(1) Publication number:

0 059 952 **A1**

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 82101739.9

(22) Date of filing: 05.03.82

(5) Int. Cl.³: **B 60 R 16/02**B 60 H 1/00, H 03 J 1/02
H 03 G 1/02

//G06F1/00, G10L1/00

30 Priority: 05.03.81 JP 32166/81

(43) Date of publication of application: 15.09.82 Bulletin 82/37

(84) Designated Contracting States: DE FR GB

(71) Applicant: NIPPONDENSO CO., LTD. 1, 1-chome Showa-cho Kariya-shi Aichi-ken(JP)

72) Inventor: Nojiri, Tadao 10-809, Nagane Obu-cho Obu-shi Aichi-ken(JP)

(72) inventor: Kanamaru, Kenji 50, Minamiyashita Yata-cho Chiryu-shi Aichi-ken(JP)

(72) Inventor: Matsuyama, Masahiro 19-4, Ketsuyabu Shinbayashi-cho Chiryu-shi Aichi-ken(JP)

(72) Inventor: Nishikawa, Takayoshi 7-12, Tenno-cho Kariya-shi Aichi-ken(JP)

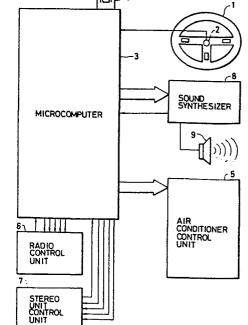

(72) Inventor: Ito, Yoji 7-12, Tenno-cho Kariya-shi Aichi-ken(JP)

FIG. 1

(74) Representative: Klingseisen, Franz, Dipl.-Ing. et al, Dr. F. Zumstein sen. Dr. E. Assmann Dr. R. Koenigsberger Dr. F. Zumstein jun. Dipl.-Ing. F. Klingseisen Bräuhausstrasse 4 D-8000 München 2(DE)

(54) Method and apparatus for controlling vehicle mounted devices and equipment.

(57) A demand for a change in the operating condition of at least one of a plurality of vehicle mounted devices is issued by means of a single push button switch (2) attached to the center of the steering wheel (1). When the vehicle occupant intends to manipulate a device such as a radio, stereo unit or an air conditioner, he depresses the switch to supply a microcomputer with a demand signal. The microcomputer (3) produces an instruction signal with which a sound synthesizer (8) produces sequential vocal annoucements which are emitted via a speaker (9). The occupant depresses the switch again within a predetermined period of time after the emission of a vocal announcement naming a device intended to control so that the sound synthesizer now provides various manipulative information relating to the available manipulations of the selected device. The driver depresses the switch to issue responsive instructions in response to an announcement of desired manipulation. The microcomputer thus operates to produce necessary control signals which are fed to a corresponding control unit (5, 6, 7) of the selected device. A sound recognizer (11) may be used in place of or together with the switch (2) to detect the demand and responsive instruction from the driver.

Ш

TITLE	OF	THE	INVENTION

2 METHOD AND APPARATUS FOR CONTROLLING

5 .

3 VEHICLE MOUNTED DEVICES AND EQUIPMENT

BACKGROUND OF THE INVENTION

This invention relates generally to method and apparatus for controlling various devices and equipment mounted on a vehicle, such as an automobile, and more particularly, the present invention relates to control of vehicle mounted devices whose operating conditions can be changed as desired.

Conventionally, changes of operating conditions of various devices and equipment in an automobile, for instance, a radio receiver, a stereo unit, an air conditioner or the like, have been effected manually by the occupant of the automobile. Namely, when the driver or the passenger of the motor vehicle intends to listen to a radio, he manually turns on the switch of the radio, and then he tunes the radio to a desired broadcasting frequency. Furthermore, he may manipulate the sound volume adjusting knob of the radio to set the sound volume to a desired level. In the same manner, when it is intended to operate a stereo unit or an air conditioning system of the motor vehicle, the occupant manipulates a corresponding switch or key to turn on a desired device, and then necessary adjustment, such as adjustment of temperature or the operating mode, is manually

effected.

16 .

