11 Veröffentlichungsnummer:

0 057 465 A2

12

EUROPÄISCHE PATENTANMELDUNG

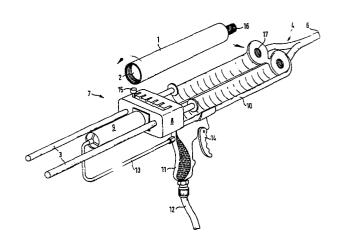
(21) Anmeldenummer: 82100737.4

(f) Int. Cl.3: B 05 C 17/00

22 Anmeldetag: 02.02.82

30 Priorität: 03.02.81 DE 3103610

7) Anmelder: Gebrüder Kömmerling Kunstoffwerke GmbH, Zweibrückerstrasse 200, D-6780 Pirmasens (DE)


Weröffentlichungstag der Anmeldung: 11.08.82 Patentblatt 82/32 Erfinder: Michel, Manfred, Dr., Buchsweiler Strasse 75, D-6780 Pirmasens (DE)

84 Benannte Vertragsstaaten: AT CH FR GB LI NL SE

Vertreter: Berg, Wilhelm, Dr. et al, Dr. Berg, Dipl.-Ing. Stapf, Dipl.-Ing. Schwabe, Dr. Dr. Sandmair Mauerkircherstrasse 45, D-8000 München 80 (DE)

54 Hand-Mischpistole.

⑤ Gegenstand der Erfindung ist eine Hand-Mischpistole für Klebstoffverdichtungsmassen und dergleichen, die aus zwei Komponenten erst unmittelbar vor dem Auftrag zusammengemischt werden. Zu diesem Zweck besitzt die Pistole eine Aufnahme für zwei handelsübliche, die beiden Komponenten getrennt enthaltende Kartuschen und einen Antrieb mit einstellbarem Wechselgetriebe, der es erlaubt, je nach dem für die beiden Komponenten erforderlichen Mischungsverhältnis die beiden Vorschubkolben der beiden Kartuschen mit unterschiedlicher Geschwindigkeit vorzuschieben.

Gebrüder Kömmerling Kunststoffwerke GmbH Zweibrücker Straße 200

6780 Pirmasens

Hand-Mischpistole

Beschreibung

Die Erfindung betrifft eine Hand-Mischpistole zum gleichzeitigen Auspressen zweier Flüssigkeiten gemäß dem Oberbegriff des Anspruchs 1.

Zwei-Komponenten-Massen, wie etwa Klebstoffe, Dichtstoffe, Fugenfüllstoffe usw., werden häufig bei Bau, Montage usw. verwendet und müssen zu diesem Zweck vorher in einem mehr oder weniger genauen Mischungsverhältnis miteinander gemischt und anschließend aufgebracht werden.

Da die gemischten, meist recht hoch viskosen Flüssigkeiten oft bald nach der Mischung abbinden oder aushärten, ist es zweckmäßig, das Mischen erst beim Auftragen durchzuführen. So ist z.B. eine Hand-Mischpistole für Zwei-Komponenten-Massen bekannt, bei welcher zwei koaxial ineinanderliegende Zylinder, die mit jeweils einer der Komponenten gefüllt sind, eine Kartusche bilden, die in die Mischpistole eingelegt werden kann, welche ein Mischrohr für die beiden Komponenten besitzt. Am anderen Ende der Pistole ist ein Handgriff angebracht, der über zwei Kolbenstangen mit zwei Kolben in Verbindung steht, die jeweils in einen der beiden Komponentenbehälter eintauchen und mit gleicher Geschwindigkeit vorgeschoben werden.

Der besondere Vorteil dieser Pistole liegt darin, daß die beiden Komponenten unmittelbar vor dem Auftragen miteinander vermischt werden, und daß infolge der Behältergeometrie ein genaues Mischungsverhältnis eingehalten werden kann.

Nachteilig ist bei der bekannten Pistole der Umstand, daß für jedes Mischungsverhältnis eine eigene, geeignete Kartusche hergestellt werden muß. Diese Koppelkartuschen sind sehr aufwendig in der Herstellung und auch schwierig zu füllen. Das ist ein wesentlicher Nachteil, da die Kartuschen nur einmal verwendet werden.

Diesen Nachteilen hilft zum Teil eine andere, bekannte Verarbeitungspistole ab, bei welcher mittels Druckluft die eine in einem Schlauch in der Kartusche vorhandene Komponente zusammen mit der anderen Komponente
ausgepreßt werden kann, wonach in einem Mischrohr mittels eines motorisch betriebenen Rührers die Mischung
stattfindet.

Die bekannte Verarbeitungspistole ist allerdings nicht in der Lage, fertig in Kartuschen abgefüllte Komponenten in einem jeweils angepaßten, veränderlichen Mischungsverhältnis miteinander zu vermischen.

Ausgehend von diesem Stand der Technik schafft die Erfindung eine Hand-Mischspritze nach dem Oberbegriff des Anspruchs 1, die auf einfache Weise dahingehend weitergebildet ist, daß sie ohne bauliche Veränderungen fertig gemischt Pasten aus zwei mit verschiedenen Romponenten gefüllten Standardkartuschen gemischt abgeben kann, deren Komponentenverhältnis jeweils einstellbar ist und dadurch für die Verarbeitung unterschiedlicher Zweikomponentenmassen geeignet ist.

Das wird durch die Merkmale des Anspruchs 1 erreicht.

Da die Antriebseinrichtung für die Vorschubkolben diese mit gleichen oder unterschiedlichen Vorschubgeschwindigkeiten antreibt, wobei das Verhältnis der Vorschubgeschwindigkeiten einstellbar und genau einhaltbar ist, genügt es, die Kartuschen mit den beiden Komponenten in die Aufnahme einzusetzen, mit dem Mischrohr zu verbinden und die Antriebseinrichtung anschließend entsprechend dem gewünschten Mischungsverhältnis einzustellen, so daß aus den Austrittsöffnungen der Kartuschen die jeweilige Flüssigkeit genau im richtigen Durchsatz in das Mischrohr austritt, in welchem anschließend die Durchmischung stattfindet.

In der Praxis kann es zweckmäßig sein, eine der beiden Kolbenstangen stets mit einer Bezugsgeschwindigkeit anzutreiben und demgegenüber die andere Kolbenstange entsprechend schneller oder langsamer vorzuschieben.

Gemäß einer Ausgestaltung der Erfindung ist es von Vor-

teil, die Pastenbehälter gleich groß auszubilden, wodurch eine wesentliche Herstellungsvereinfachung erzielt wird. Da die Mischungsverhältnisse für Zwei-komponentenpasten in der Regel zwischen 1: 1 und 10: 1 liegen, ist es möglich, mit verhältnismäßig geringem technischen Aufwand entsprechend unterschiedliche Vorschubgeschwindigkeiten zu erzielen.

Die Kartuschen sind vorteilhaft mit der jeweiligen Paste gefüllt gelieferte Kartuschen für den Einmalgebrauch, die lediglich in die Hand-Mischpistole eingesetzt zu werden brauchen.

Um die universelle Verwendung der Hand-Mischpistole zu verbessern, den für die Reinigung erforderlichen Zeitaufwand zu verringern und das Umstellen auf andere Komponenten zu erleichtern, können die Ausschubkolben als Verschluß für die Pastenkartuschen ausgebildet sein, wobei dann die Kolbenstangen nur gegen die Ausschubkolben anliegen. Da die Ausschubkolben bei den Kartuschen verbleiben und mit diesen gegebenenfalls als Wegwerfeinheit ausgebildet sind, entfällt antriebsseitig jegliche sonst mögliche Verschmutzung der Spritze.

