to furnish SO2 concentrations of from 0.5 to 5.0 weight
15 percent of the feed, and preferably 1-3 weight percent of
16 the feed.
                                The residence time of the petroleum fraction
17
18 in contacting zone 10 must be sufficient to provide ade-
19 quate contacting between the metal rejection agent and
20 the petroleum fraction. The residence time in zones 10
21 and 110 is a function of the specific metal rejection
22 agent utilized, the process conditions in zones 10 and
23 110 and the metal contaminant content of the petroleum
24 fraction. Typically, the contacting time in zones 10
25 and 110 ranges between 0.01 and 5 hours.
                                                                                                The temperature
26 in zones 10 and 110 is above the critical temperature of
27 SO2, approximately 157.7°C and typically may range
28 between about 200°C and about 450°C, preferably between
about 250°C and about 400°C, while the pressure may range 1.4-06 and 28.123 kg/cm<sup>2</sup>

30 between about/(20 and about 400 psig), preferably between 3.5155 and 14.06/2 kg/km<sup>2</sup>

31 /(about 50 and about 200 psig).
                                In the process shown in Figure 6 the tempera-
32
    ture in deasphalting zone 20 generally may range between gauge about 25 and 250°C, while the pressure may range between the 
      (about 0 and 600 psig). The deasphalting agent or solvent
36 added may be any solvent effective for deasphalting the
37 petroleum fraction. Typically, an organic solvent,
```

```
preferably an alkane, is added to mixing zone 20 in a
2
   ratio of solvent to petroleum fraction of from about
   1:1 to about 20:1 by volume. Among the preferred alkane
4
    solvents are propane, butane, pentane and hexane, with
   the most preferred being propane. Deasphalting zone 20
6
   may comprise conventional mixing equipment such as a
7
   countercurrent contacting tower. Separation zones 30
8
    and 38 comprise means by which the deasphalted oil and
9
    asphaltene fractions, respectively, are separated from
10
              Typically, these separation zones comprise
    solvent.
11
    flash distillation towers. The operating conditions for
12
    separation zones 30 and 38 are well known by those skilled
    in the art. When propane is used as the deasphalting
13
   agent, the pressure in separation zones 30 and 38
17.5769 and 21.092/ks/cm²
typically ranges between about 200 psig).
14
15
16
    The temperatures in zone 30 typically may range between
17
    150 and 175°C, which the temperature in zone 38 may
18
    range between about 225°C and about 325°C.
19
                In the process shown in Figure 7, vacuum
20
    separation zone 120, generally comprising a distillation
21
    column may be of conventional design. The specific
22
    operating conditions are a function of the feed composi-
23
    tion entering through line 116 and the desired distillate
24
    composition exiting through line 122. The design of the
25
    distillation column is not critical and would be deter-
26
    mined by conventional design techniques.
                                               Typically, the
27
    absolute pressure measured at the top of zone 120 will
28
    range between about 10 and about 100 mm Hg, and the tem-
29
    perature at the base of zone 120 will range between
    about 370°C and about 450°C. The cut point of the dis-
31
    tillate normally will be at least 550°C and may range as
32
    high as 590°C or above.
33
                The following examples demonstrate the
34
    effectiveness of the subject invention in reducing the
35 metals content from a deasphalted petroleum fraction.