However, the manual operation of such switches, keys or the like tends to distract the vehicle driver from steering efforts to such an extent that it might lead to a dangerous situation. Therefore, there have been a problem that manipulation for changing the operating condition of the vehicle mounted devices cannot be effected readily when the motor vehicle is running. The main reason for the difficulty of manipulation of the switches or the like of such devices resides in the fact that the positions of the manipulative switches or the like cannot be accurately recognized by the driver since his attention is mainly paid to the front of the motor vehicle.

SUMMARY OF THE INVENTION

The present invention has been developed in order to provide a method and apparatus for controlling various devices and equipment mounted on a vehicle so that the vehicle driver is not bothered by manipulation of various switches, knobs or the like.

It is, therefore, an object of the present invention to provide a method and apparatus for automatically controlling various devices mounted on a vehicle with simple instructions from the occupant so that safe driving is ensured.

25 According to a feature of the present invention,

1 sequential vocal announcements are emitted from a vehicle mounted speaker so that the vehicle occupant can selectively 2 respond to a desired announcement. The announcements include 3 various names of the devices to be operated and names of operations or manipulations to be performed. The occupant 5 issues responsive instructions against an announcement when he wishes the named device to operate. The responsive 7 instruction may be given either by manipulating a single 9 switch or button or by pronouncing predetermined vocal In the case that the responsive instructions are 10 given by vocal sounds, a sound recognizer responds to the 11 vocal sounds to detect the contents thereof. Various 12 operating conditions, such as tuning of a radio, sound volume 13 14 control of the radio or a stereo unit, temperature control and operating mode control of an air conditioner, may be 15 16 effected by supplying the vehicle occupant with corresponding information and by receiving responsive instructions from the 17 occupant in the same manner. 18 19 Although the emobodiments of the present invention will be described in connection with the control of vehicle 20 21 mounted devices. the invention may be adapted to control devices in a factory, plant or the like so that a number of 22 manipulations of various devices can be simply controlled 23 with a single switch or by talking to a vocal sound 24 responsive unit. 25

1 In accordance with the present invention there is 2 provided a method of controlling devices each having at least 3 one manipulative element, comprising the steps of: detecting an action of an operator indicating that a demand has 5 occurred for a change in operating conditions of at least one 6 of said devices which are arranged to operate under the 7 control of predetermined instructions; emitting sequential 8 vocal announcements each corresponding to the manipulations 9 of manipulative elements of said devices in response to the 10 detection of said action, each of said vocal announcements 11 being emitted at an interval to allow the operator to issue 12 responsive instructions; monitoring said responsive 13 instructions from the operator for a predetermined period of 14 time after the emission of each announcement; and changing 15 the operating conditions of one of said devices by 16 automatically operating one of said manipulative element 17 which has been announced just before the receipt of said 18 responsive instructions. 19 In accordance with the present invention there is also 20 provided apparatus for controlling devices each having at 21 least one manipulative element, comprising: control means for 22 effecting manipulative control of each of said devices in 23 accordance with manipulative instruction signals; means 24 responsive to the action of an operator for receiving a 25 demand for a change in operating conditions of at least one

2

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

· 20

21

22

23

24

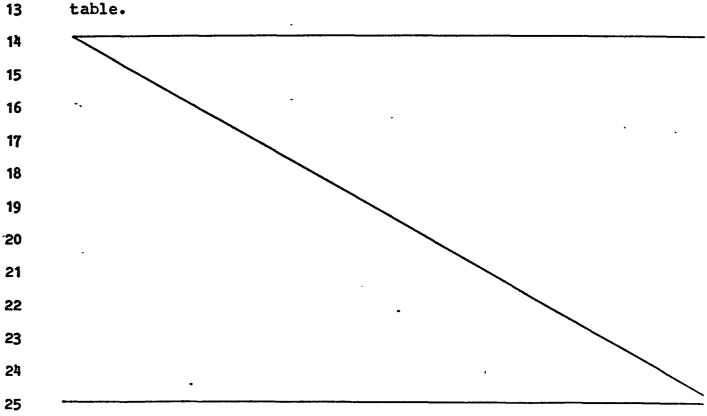
25

of said devices; vocal announcements emitting means for emitting sequential vocal sounds indicative of the names of said devices in response to the detection of said action, said vocal announcements being emitted at an interval to allow the operator to issue responsive instructions, said vocal announcements emitting means being capable of emitting sequential vocal sounds indicating the names of manipulative elements of each of said devices; means responsive to said responsive instructions from the operator for a predetermined period of time after the emission of each announcement for controlling said vocal announcement emitting means so that said vocal announcements indicating the names of said manipulative elements of one of said devices are emitted in a sequence when said responsive instructions are received within said predetermined period of time after the emission of each announcement indicative of one of said devices; and means for producing said manipulative instruction signals to cause said control means to effect a desired manipulation of said manipulative elements which has been announced just before the receipt of said responsive instructions which are received within said predetermined period of time.