Gemäß einer Ausgestaltung der Erfindung ist es zum Erreichen einer besonders einfachen Anordnung von Vorteil, daß der Antriebsmotor - gegebenenfalls über ein Zwischengetriebe - das Wechselgetriebe antreibt, welches über zwei Abtriebe die Kolbenstangen betätigt. Da beide Abtriebe vom gleichen Antrieb gespeist werden und das Verhältnis der Vorschubgeschwindigkeiten der Kolbenstangen festliegt, bleibt dieses Verhältnis selbst dann gewahrt, wenn infolge von Strömungswiderständen od. dgl. die Drehzahl des Antriebsmotors zurückgeht.

Das Wechselgetriebe ist am besten ein solches ohne oder mit wenig Schlupf. Es kann beispielsweise als Wechselradgetriebe ausgebildet sein. Um die Bedienung der erfindungsgemäßen Spritze zu vereinfachen, wird gemäß der Erfindung vorgeschlagen, ein schaltbares Räderwechselgetriebe, ein stufenloses Verstellgetriebe (sogenanntes PIV-Getriebe) oder ein Getriebe mit übertragungselementen zu verwenden, welche gegen andere zum Erreichen eines anderen übersetzungsverhältnisses austauschbar sind.

Es ist grundsätzlich möglich, auf die Kolbenstangen mittels Mitnehmern, Kettenzugeinrichtungen oder Schubhebeln einzuwirken; gemäß weiterer Ausgestaltungen der Erfindung ist es aber von Vorteil, die Kolbenstangen als Zahnstangen oder Gewindestangen auszubilden, wobei die Kolbenstangen ihrerseits dann bereits Übertragungselemente des Wechselgetriebes bilden.

Da das Vorschubverhältnis der beiden Kolbenstangen von der Drehzahl des Antriebsmotors unabhängig ist, ist es gemäß einer weiteren Ausgestaltung der Erfindung von Vorteil, daß der Antriebsmotor ein Motor mit variabler Drehzahl ist, so daß der Durchsatz der Zweikomponentenpaste durch die Austrittsdüse der Spritze mühelos an die jeweiligen Arbeitsbedingungen angepaßt werden kann, so daß eine noch universellere Verwendbarkeit der Spritze erreicht wird.

Als Antriebsmotor kann ein Motor beliebiger Drehzahl verwendet werden, wobei gegebenenfalls ein Vorgelege dafür sorgt, daß eine für das Getriebe bzw. die Zähigkeit der verwendeten Pasten geeignete Drehzahl erzielt wird. Es kann gegebenenfalls dem Vorgelege auch ein Verstell-

getriebe zugeordnet werden, um bei Verwendung eines Motors mit im wesentlichen konstanter Drehzahl die oben genannte, vorteilhafte Drehzahländerung zu erzielen.

Im Sinne der aufgabengemäß geforderten Vereinfachung wird im Rahmen einer weiteren Ausgestaltung der Erfindung vorgeschlagen, daß der Antriebsmotor ein Preßluftmotor ist, da ein derartiger Motor bei verhältnismäßig geringer Baugröße die zum Auspressen zäher Pasten oder Flüssigkeiten erforderliche hohe Antriebsleistung liefert. Zusätzlich kann dem Preßluftmotor ein Mengen-Regelventil zum Steuern der Drehzahl zugeordfet sein.

Wenn bei der Benutzung der Spritze einer der beiden Kolben das Ende seines Bewegungsweges erreicht hat, dann kann dieser Kolben durch Umsteuern der Drehrichtung des Antriebsmotors - gegebenenfalls mittels eines Wendegetriebes - zurückgefahren werden, um das Auswechseln der Kartuschen zu ermöglichen. Wegen der festen Vorschubzuordnung der beiden Kolbenstangen bewegt sich allerdings in diesem Falle auch der andere der beiden Kolben oder zumindest die diesem zugeordnete Kolbenstange wieder bis in seine Ausgangslage zurück. Da bei großen Mischungsverhältnissen in diesem Falle eine der beiden Kartuschen noch weitgehend gefüllt ist, wird gemäß einer weiteren Ausgestaltung der Erfindung vorgeschlagen, daß mindestens eine Kolbenstange aus dem Eingriff mit der Antriebseinrichtung lösbar und unabhängig von dieser zum Auswechseln einer Pastenkartusche zurückziehbar ist. In diesem Falle verharrt der eine der Kolben, der in der noch nicht leeren Kartusche befindlich ist, in seiner Lage, während die dem anderen Kolben zugeordnete Kolbenstange aus dem

Eingriff mit dem zugehörigen Getriebe gelöst und frei zurückgezogen wird. Nach dem Auswechseln der leeren Kartusche wird die Kolbenstange wieder auf den Kolbenboden der betreffenden Kartusche aufgesetzt und der Antriebseingriff zwischen Kolbenstange und zugeordnetem Getriebe wird wieder hergestellt.

Wenn der Eingriff beider Kolbenstangen lösbar ist, dann kann auf diese Weise in Kartuschen geliefertes Material während einer längeren Arbeitszeit jeweils gänzlich bis zum Rest aufgebraucht werden, und zwar völlig unabhängig von den Füllmengen der Kartuschen und dem jeweils eingestellten Mischungsverhältnis.

Bei bestimmten, mischungsfreudigen Komponenten kann es zum Durchmischen genügen, die Pasten im Mischrohr nur winklig zusammenströmen zu lassen. Sollen auch schwieriger zu mischende Komponenten verwendet werden, wird gemäß einer weiteren Ausgestaltung der Erfindung vorgeschlagen, daß das Mischrohr in seinem der Austrittsdüse benachbarten, von beiden Pasten durchströmten Abschnitt zum besseren Durchmischen eine wendelförmige Mischspindel aufweist, welche stillstehend im Mischrohr angebracht sein kann und für das zuverlässige Durchmischen der beiden Komponentenpasten sorgt. Zur besonders guten Durchmischung ist es vorteilhaft, eine zur Drehung angetriebene Mischspindel zu verwenden, die bevorzugt durch einen eigenen Motor, besonders einen Preßluftmotor, angetrieben ist.

Um insbesondere bei den erwähnten, höheren Auspreßgeschwindigkeiten zu vermeiden, daß etwa eine der Komponenten zu einer undichten Stelle austritt und somit
nicht nur zur Verschmutzung der Spritze führt, sondern
auch zu einer Beeinträchtigung des Mischungsverhält-

nisses, wird gemäß einer weiteren Ausgestaltung der Erfindung vorgeschlagen, daß die Kartuschen an ihrer Austrittsöffnung jeweils einen Gewindestutzen aufweisen, der mit dem zugehörigen Anschluß des Mischrohres verschraubt ist, um somit eine zuverlässige Abdichtung herzustellen.

Die Verschraubung kann beispielsweise mittels einer Überwurfmutter geschehen; gemäß einer weiteren Ausgestaltung der Erfindung können auch die Anschlüsse des Mischrohres ein Innengewinde aufweisen, in welches der Gewindestutzen der Kartusche eingeschraubt ist. Diese Ausgestaltungen der Erfindung tragen zur baulichen Vereinfachung bei, da es dann gegebenenfalls genügen kann, wenn die einzige, wirksame Halterung der Pastenkartuschen in der Pistole neben der von der Kolbenstange durch den Eingriff mit dem Vorschubkolben ausgeübtenHaltewirkung durch die Gewindestutzen hergestellt wird, welcher in das Muttergewinde des Mischrohres bzw. die Überwurfmutter von Hand mühelos und rasch einschraubbar ist. Besonders bei Verwendung zäher Pasten ist es aber vorteilhaft, die Pastenkartuschen auch am entgegengesetzten Ende gegen seitliche Auslenkung zu sichern.