36 Comparative experiments were conducted using as the
    feedstock a Tia Juana atmospheric residuum having an
```

initial boiling point of about 260°C, a nickel content of 34 parts per million by weight (wppm) and a vanadium 2 content of 273 wppm. In these examples 300 g. of the 3 Tia Juana residuum was charged to a one liter Hastelloy-C autoclave with 6.3 g. (2.1 weight percent on feed) of 5 gaseous sulfur dioxide. The autoclave then was heated to about 340°C for stirred contact for the indicated 7 time during which time the pressure reached about (125 8 psig). Upon cooling to 150°C, the pressure was released 9 and the autoclave was flushed with nitrogen while cool-10 ing further to room temperature. The resultant treated 11 residuum was contacted with 16 volumes of pentane per volume of residuum, mixed for 0.5 hour at 60°C in a 13 stirred autoclave and then cooled to room temperature. The resulting mixture was filtered using a #2 Whatman 15 paper to recover an asphaltene fraction relatively rich 17 in asphaltene and metal and a deasphalted oil fraction relatively lean in asphaltene and metal. The results of 18 these experiments for sulfur dioxide pretreatments of 60 20 and 100 minutes are shown in Table 1 below designated as samples 1 and 2, respectively. Sample 3 of Table 1 21 illustrates that when the same petroleum feedstock did 22 23 not have the aforementioned sulfur dioxide pretreatment prior to deasphalting in a manner similar to that of samples 1 and 2, the resulting deasphalted oil had a higher metals content. 26 27 ו שומגות

21	TABLE 1			
28 .	EFFECT OF SO 2 PRETREATMENT ON META	ALS REJI	ECTION	
29	Sample No.	1	2	3
30 31	Sulfur Dioxide Pretreatment Time (Minutes)	60	100	0
32 33	Deasphalted Oil; Weight Percent on Feed	86.2	83.1	90.2
34	Deasphalted Oil Metal Contents			
35 36	wppm Nickel wppm Vanadium	3.5 28.4	5.2 42.3	9.4 72.4

1 From Table 1 it may be seen that the SO₂
2 pretreatment step resulted in a decreased yield of deas3 phalted oil, but the resulting deasphalted oil had a sub4 stantial reduction in metals content for a 60 minute and
5 a 100 minute pretreatment as compared with no pretreat6 ment.

7 Another test was conducted on an identical sample of Tia Juana atmospheric residuum to determine if the heat treatment step would be effective in reducing 9 the metals content in deasphalted oil if sulfur dioxide 10 in the vapor phase were not present during the heat 11 treating step. Both samples were heat treated for the same time and were deasphalted in a similar manner. As 14 shown in Table II below, heat treating alone did not 15 reduce the metals content of the deasphalted oil signifi-16 cantly.

17	TA	BLE II		
18	EFFECT OF PRETREATM	ENT ON	METALS	REJECTION
19	Sample No.		1	4
20 21	Pretreatment Time @ 343°C, Minutes		60	60
22 23	Weight Percent SO ₂ on Feed		2.1	0
24 25	Deasphalted Oil; Weight Percent on Fee	đ	86.2	89.6
26 27 28	Deasphalted Oil Metal C wppm Nickel wppm Vanadium	ontent	3.5 28.4	10.0 85.0

It should be noted that the atmospheric
residuum used in these tests contained organo-sulfur
compounds. Thus, the presence of organo-sulfur compounds
in the petroleum feedstock processed even in combination
with heat treatment is ineffective in significantly
reducing the metals content of deasphalted oil.

Similar comparative experiments were conducted

36 to determine the effectiveness of the subject invention 37 in reducing the metals content of a vacuum gas oil. Com-38 parative experiments were made using as feed a Tia Juana

0.62

0.28

```
atmospheric residuum having an initial boiling point of
1
    about 260°C, a nickel content of 34 parts per million
 2
    by weight (wppm), and a vanadium content of 273 wppm.
 3
    Results are given in Table III below.
                                             In this example,
    sample number five, 300 g. of Tia Juana residuum, was
    charged to a one liter autoclave of Hastelloy-C construc-
    tion, along with 6.3 g. (2.1 weight percent on feed) of
7
    gaseous sulfur dioxide. The autoclave was then heated
8
    to 343°C for a one hour stirred contact, during which
 9
    time the pressure reached 125 psig).
                                           Upon cooling to
10
    150°C, the pressure was released and the autoclave was
11
12
    flushed with nitrogen while cooling further to room
    temperature. The resultant treated residuum was then
13
    batch distilled at 500 microns Grachum on a column having
14
    one theoretical plate to obtain a vacuum residuum
15
    bottoms fraction and a vacuum gas oil (VGO) fraction of
16
    maximum boiling point 315°C, which corresponds to an
    atmospheric equivalent boiling point of 565°C. With
18
    sample number six, the SO2 pretreatment step was omitted.