BRIEF DESCRIPTION OF THE DRAWINGS

The object and features of the present invention will become more readily apparent from the following detailed description of the preferred embodiments taken in conjunction with the accompanying drawings in which:

```
Fig. 1 is a schematic diagram showing the entire
 1
      entire structure of an embodiment of the present invention;
2
             Fig. 2 is an operational flow chart showing the
3
 4
      operational processing in the entire microcomputer of Fig. 1;
             Fig. 3 is an operational flow chart showing a detailed
 5
      operational processing in the manipulative control routine of
      Fig. 2;
7
 8
             Fig. 4 is an operational flow chart showing a detailed
9
      operational processing of the instruction execution routine
      of Fig. 3;
10
             Fig. 5 is an operational flow chart showing a detailed
11
12
      operational processing of the power instruction routine of
      Fig. 4;
13
             Fig. 6 is an operational flow chart showing a detailed
14
15
      operational processing of the sound volume adjustment routine
      of Fig. 4:
16
             Fig. 7 is an operational flow chart showing a detailed
17
18
      operational processing of the temperature control instruction
      routine of Fig. 4;
19
20
             Fig. 8 is an operational flow chart showing a detailed
21
      operational processing of the airflow rate control
      instruction routine of Fig. 4;
22
             Fig. 9 is an operational flow chart showing a detailed
23
24
      operational processing of the air outlet switching routine of
25
      Fig. 4; and
```


Fig. 10 is a partial structural view of another

2	embodiment.
3	The same or corresponding elements and parts are
4	designated at like numerals throughout the drawings.
5	DETAILED DESCRIPTION OF THE INVENTION
6	Referring now to Fig. 1, a schematic diagram of an
7	embodiment of the present invention is shown. The apparatus
8	of Fig. 1, which is also used to perform the method according
9	to the present invention, generally comprises a normally-open
0	push button switch 2 attached to the center of the steering
1	wheel 1 of an unshown motor vehicle, a microcomputer 3, a
12	sound synthesizer 8 which supplies a vehicle mounted speaker
13	9 with synthesized vocal sounds.
14	The microcomputer 3 is responsive to a signal from the
15	push button switch 2, which will be referred to as a
16	manipultive switch hereafter. The manipulative switch 2 is
17	provided for receiving a demand or instructions from an
18	operator, such as the driver of the motor vehicle. A crystal
19	resonator 4 is shown to be connected to the microcomputer 3
20	having unshown central processing unit (CPU), a read-only
21	memory (ROM). a random access memory (RAM), a clock
22	generator, and input/output (I/O) devices. Namely the
23 ·	structure of the microcomputer is of convetional so that it
24	operates in accordance with a predetermined program stored in
25	the ROM in a well known manner. The microcomputer 3 has

output terminals connected to the sound synthesizer 8 and to various control units. In the illustrated embodiment, an air conditioner control unit 5, a radio control unit 6 and a stereo unit control unit 7 are shown to be connected to the outputs of the microcomputer 3. The microcomputer 3 also comprises input terminals for receiving signals indicative of the operating state of the radio and the stereo unit.

Although no power source is shown, the microcomputer 3 is arranged to receive a stabilized voltage via a voltage regulating circuit from the vehicle mounted battery.

In the above-mentioned ROM, are included regions M(0) to M(39) for storing instruction steps shown in the following table.