Gemäß einer weiteren Ausgestaltung der Erfindung ist das Mischrohr als Spritzguß-Wegwerfteil ausgebildet, welches einfach von der Spritze abnehmbar ist, wenn beide Pastenkartuschen abgeschraubt sind. Es entfällt somit ein kostspieliger Reinigungsaufwand, und es ist gegebenenfalls auch die Verarbeitung von Pasten möglich, die in verhältnismäßig kurzer Zeit abbinden: wird versehentlich bei einer Arbeitspause die Abbindezeit überschritten, dann braucht lediglich das Mischrohr

ausgewechselt zu werden, um die Fortsetzung der Arbeit ohne größere Unterbrechung zu ermöglichen. Besonders bei Verwendung einer angetriebenen Mischspindel ist es von Vorteil, daß der diese aufnehmende Teil des Mischrohres z.B. mit einem Bajonettverschluß lösbar am verbleibenden Teil angebracht ist, um die einfache Reinigung oder gegebenenfalls den Austausch möglichst weniger Teile zu ermöglichen.

Zur besseren Handhabbarkeit weist die erfindungsgemäße Mischspritze bevorzugt einen Handgriff auf, dem ein Auslöser für den Antriebsmotor für die Vorschubkolben und gegebenenfalls den Motor für die drehbare Mischspindel zugeordnet ist, und zwar bevorzugt nach Art eines Pistolengriffes, an dem ein Abzug den Auslöser für den Motor oder die Motore bildet.

Gemäß einer weiteren Ausgestaltung der Erfindung weist die Kartuschenaufnahme eine quer zu den Kartuschen angeordnete Halteplatte auf, in welcher bevorzugt Führungsöffnungen ausgebildet sind, welche die Enden der Kartuschen umgreifen und geeignet sind, diese gegen Querauslenkungen abzustützen und somit auch die Verwendung
hochviskoser Pasten zu ermöglichen, bei welchen zum Auspressen erhebliche Kräfte aufgebracht werden müssen.

Soll während der Benutzung eine Kartusche ausgewechselt werden, dann verbleibt das Mischrohr an Ort und Stelle und es ist daher notwendig, den Antrieb derart auszubilden, daß er das Entnehmen und Einführen einer Kartusche durch die jeweilige Führungsöffnung hindurch von hinten her gestattet. Zu diesem Zweck ist vorteilhafterweise der Antriebsmotor vor der Halteplatte angebracht, und zwar bevorzugt zwischen den beiden Kartuschen.

Soweit ein Schaltgetriebe als Wechselgetriebe verwendet wird, gestattet dies zwar das rasche Kndern des Vorschub-Geschwindigkeitsverhältnisses der beiden Kartuschenkolben; da aber oft längere Zeit mit gleichbleibendem Mischungsverhältnis gearbeitet wird, ist in diesem Fall das besonders rasche Umschalten weniger wesentlich. Es wird daher gemäß einer weiteren Ausgestaltung der Erfindung vorgeschlagen, daß das Wechselgetriebe Übertragungselemente aufweist, die gegen solche mit unterschiedlichem Übersetzungsverhältnis austauschbar sind. Derartige Übertragungselemente können in einem geeigneten Werkzeugkoffer mitgeführt werden und vor Beginn umfangreicherer Arbeiten entsprechend ausgewählt werden. Die bereits oben angegebenen Übersetzungsverhältnisse lassen sich durch Kombination verhältnismäßig weniger Übertragungselemente herstellen.

Gemäß einer weiteren Ausgestaltung der Erfindung ist es besonders vorteilhaft, wenn als Übertragungselement die Antriebspaarung gewählt wird, welche aus einer Gewindemuschel und einer Gewindespindel besteht, welcher ihrerseits die Kolbenstange bildet. Das Ändern des Übersetzungsverhältnisses wird dadurch erreicht, daß man eine Gewindespindel und eine Antriebsmutter mit einer anderen Gewindesteigung verwendet.

Diese Antriebsmutter ist bevorzugt jeweils mittig in einem Zahnrad befestigt, welches jeweils die gleiche Teilung und Zähnezahl aufweist. Bei der erfindungsgemäßen Hand-Mischpistole sind zwei derartige Zahnräder angebracht, welche beide mit einem zugehörigen Ritzel in Eingriff stehen und sich somit gleichsinnig drehen. Die beiden Zahnräder mit ihren zugeordneten Gewindebuchsen und Gewindespindeln können gegeneinander ausgetauscht werden.

Jedes derartige Zahnrad ist bevorzugt in einem lösbar .

an der Rückseite der Halteplatte angebrachten Zahnradträger drehbar befestigt, wobei vorteilhafterweise der Zahnradträger um eine Querachse derart schwenkbar angeordnet ist, daß er sowohl mit seiner Vorder- als auch seiner Rückseite an der Halteplatte befestigt werden kann. Der besondere Vorteil dieser Ausführung liegt darin, daß bei leerer Kartusche, wenn die zugehörige, die Kolbenstange bildende Gewindespindel voll ausgefahren ist, diese nach dem Einlegen der neuen, vollen Kartusche nicht zur Gänze zurückgedreht zu werden braucht, sondern lediglich zusammen mit dem Zahnradträger umgedreht werden muß; es genügt dann eine nur kurze Einstellung des dann in Richtung der Kartusche überstehenden, anderen Endes der Gewindespindel, um die erfindungsgemäße Hand-Mischpistole nach erneutem Aufsetzen des Zahnradträgers wieder betriebsbereit zu machen.

Um Ungenauigkeiten zu vermeiden, ist die Länge der Gewindespindel genau derart bemessen, daß sie nach Abnehmen des Zahnradträgers, Auswechseln der Kartusche, Schwenken des Zahnradträgers mit der Gewindespindel und erneutem Befestigen des Zahnradträgers genau wieder in Eingriff mit dem Kolben der Kartusche steht.

Hierbei wird durch geeignete Maßnahmen sichergestellt, daß die Gewindespindel im wesentlichen stets unverdreht bleibt, da eine Drehung der Gewindespindel relativ zur Kartusche eine Verfälschung des gewählten, zwischen Gewindebuchse und Gewindespindel durch die Gewindesteigung festgelegten Übersetzungsverhältnisses eintreten würde.

Der Zahnradträger ist bevorzugt aus zwei hohlzylinderförmigen, in ihrer Ausbildung gleichartigen Trägerringen gebildet, welche miteinander über das Zahnrad und die Gewindebuchse axial zwar unbeweglich, aber verdrehbarbefestigt sind.

Die Stirnfläche eines jeden Trägerringes ist bevorzugt mit einer oder mehreren, bevorzugt zwei hinterschnittenen Bogennuten ausgestattet, welche zur Bildung eines Bajonettverschlusses in jeweils eine kopfartige Gegenausbildung eingreifen, welche bevorzugt in Form einer Schraube an der Halteplatte angebracht ist.

Werden sehr viel Zahnradträger verwendet, um eine sehr große Anzahl von Mischungsverhältnissen zuzulassen, dann kann es auch von Vorteil sein, die Bogennuten in der Halteplatte vorzusehen und die einfacher und billiger anzubringenden Gegenvorsprünge am jeweiligen Trägerring vorzusehen.

Bei der Verwendung derartiger Trägerringe, welche an ihrer Außenseite mit einer Handhabe versehen sind, z.B. einer Kordelierung, ist zweckmäßigerweise der Fußkreisdurchmesser des zugehörigen Zahnrades größer gewählt als der Außendurchmesser des Trägerringes, so daß das Aufsetzen bzw. Umdrehen und Auswechseln des jeweiligen Zahnradträgers möglich ist, ohne daß dieser in Eingriff mit dem Antriebsritzel tritt.

Wie bereits oben vermerkt, kann die Mischspindel vorteilhafterweise auch drehbar ausgebildet sein, und wiederum vorzugsweise mit einem eigenen Drehantrieb verbunden sein, der bevorzugt als Preßluftmotor ausgebildet ist und über eine mit dem Antriebsmotor für den Kolbenvorschub gemeinsame oder getrennte Luftleitung gespeist wird.