19
    The Tia Juana residuum feed was distilled in a manner
20
    similar to that of sample number 5 to recover a 565°C
21
22
    atmospheric equivalent boiling point vacuum gas oil and
    a 565+°C vacuum residuum bottoms. As can be seen from
23
24
    Table III, the vacuum gas oil obtained from the SO2
    treated sample contained significantly less metals.
25
    Expressed in terms of reduction in the equivalent nickel
26
    content of the vacuum gas oil (VGO), SO2 treating is seen
    to give about a 66 percent reduction in metals content
28
    relative to the VGO from the untreated residuum sample.
29
30
                           TABLE III
           EFFECT OF SO<sub>2</sub> PRETREAT ON REDUCING THE METALS CONTENT OF A 565°C END POINT VACUUM GAS OIL
31
                                                         6
32
                                              5
      Sample No.
                                                       No
33
      Sulfur Dioxide Pretreatment
                                            Yes
                                                       58
34
      Volume Percent 565°C on Feed
                                            57
35
      VGO Metals Content
                                             0.02
                                                        0.10
36
        wppm Nickel
```

37

wppm Vanadium

Percent Reduction in Equivalent Nickel* Content of VGO 66 *Equivalent Nickel = wppm Nickel + wppm Vanadium 4 Another set of comparative experiments were 5. made also using a Tia Juana residuum feed identical to 6 that previously used. The SO₂ treatment used in the 7 experiment, designated as sample seven, was similar to that used in the previous test in Table III. However, the vacuum distillation of the treated oil in sample num-10 ber 7 and of the untreated feed, designated as sample 11 number 8, was carried to a higher temperature to isolate 12 a vacuum gas oil of final atmospheric equivalent boil-13 ing point of 593°C. 14 As shown by the data in Table IV, the 593°C 15 cut point VGO obtained from the SO2 treated resid, sample number 7, contained significantly less metals than 17 the untreated sample, sample number 8. 18 TABLE IV 19 EFFECT OF SO2 PRETREAT ON REDUCING THE METALS CONTENT OF A 593°C END POINT VACUUM GAS OIL 20 21 Sample No. 7 8 22 Sulfur Dioxide Pretreatment Yes No 23 Volume Percent 593°C VGO on Feed 61 64 24 VGO Metals Content 25 0.13 0.20 wppm Nickel 26 wppm Vanadium 1.00 1.70 27 Percent Reduction in Equivalent 28 40 Nickel Content of VGO 29 A final test was run to determine if residuum 30 heat soaking in the absence of SO2 would result in a 31 lower metals content in the VGO product. The procedure 32 used was exactly that described for sample number 8 of 33 the previous example, except that SO2 was omitted and the contact time at 343°C was extended to two hours in 34 35 order to give heat soaking the best possible chance to

effect a lowering of metals content in the VGO product.

36

- 1 After heat soaking, a vacuum distillation was carried
- 2 out to produce a vacuum gas oil having an atmospheric
- 3 equivalent boiling point of 593°C. Results are shown in
- Table V and are compared in the table with the results
- 5 obtained for sample number 8 which had no pretreatment
- 6 at all. As is apparent from the data, heat soaking alone
- 7 at 343°C does not give any appreciable reduction in the
- 8 metals content of the VGO product.