Die rotierende Spindel ist bevorzugt in einem an der

Vorderseite des Mischrohres angeordneten Rohrabschnitt angebracht, der zum Reinigen oder Auswechseln gegebenenfalls auch zusammen mit der drehbaren Mischspindel beispielsweise auch mittels eines Bajonettverschlusses einfach lösbar am Mischrohr befestigt ist. Ferner sind bevorzugt alle jene Teile des Mischrohres einfach lösbar und zerlegbar bzw. auswechselbar, welche mit dem Gemisch aus den beiden, zu vermischenden Komponenten in Berührung gelangen.

Der Gegenstand der Erfindung ist anhand der in der beigefügten, schematischen Zeichnung gezeigten Ausführungsbeispiele näher erläutert; in dieser zeigen:

- Fig. 1 teilweise im Schnitt das Schema eines Ausführungsbeispiels der erfindungsgemäßen Hand-Mischpistole;
- Fig. 2 die Ansicht eines anderen Ausführungsbeispiels im Schrägbild;
- Fig. 3 die teilweise geschnittene Draufsicht auf die Ausführungsform der Fig. 2;
- Fig. 4 die schematische Darstellung einer Antriebseinrichtung für eine erfindungsgemäße Hand-Mischpistole;
- Fig. 5 eine schematische Draufsicht auf ein weiteres Ausführungsbeispiel der erfindungsgemäßen Hand-Mischpistole;
- Fig. 6 einen Teil-Längsschnitt durch den Antriebsteil des Ausführungsbeispiels der Fig. 5, in vergrössertem Maßstab;

- Fig. 7 eine Teilansicht in Richtung des Pfeiles VII in Fig. 6 und
- Fig. 8 einen Teil-Längsschnitt durch den Mischteil des Ausführungsbeispiels der Fig. 5, in vergrößertem Maßstab.

In den Figuren bezeichnen gleiche Bezugszeichen jeweils gleiche oder funktionell gleiche Teile.

In Fig. 1 ist eine stark schematisierte, teilweise geschnittene Draufsicht eines Ausführungsbeispiels einer Hand-Mischpistole dargestellt, die z.B. zum Auftragen eines Zweikomponentenklebstoffes auf Polyurethanbasis oder eines Zweikomponenten-Polysulfiddichtstoffs geeignet ist.

Zwei parallel zueinander angeordnete, kreiszylindrische handelsübliche Pastenkartuschen 1 sind mit ihrem vorderen, jeweils offenen Ende in entsprechende Anschlüsse eines Mischrohres 4 eingeschraubt. Die beiden Anschlüsse vereinigen sich symmetrisch zu einem bezüglich der beiden Kartuschen 1 mittig angeordneten Rohrabschnitt, innerhalb dessen eine Mischspindel 5 bei diesem Ausführungsbeispiel fest angebracht ist. Die Mischspindel 5 besteht hier aus hintereinanderliegenden, abwechselnd gegensinnigen, wendelförmigen Trennungswänden und bewirkt eine innige Durchmischung der beiden, jeweils aus einer der Kartuschen 1 ausströmenden Komponentenpasten. Das Mischrohr 4 endet in einer Austrittsdüse 6.

Die rückwärtigen Enden der aus Kunststoff bestehenden Kartuschen 1 sind offen.

In jeder der Kartuschen 1 ist ein Ausschubkolben 2 in

bekannter Weise verschieblich und dichtend angebracht. An seiner dem rückwärtigen Ende des Pastenbehälters 1 zugewandten Seite stützt sich jeweils eine drehbare und koaxial zum Pastenbehälter 1 angeordnete sowie verschiebliche Kolbenstange 3 auf den Kolben 2 ab.

Beide Kolbenstangen 3 durchlaufen ein Getriebe 8, an dessen rückwärtigem Ende ein Motor 9 angebracht ist.

Kolbenstangen 3, Getriebe 8 und Motor 9 bilden gemeinsam eine Antriebseinrichtung 7, welche zusammen mit den
Pastenbehältern 1 auf einer gemeinsamen Halterung (nicht
gezeigt) angebracht ist. Die beiden, jeweils als Gewindespindel ausgebildeten Kolbenstangen 3 stehen im Inneren
des Getriebes in formschlüssigem Eingriff mit Getriebeteilen, wobei das Übersetzungsverhältnis zwischen den
beiden, jeweils einer der Kolbenstangen3 zugeordneten
Getriebeteilen mittels eines Verstellknopfes 15 veränderlich ist.

In Fig. 2 ist ein Ausführungsbeispiel einer Hand-Mischpistole gezeigt. Das Grundprinzip ist das gleiche wie das aus Fig. 1 ersichtliche.

Eine Aufnahme oder Halterung 10, welche an ihrer Rückseite den Antrieb 7 und an ihrer Unterseite einen Pistolengriff 11 trägt, ist mit zwei muldenförmigen Vertiefungen versehen, in welche jeweils eine handelsübliche Kartusche 1 aus Kunststoff einlegbar ist. Die Kartuschen 1 weisen an ihren mündungsseitigen Enden einen Gewindestutzen 16 auf, der dichtend in ein Innengewinde 17 des Mischrohres 4 einschraubbar ist. Das Mischrohr 4 ist von der Vorderseite her in Schlitze einer durchbrochenen Abschlußwand der Halterung 10 eingeschoben und ist ledig-

lich durch die Verschraubung mit den Kartuschen 1 festgehalten.

Die beiden, jeweils gleichen Kartuschen weisen in ihrem Inneren als Verschluß jeweils einen Kolben 2 auf, gegen welchen sich das entsprechend tellerförmig ausgebildete, vordere Ende der Kolbenstangen 3 bei Benutzung abstützt.

Das Getriebe 8 weist an seiner Oberseite einen Schalthebel 15 zum Wählen des Vorschubverhältnisses bzw. des Mischungsverhältnisses für die beiden Pastenkomponenten auf. Er ist sechsstufig und z.B. für die Übersetzungsverhältnisse 10/1, 7/1, 5/1, 3/1, 2/1 und 1/1 zwischen den Vorschubgeschwindigkeiten der Kolbenstangen ausgelegt.

An der Rückseite des Getriebes 8 ist mittig zwischen den beiden Kolbenstangen 3 ein Luftmotor 9 angebracht, welcher über eine Luftleitung 13 mit einem Luft-Dosierventil (nicht gezeigt) in Verbindung steht, welches im Inneren des Pistolengriffs 11 angebracht ist. Ein Abzug 14 ist zur Betätigung des Luft-Dosierventils eingerichtet.

Der zweite Anschluß des Ventils steht mit einem Luftschlauch 12 in Verbindung.

Fig. 3 zeigt im Schnitt die beiden Pastenkartuschen 1, wie sie in den Halter 10 eingelegt sind und mit den Innengewinden 17 des Mischrohres 4 verschraubt sind. Wie erkennbar, sind die beiden Pastenkartuschen 1 jeweils gefüllt, da sich der jeweilige Kolben 2 in seiner äußersten, hinteren Lage befindet.

Innerhalb des Mischrohres 4 befindet sich eine Mischspindel 5, welche ähnlich dem in Fig. 1 dargestellten Ausführungsbeispiel ausgebildet ist.

Es ist ersichtlich, daß nach Entnahme der beiden Pastenkartuschen 1 auch das Mischrohr 4 ohne weiteres entnehmbar ist.

Das Mischrohr 4 ist als Kunststoff-Wegwerfteil ausgebildet.

Das Getriebe 8 kann z.B. als das in Fig. 4 dargestellte Ziehkeilgetriebe 18 mit einem Antriebsteil 19 und einem Abtriebsteil 20 ausgebildet sein. Das Abtriebsteil 20 trägt einen Satz abgestufter Zahnräder, welche drehfest mit einer Welle 21 verbunden sind. Das Antriebsteil 19 trägt einen komplementären Satz Zahnräder, welche in bekannter Weise mittels eines Ziehkeils einzeln in Dreheingriff mit der zugeordneten Welle 21 bringbar sind. Zum Verändern des Eingriffs des Ziehkeiles ist eine Schaltmuffe 22 vorgesehen, welche über ein (nicht dargestelltes) Gestänge verschieblich ist.

Die Welle 21 wird über einen Schneckentrieb 22 angetrieben, der seinerseits mit dem Antriebsmotor verbunden ist (nicht gezeigt). Mit der Welle 21 fest verbunden ist ein Ritzel 23, welches über eine als Zahnstange ausgebildete Kolbenstange 3a antreibt. Die andere Kolbenstange 3b wird unter Zwischenschaltung eines Zwischenritzels 25 vom Abtriebsteil 20 des Ziehkeilgetriebes 18 angetrieben.

Es ist ohne weiteres ersichtlich, daß eine Änderung des Übersetzungsverhältnisses im Ziehkeilgetriebe auch eine entsprechende Änderung im Vorschub der beiden Kolbenstangen 3a, 3b nach sich zieht.

Jede der beiden als Zahnstange ausgebildeten Kolbenstangen 3a, 3b wird mittels einer Andruckrolle 26a bzw. 26b

in Eingriff mit dem zugehörigen Antriebsritzel 23 bzw. 25 gehalten. Die Andruckrolle 26a bzw. 26b ist in der in der Zeichnung gezeigten Lage verrastbar und nach Lösen der Rast in Richtung des gezeigten Pfeiles von der zugehörigen Kolbenstange wegschwenkbar. In weggeschwenkter Stellung des jeweiligen Teiles 26a bzw. 26b kann die zugehörige Kolbenstange 3a bzw. 3b aus dem Eingriff mit dem zugehörigen Antriebsritzel 23, 25 gehoben und jeweils einzeln zurückgezogen werden, ohne daß der Getriebeeingriff der anderen Kolbenstange gelöst zu werden braucht oder eine Änderung des Übersetzungsverhältnisses notwendig ist.

Ist bei der Benutzung der gezeigten Mischspritze eine der beiden Pastenkartuschen 1 leer, während die andere noch Füllung enthält, dann wird die Andruckrolle 26a, 26b jener Kolbenstange 3a, 3b, welche der leeren Kartusche zugeordnet ist, aus der Rast gelöst, die entsprechende Kolbenstange wird aus dem Eingriff mit dem Antriebsritzel 23, 25 gehoben und solange zurückgezogen, bis die leere Pastenkartusche 1 entnommen werden kann. Nach Einlegen einer neuen Pastenkartusche 1 wird die entsprechende Kolbenstange wieder bis zum Anschlag mit dem Kolben 2 nach vorne geschoben und die zugeöhrige Andruckrolle 26a, 26b wird wieder verrastet, wodurch die Kolbenstange in Eingriff mit dem zugehörigen Antriebsritzel 23, 25 gedrückt wird. Die Arbeit kann nun ohne Störung des Mischungsverhältnisses fortgesetzt werden.

In Fig. 5 ist schematisch ein weiteres Ausführungsbeispiel der Hand-Mischpistole in der Draufsicht gezeigt.

Diese Hand-Mischpistole weist eine Halterung 10 auf, ähnlich der Ausführungsform der Fig. 2, an welcher (in Fig.5 nicht gezeigt) ein Handgriff mit einem Auslöser angebracht ist. Im Gegensatz zur Ausführungsform der Fig. 2 sind bei der in Fig. 5 gezeigten Ausführungsform die beiden Kartuschen 1 mit einem größeren Abstand zueinander derart angeordnet, daß der Preßluftmotor 9 zwischen ihnen angeordnet sein kann.

Am vorderen Ende der dargestellten Hand-Mischpistole ist ein Mischrohr 4 angebracht, welches in einen Rohrstutzen 4' mündet, in welchem, wie genauer aus Fig. 8 ersichtlich, die Mischspindel 5 angeordnet ist. Die Mischspindel 5 ist im Gegensatz zu dem vorherigen Ausführungsbeispiel drehbar ausgebildet und sitzt auf der Welle eines Preßluftmotors 29, der mit dem Preßluftmotor 9 fluchtend zwischen den beiden Kartuschen 1 an der vom Stutzen 4' abgewandten Seite des Mischrohres 4 angebracht ist.

Am vorderen Ende des Stutzens 4' ist die Austrittsdüse 6 angebracht.

Das Mischrohr 4 einerseits und/oder der Stutzen 4' zusammen mit der Austrittsdüse 6 bilden jeweils oder gemeinsam zusammen mit der Mischspindel 5 ein auswechselbares
oder wegwerfbares Teil, welches mittels einer geeigneten
Verbindung, beispielsweise eines Bajonettverschlusses,
an der Halterung 10 bzw. am Mischrohr 4 befestigt ist.
Somit ist das leichte Abnehmen und somit entweder Zerlegen und Reinigen oder Auswechseln jener Teile möglich,
welche mit dem reaktionsfähigen Gemisch aus den beiden
Pasten in Berührung kommen, die jeweils getrennt in den
Kartuschen 1 untergebracht sind.

Im Bereich der hinteren Enden der Kartuschen 1 ist quer zu diesen eine Halteplatte 29 angebracht, welche mit der Halterung 10 fest verbunden ist und auf ihrer dem Mischrohr 4 zugewandten Seite den Antriebsmotor 9 trägt, dessen

0057465

Welle 30 die Halteplatte 27 durchdringt und jenseits dieser an ihrem freien Ende ein Ritzel 31 trägt.

Mit diesem Ritzel 31 stehen zwei Zahnräder 32 in Eingriff, von welchen jedes koaxial zu jeder der Kartuschen 1 angeordnet und in einem Zahnradträger 28 drehbar gelagert ist, der abnehmbar an der Halteplatte 27 befestigt ist. Der Antrieb wird noch näher unter Bezugnahme auf Fig. 6 und 7 erläutert.

Aus Fig. 5 ist noch ferner die Luftleitung 13 für den Preßluftmotor 9 sowie eine weitere Luftleitung 13' für den Preßluftmotor 29 erkennbar. Beide Luftleitungen 13, 13' können vorteilhafterweise gemeinsam in ein (nicht gezeigtes) Preßluft-Versorgungsrohr einmünden.

Die Zahnradträger 28, die Zahnräder 32, die koaxial zu diesen angeordneten, als Gewindespindeln ausgebildeten Kolbenstangen 3 und das Ritzel 31 bilden Teile des Getriebes 8, welches in Fig. 6 noch näher dargestellt ist.

Wie aus Fig. 6 ersichtlich, ist mittig in jedem Zahnrad 32 und koaxial zu diesem eine Gewindebuchse 33 befestigt, welche mit der Gewindespindel 3, die die Kolbenstange bildet, in Gewindeeingriff steht.

Der Zahnradträger 28 ist aus zwei gleichartigen, entgegengesetzt ausgerichteten Trägerringen 28a, 28b gebildet, welche jeweils an ihrer Außenseite gekordelt sind und einen Durchmesser aufweisen, der kleiner ist als der Zahn-Grundkreisdurchmesser des jeweiligen Zahnrades 32.

Jeder Trägerring ist als Hohlzylinder ausgebildet, dessen Boden jeweils derart durchgebohrt ist, daß die Gewindebuchse 30 mit ihrer jeweils zylindrischen Außenseite mit Führung, aber verdrehbar die beiden Boden der Trägerringe 28a, 28b durchdringen kann.

Die Außenoberfläche der Gewindebuchse 33 weist einen Einstich auf, in welchem jeweils ein Federring derart angebracht ist, daß er gerade den Boden des jeweiligen Trägerringes 28a, 28b so überragt, daß die Drehung der Gewindebuchse 33 relativ zu den Trägerringen 28a, 28b nicht behindert wird, aber das Axialspiel der Gewindebuchse 33 diesbezüglich auf ein Mindestmaß eingeschränkt ist.