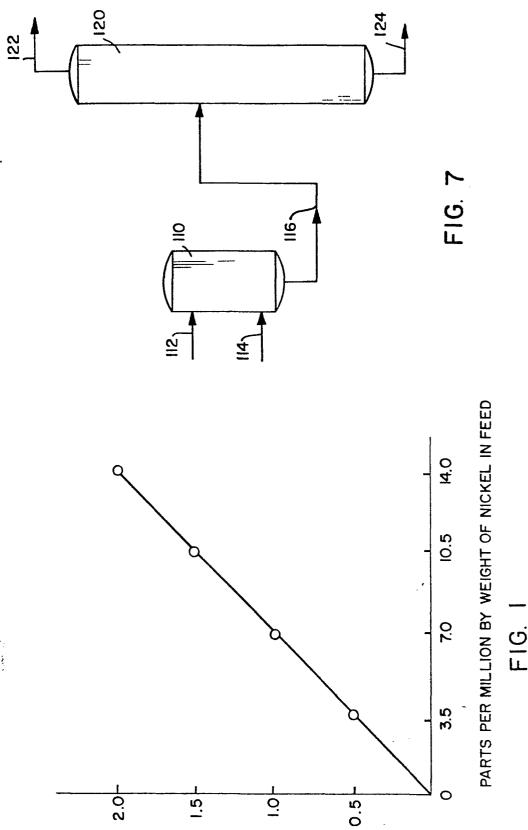
9 TABLE V

10	EFFECT	OF	HE	AT SOAF	ON	REDUC	ING THE	META	ALS
11	CONTENT	r OF	Α .	593°C	END	POINT	VACUUM	GAS	OIL

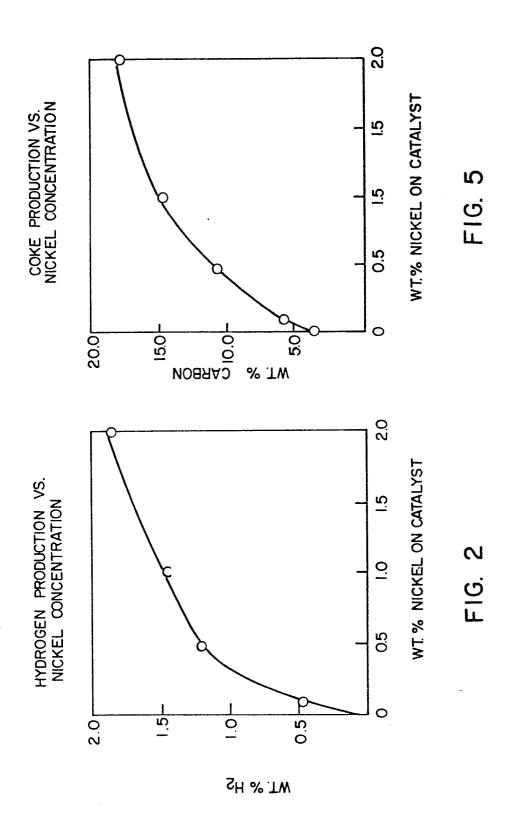
12	Sample No.	9	8
13	Heat Soak Pretreatment	Yes	No
14	Volume Percent 593°C VGO on Feed	62	64
15 16 17	VGO Metals Content wppm Vanadium wppm Nickel	1.36 0.30	1.70 0.20
18 19	Percent Reduction in Equivalent Nickel Content of VGO	Negligi	ble -

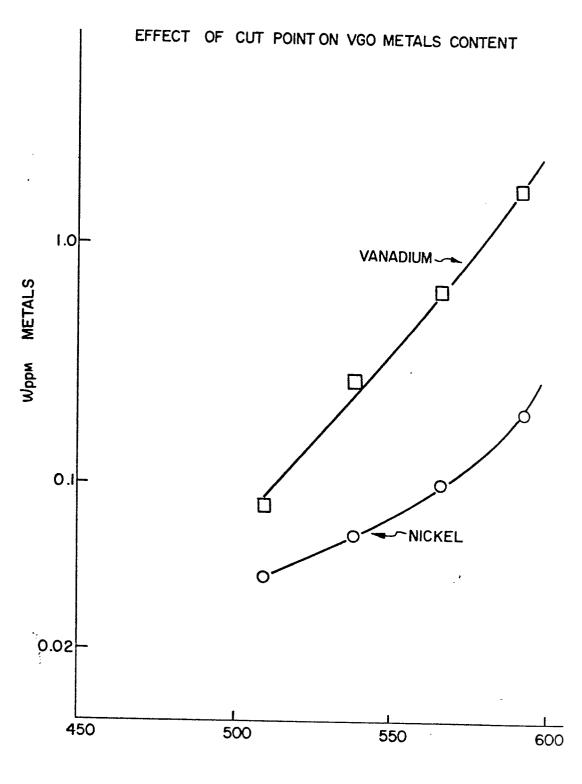
It should be noted that the atmospheric

- 21 residuum used in these tests also contained organo-
- 22 sulfur compounds. Thus, the presence of organo-sulfur
- 23 compounds in the petroleum feedstock processed even in
- 24 combination with heat treatment is ineffective in sig-
- 25 nificantly reducing the metals content of the vacuum gas
- 26 oil.
- While the invention has been described with
- 28 respect to a specific embodiment, it will be understood
- 29 that this disclosure is intended to cover any variations,
- 30 uses or adaptations of the invention including such
- 31 departures from the present disclosure as come within
- 32 known or customary practice in the art to which the
- 33 invention pertains and as fall within the scope of the
- 34 invention.


CLAIMS

- 1. A method for reducing the metal contaminant concentration in a petroleum fraction containing the metal contaminant, the method being characterized by comprising:
- (a) contacting the petroleum fraction in a contacting zone (10) with an effective amount of a metal rejection agent (14) selected from sulfur dioxide in the vapor phase and precursors of vapor phase sulfur dioxide at an elevated temperature; and


(b) thereafter either:


- (i) contacting the petroleum fraction in a contacting zone (Fig. 6, 20) with a deasphalting agent (Fig. 6, 22) to form a first fraction (24) relatively lean in asphaltene and metal contaminant and a second fraction (36) relatively rich in asphaltene and the metal contaminant, after which the first and second fractions are separated; or
- (ii) passing the petroleum fraction into a vacuum separation zone (Fig. 7, 120) wherein the petroleum fraction containing the metal contaminant is separated into a distillate (122) having a relatively low metal contaminant concentration and a bottoms (124) having a relatively high metal contaminant concentration.
- 2. The method of claim 1 characterized by the metal rejection agent being selected from sulfur dioxide, sulfurous acid, ammonium bisulfite and alkali metal bisulfites.
- 3. The method of claim 1 or claim 2 characterized by the metal rejection agent being sulfur dioxide.
- 4. The method of any one of claims 1 to 3 characterized in that the temperature of the contacting zone (20) is maintained above the critical temperature of sulfur dioxide.
- •5. The method of any one of claims 1 to 4 characterized by effecting the contacting at a temperature between about 200°C and about 450°C.
- 6. The method of any one of claims 1 to 5 characterized by effecting the contacting at a pressure being maintained between about 1.4062 and 28.124 kg/cm² gauge (20 psig and about 400 psig).

- 7. The method of any one of claims 1 to 6 characterized by the effective concentration of sulfur dioxide in the contacting zone being in the range of from about 1 to about 3 weight percent based upon the weight of the petroleum fraction.
- 8. The method of any one of claims 1 to 7 characterized by the residence time of the petroleum fraction in the contacting zone being maintained between about 0.01 and about 5 hours.
- 9. The method of any one of claims 1 to 8 characterized by the petroleum fraction being a distillate having a cut point of at least 520°C.
- 10. The method of any one of claims 1 to 9 characterized in that the said petroleum fraction is a distillate obtained by distillation of a feedstock, and the petroleum fraction is not treated, prior to step (a) by the addition thereto of at least one of the following: an acidic material; an acid material which is soluble in the fraction; water, an aqueous solution of an alkaline bisulfide and/or bisulfite, a solvent which is selective for non-asphaltenic material.