Der Innendurchmesser der Trägerringe 28a, 28b entspricht im wesentlichen derart dem Außendurchmesser der Kartuschen 1, daß diese in die Trägerringe eingeschoben werden können.

An der jeweiligen Stirnfläche weisen die Trägerringe 28a, 28b jeweils zwei einander gegenüberliegende, sich über einen Kreisbogen von etwa 90° erstreckende Bogennuten 34 auf, welche jeweils einander gegenüberliegend in eine kreisförmige Öffnung 35 einmünden, deren Durchmesser grösser ist als die Breite der Bogennut 34.

Wie aus Fig. 6 deutlich zu sehen, ist die Bogennut 34 mit einem T-förmigen, hinterschnittenen Querschnittsprofil ausgebildet.

Die Halteplatte 27 weist jeweils mit jeder der Kartuschen 1 fluchtend eine Führungsöffnung 36 auf, deren Durchmesser gerade zum Außendurchmesser der Kartusche passend so bemessen ist, daß sich diese durch die jeweilige Führungsöffnung 36 mühelos einführen läßt.

Beiderseits der Führungsöffnung 36 und den beiden Öffnungen bzw. Verbreiterungen 35 der Bogennuten 34 gegen-

überliegend ist jeweils eine Gewindebohrung in der Halteplatte 27 angeordnet, in welche eine Schraube von der Seite der Zahnradträger 28 her soweit eingeschraubt ist und einen zylinderförmigen Kopf mit einer solchen Abmessung aufweist, daß sich der Trägerring 28a bzw. 28b mit den Verbreiterungen 35 seiner Bogennuten 34 gerade über die Köpfe der Schrauben 37 stülpen läßt und dann um 90° verschwenken läßt, wobei die Köpfe der Schrauben 37 das Bogennutprofil hintergreifen, so daß die Bogennuten 34 und die Schrauben 37 gemeinsam einen Bajonettverschluß bilden.

Wie bereits oben erwähnt, sind die Gewindebuchse 33 und das Zahnrad 32 starr miteinander verbunden und relativ zu den Trägerringen 28a, 28b drehbar angebracht, wobei für diese Trägerringe 28a, 28b ein Material gewählt ist, welches in Zuordnung zum Material von Gewindebuchse 33 und Zahnrad 32 eine selbstschmierende Wirkung ergibt, so daß das Zahnrad 32 und die Gewindebuchse 33 wartungsfrei drehbar innerhalb der Trägerringe 28a, 28b gelagert sind.

Die innere Öffnung des Trägerringes 28a und die Führungsöffnung 36 der Halteplatte 27 fluchten jeweils miteinander und bilden somit gemeinsam eine Aufnahme für das hintere Ende der Kartusche 36.

Durch leichtes Abschrägen der Bogennut 34 in Axialrichtung kann beim Festdrehen des Zahnradträgers 28 auf der Halteplatte 27 eine axiale Spannbewegung erfolgen, durch welche das vordere Ende der Kartusche 1 fest gegen das Mischrohr 4 angedrückt wird und außerdem sichergestellt wird, daß sich der Zahnradträger 28 während des Gebrauchs der Mischpistole nicht lockert.

Jeder Zahnradträger 28 weist eine Gewindebuchse 33 und

eine Vorschubstange 3 mit gleicher Gewindesteigung auf, wobei die Gewindesteigung bei verschiedenen Zahnradträgern 28 unterschiedlich ist. Da diese Zahnradträger 28 ohne weiteres auswechselbar sind, kann durch eine Reihe von Zahnradträgern mit zugehörigen Vorschubstangen unterschiedlicher Gewindesteigung eine Vielzahl von Mischungsverhältnissen kombiniert werden.

Beim Einsetzen zweier Kartuschen werden diese durch die Führungsöffnungen 36 hindurchgeschoben und mit ihrer Vorderseite am Mischrohr 4 dichtend aufgenommen. Dann werden entsprechend dem gewünschten Mischungsverhältnis die passenden Zahnradträger 28 ausgewählt und aufgesetzt. Bei diesen Zahnradträgern befindet sich die Kolbenstange 3 in ihrer einen Endstellung und gelangt in Eingriff mit dem im Inneren der Kartusche 1 befindlichen Kolben, wobei die Drehung der Kolbenstange gegenüber dem Kolben bevorzugt durch formschlüssigen Eingriff und die Drehung des Kolbens gegenüber der Kartuschenwand durch den Kraftschluß zwischen diesen Teilen verhindert ist. Reicht der Kraftschluß nicht aus, so können die Kolbenstangen zusätzlich zum Gewinde jeweils eine axiale Nut erhalten, in die beispielsweise jeweils eine Nase eines von hinten auf die freien Kolbenstangenenden aufgesetzten Joches eingreift, welche jeweils von einer entsprechenden Innenbohrung des Joches abragt, die von der Kolbenstange durchsetzt ist.

Ist eine der beiden Kartuschen geleert, dann wird der entsprechende Zahnradträger 28 abgenommen, die leere Kartusche
nach hinten zur Führungsöffnung 36 herausgezogen, die neue
Kartusche eingeführt, der Zahnradträger umgedreht und wieder aufgesetzt. Die Länge der Kolbenstange 3 ist demnach
derart bemessen, daß sie, wenn sie voll in die Kartusche
hinein mit ihrem einen Ende ausgefahren ist, mit ihrem

anderen Ende über das andere Ende des Zahnradträgers 28 gerade soweit übersteht, daß sie beim Umdrehen des Zahn-radträgers und somit auch der Kolbenstange 3 genau wieder in Eingriff mit dem Kolben einer neuen, gefüllten Kartusche gelangt.

Ende der Beschreibung.