WEIGHT % OF NICKEL ON CATALYST

VGO CUT POINT, °C FIG. 3

EFFECT OF CUT POINT ON VGO YIELD

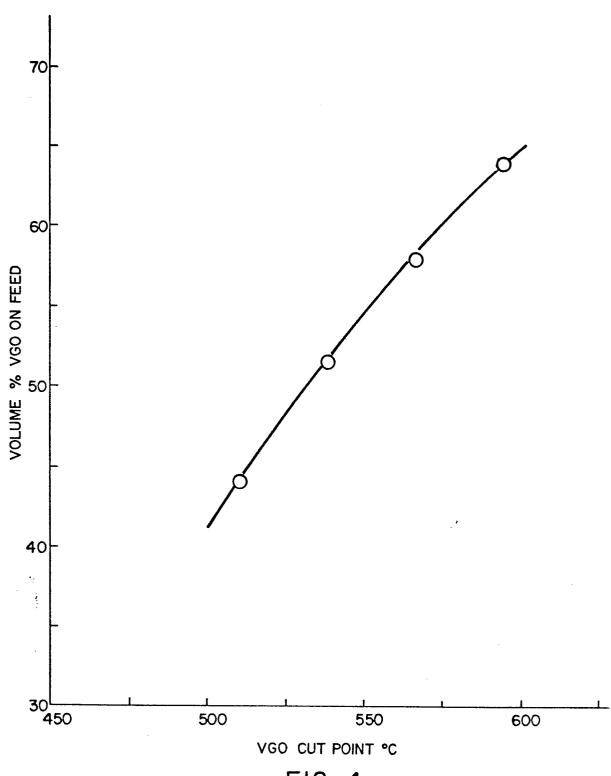
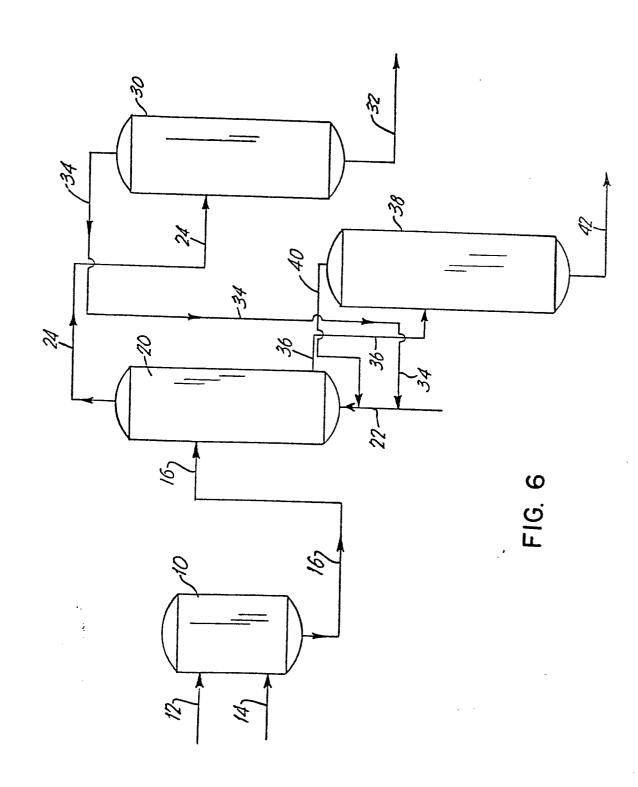



FIG. 4

EUROPEAN SEARCH REPORT

EP 81306170.2

	DOCUMENTS CONSIDERED TO	CLASSIFICATION OF THE APPLICATION (Int. Cl. 3)		
ategory	Citation of document with indication, where appassages	propriate, of relevant	Relevant to claim	
A	US - A - 4 035 287 (WILE ESPENSCHEID AND TSOUNG- * Claims; column 2, 5-21 *	(NAY NAUY	1-3,6	C 10 G 17/08 C 10 G 21/06
Α	US - A - 3 511 774 (R.B al.		1-5	
	* Claims; column 1, 42-53; column 2, 1 1-63; column 3, li	lines ines		
D,A	US - A - 2 969 320 (A.	SHAPIRO et	1-3	TECHNICAL FIELDS SEARCHED (Int.Cl. 3)
	al. * Claims; column 1, 55-67; column 2, 1 1-55; column 3, 1i 58-71 *	lines ines		C 10 G 21/00 C 10 G 17/00
D,A	<u>US - A - 2 926 129</u> (C.N JR.	. KIMBERLIN et al.)	1-3	
	* Claims; column 1, 50-72; column 2, l 1-53 *			
				CATEGORY OF ÇITED DOCUMENTS
				X: particularly relevant if taken alone Y: particularly relevant if combined with another document of the same category A: technological background O non-written disclosure P: intermediate document T: theory or principle underlying the invention E: earlier patent document, but published on, or after the filling date D: document cited in the application L: document cited for other reasons
х	The present search report has been draw	wn up for all claims		 member of the same pater family, corresponding document
Place of s	search Date of complete	on of the search	Examiner	
	VIENNA 05-0	4-1982		STOCKLMAYER