2. Feb. 1982

Gebrüder Kömmerling Kunststoffwerke GmbH Zweibrücker Straße 200

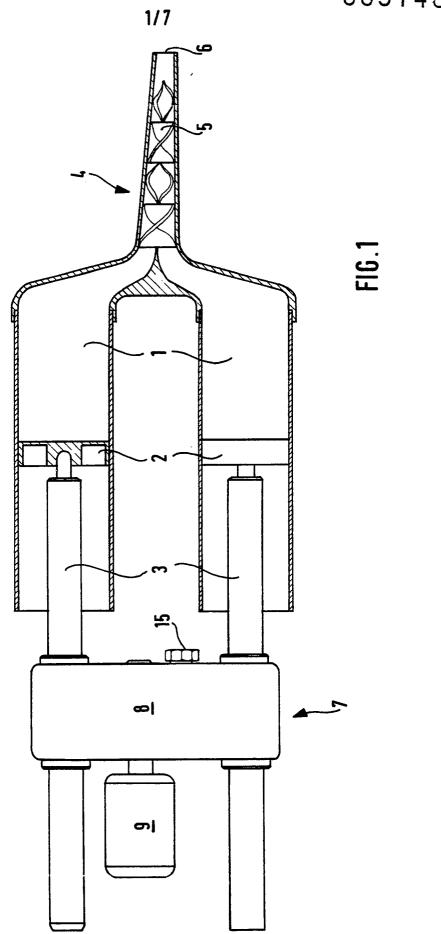
6780 Pirmasens

Hand-Mischpistole

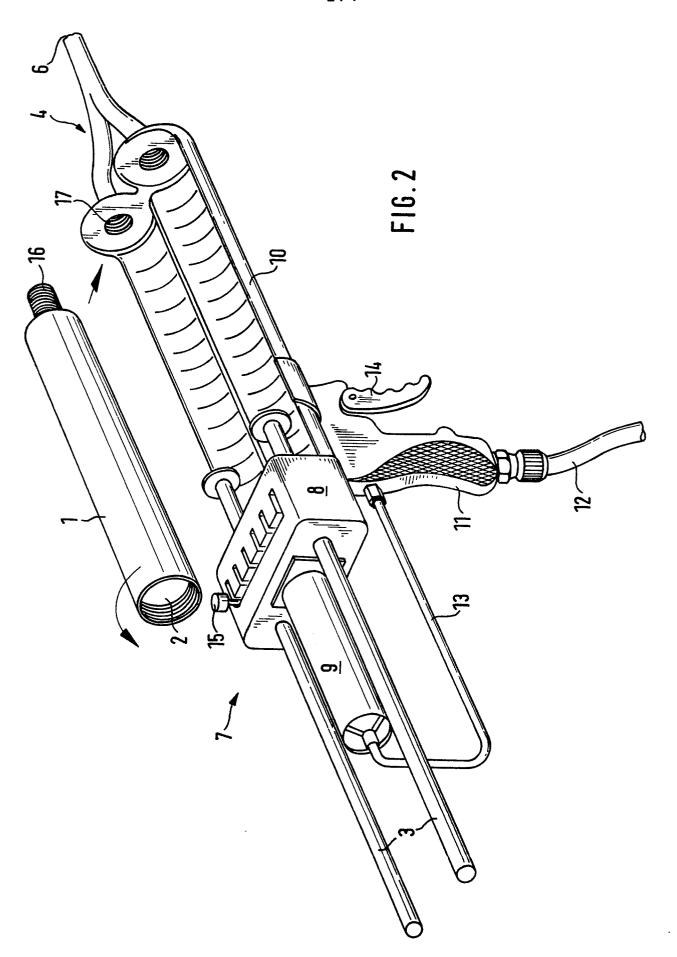
Patentansprüche

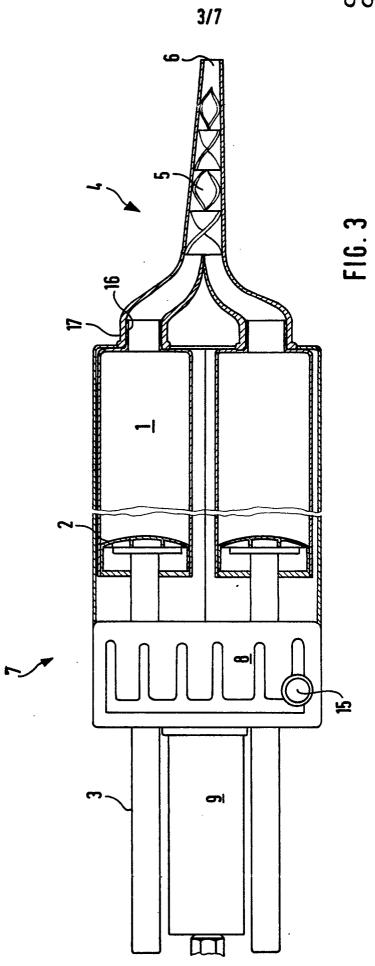
1. Hand-Mischpistole zum gleichzeitigen Auspressen zweier niedrig bis hoch viskoser Flüssigkeiten aus einer zwei Flüssigkeiten getrennt enthaltenden Kartuschenanordnung, in der für jede Flüssigkeit ein Ausschubkolben verschiebbar ist, mit einer Aufnahme für die Kartuschenanordnung, einem Mischrohr, an das die Austrittsöffnungen der Kartuschenanordnung anschließbar sind und das eine Austrittsdüse für die gemischten Flüssigkeiten aufweist, zwei von der den Austrittsöffnungen der Kartuschenanordnung entgegengesetzen Seite in die Kartuschenanordnung einschiebbaren Kolbenstangen zum Vorschieben der Ausschubkolben und einem Antriebsmotor zum Bewegen der Kolben-

stangen, dadurch gekennzeichnet, daß die Kartuschenaufnahme zur Lagerung von zwei Kartuschen nebeneinander ausgebildet ist und daß ein Wechselgetriebe (8) vorgesehen ist, daß zur Herstellung eines gewünschten
Mischungsverhältnisses der beiden Flüssigkeiten
den Antrieb der beiden Ausschubkolben (2) mit
Vorschubgeschwindigkeiten erlaubt, deren Verhältnis zueinander voreinstellbar ist.


- 2. Pistole nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß der Antriebsmotor gegebenenfalls über ein Zwischengetriebe das Wechselgetriebe antreibt, welches über zwei Abtriebe die Kolbenstangen (3) verschiebt und bei dem das Verhältnis der beiden Kolbenstangengeschwindigkeiten zueinander veränderbar ist.
- 3. Pistole nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß das Getriebe (8) ein mehrere Wechselelemente oder Schaltstufen aufweisendes Rädergetriebe ist.
- 4. Pistole nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß die Kolbenstangen (3) Gewindespindeln sind, nicht drehbar geführt und von axial festgelegten antreibbaren Antriebsmuttern (33) betätigbar sind.
- 5. Pistole nach einem der Ansprüche 1 bis 4, da-durch gekennzeichnet, daß

der Eingriff mindestens einer Kolbenstange (3) mit dem übrigen Teil der Antriebseinrichtung (7) lösbar und diese Kolbenstange unabhängig vom übrigen Antrieb zum Auswechseln einer Kartusche (1) zurückziehbar ist.


- 6. Pistole nach einem der Ansprüche 1 bis 4, da-durch gekennzeich net, daß das Mischrohr (4) in seinem der Austrittsdüse (6) benachbarten, von beiden flüssigkeiten durchströmten abschnitt zum besseren Durchmischen eine Mischspindel (5) aufweist.
- 27. Pistole nach einem der Ansprüche 1 bis 6, da durch gekennzeich net, daß die Kartuschenaufnahme (10) im Bereich der den Austrittsöffnungen entgegengesetzten Enden der Kartuschen (1) eine quer zu diesen ange- ordnete Halteplatte (27) aufweist, an welcher der Motor (9) zwischen den beiden Kartuschen (1) an der diesen zugewandten Seite der Halteplatte (27) angebracht ist.
 - Pistole nach Anspruch 7, d a d u r c h g e k e n n z e i c h n e t , daß die Halteplatte
 (27) Führungsöffnungen (36) aufweist, welche die Kartuschen (1) im Bereich ihrer Enden aufnehmen.


- 9. Pistole nach einem der Ansürüche 4 bis 8, dadurch gekennzeichnet, daß
 ein zentrales Antriebsritzel (31) in Eingriff
 mit zwei gleichartigen, auswechselbaren Zahnrädern (32) steht, die jeweils eine mittig angebrachte, drehfest mit diesen verbundene Gewindebuchse (3) tragen, welche ein zum jeweiligen Außengewinde der als Gewindespindel ausgebildeten Kolbenstange (3) passendes Innengewinde aufweisen,
 wobei die Kolbenstangen ihrerseits unverdrehbar
 geführt sind.
- 10. Pistole nach Anspruch 9, d a d u r c h g e k e n n z e i c h n e t , daß die Zahnräder (32) jeweils in einem an der Halteplatte (27) lösbar befestigten Zahnradträger (28) drehbar gelagert sind, der zur Mittelebene des Zahnrads (32) symmetrisch ausgebildet ist und nach Lösen aus der Befestigung an der Halteplatte (27) und Schwenken um eine quer zur Zahnradachse liegende Schwenkachse um 180° wieder an der Halteplatte (27) befestigbar ist.
- 11. Pistole nach Anspruch 10, dadurch gekennzeich net, daß der Zahnradträger (28)
 aus zwei hohlzylinderförmigen Trägerringen (28a,
 28b) gebildet ist, die an ihrer Außenseite mit einer
 Handhabe versehen sind, an ihrer oberen Endfläche
 Eingriffnuten (34) für einen Bajonettverschluß mit
 Gegenausbildungen (37) an der Halteplatte (27) aufweisen und zwischen ihren einander zugewandten
 Bodenflächen das Zahnrad (32) einschließen, mittels
 welchem sie verdrehbar verbunden sind, und daß der
 Außendurchmesser der Trägerringe (28a, 28b) kleiner
 ist als der Fußkreisdurchmesser des Zahnrads (32).

- 12. Pistole nach Anspruch 11, dad urch gekennzeichne t, daß der Innendurchmesser der hohlzylindrischen Trägerringe (28a, 28h) dem der Führungsöffnung (36) entspricht und zur Aufnahme einer Kartusche (1) bemessen ist.
- 13. Pistole nach einem der Ansprüche 4 bis 12, da-durch gekennzeiche 1 chnet, daß die Länge der Kolbenstangen (3) derart bemessen ist, daß sie, wenn sie mit ihrem einen Ende die bei völlig leerer Kartusche (1) vorliegende erste Endlage einnehmen, nach Schwenken des Zahnradträgers (28) mit ihrem anderen Ende die zweite, bei voller Kartusche gegebene Endlage einnehmen.
- 14. Pistole nach einem der Ansprüche 1 bis 13, da-durch gekennzeichnet, daß die Mischspindel (25) drehbar ist und mit einem Drehantrieb (29) verbunden ist.

2/7

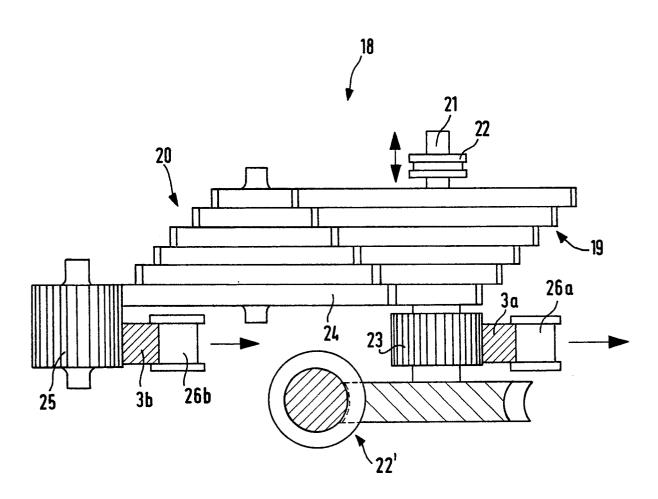
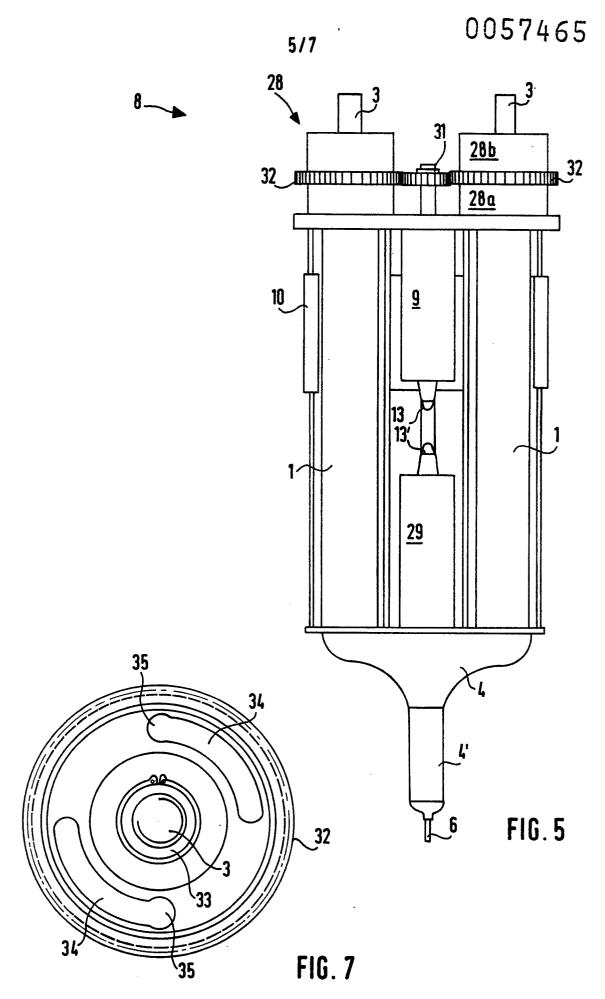
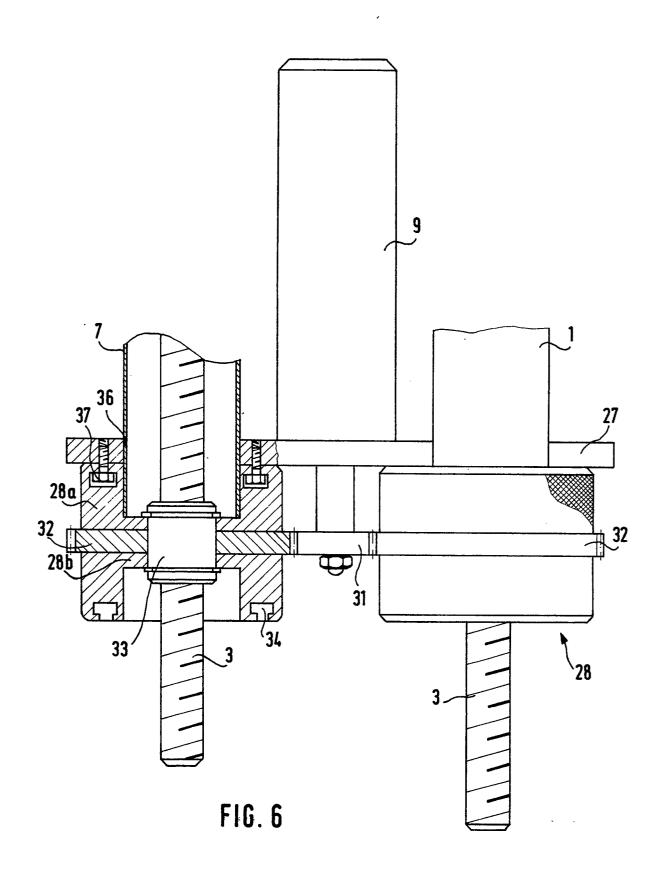
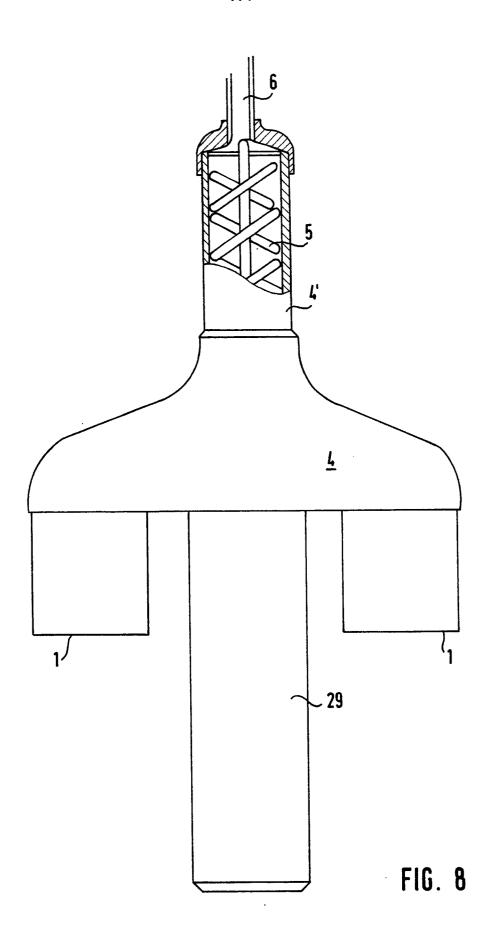





FIG. 4