		7		
1	M(0)	INST FOR SOUND "RADIO"	M(20)	SET TEMP CONTROL FLAG
2	M(1)	SET RADIO FLAG		INST FOR SOUND "UP"
3		INST FOR SOUND "TUNING"	M(21)	SET UP FLAG
4	M(2)	SET TUNING FLAG	M(22)	INST FOR SOUND "DOWN"
5 ·	M(3)	INST FOR SOUND "POWER"	M(23)	SET DOWN FLAG
6	M(4)	SET POWER FLAG	M(24)	INST FOR SOUND "AIRFLOW RATE"
7	M(5)	INST FOR SOUND "SOUND VOLUME"	M(25)	SET AIRFLOW RATE FLAG
8	M(6)	SET SOUND VOLUME FLAG		INST FOR SOUND "UP"
9		INST FOR SOUND "UP"	M(26)	SET UP FLAG
10	M(7)	SET UP FLAG	M(27)	INST FOR SOUND "DOWN"
11	M(8)	INST FOR SOUND "DOWN"	M(28)	SET DOWN FLAG
12	M(9)	SET DOWN FLAG	M(29)	INST FOR SOUND "OUTLET"
13	M(10)	INST FOR SOUND "STEREO UNIT"	M(30)	SET OUTLET FLAG
14	M(11)	SET STEREO UNIT FLAG		INST FOR SOUND "VENTILATION"
15		INST FOR SOUND "POWER"	M(31)	SET VENTILATION FLAG
16 ,.	M(12)	SET POWER FLAG	M(32)	INST FOR SOUND "HEATER"
17	ы́(13)	INST FOR SOUND *SOUND VOLUME *	M(33)	SET HEATER FLAG
18	M(14)	SET SOUND VOLUME FLAG	M(34)	INST FOR SOUND "BILEVEL"
, 19		INST FOR SOUND "UP"	M(35)	SET BILEVEL FLAG
²⁰	H(15)	SET UP FLAG	M(36)	INST FOR SOUND "DEFROSTER"
21	H(16)	INST FOR SOUND "DOWN"	M(37)	SET DEFROSTER FLAG
22	H(17)	SET DOWN FLAG	M(38)	INST FOR SOUND "AUTOMATIC"
23	M(18)	INST FOR SOUND "AIR CONDITIONER"	M(39)	SET AUTOMATIC FLAG
24	M(19)	SET AIR CONDITIONER FLAG		
25		INST FOR SOUND "TEMPERATURE"		

INST: INSTRUCTION

The air conditioner control unit 5 comprises therein 1 an opening degree adjusting actuator for controlling the air 2 mixing damper used for temperature adjustment, a motor drive 3 4 circuit for driving the blower motor used for sending temperature-adjusted air to the automobile compartment, 5 outlet switching actuator for changing the various 6 operational modes of the temperature-adjusted air outlets. 7 These devices are respectively controlled by various 8 instruction signals from the microcomputer 3 so as to adjust 9 the air in the automobile compartment. 10 The radio control unit 6 has a function of turning on 11 and off the power source of the radio in response to a power 12 source on-off instruction signal from the microcompute 3, a 13 function of adjusting the sound volume in response to a sound 14 volume instruction signal from the microcomputer 3, and a 15 function of automatically tuning in response to a tuning 16 instruction signal from the microcomuter 3. The radio 17 control unit 6 is arranged to send a signal indicative of on 18 or off state of the power source of the radio to the 19 20 microcomputer 3. 21 The stereo unit control unit 7 has a function of turning on and off the power source of the stereo unit in 22 response to a power souce on-off instruction signal from the 23 24 microcomputer 3, and a function of adjusting the sound volume 25 in response to a sound volume instruction signal from the

microcomputer 3. The stereo unit control unit 7 is arranged to send a signal indicative of on or off state of the power source of the stereo unit to the microcomputer 3.

16 -

9 .

The sound synthesizer 8 comprises a vocal sound data ROM for storing vocal sound data, which is used for emitting vocal sounds, in each predetermined region thereof. The sound synthesizer 8 is arranged to synthesize the contents of a predetermined region of the sound data ROM from the first address thereof in response to an instruction signal fed from the microcomputer 3, namely, in response to an address designation signal designating the first address of the predetermined region, to emit the synthesized vocal sound from the speaker 9, and is further arranged to send a vocal sound termination signal indicating the termination of sound synthesizing to the microcomputer 3 when reaching the last address of the predetermined region.

The operation of the apparatus of Fig. 1 will be described with reference to operational flow charts of Figs. 2 to 9. Fig. 2 is an operational flow chart showing the entire operation of the microcomputer 3; Fig. 3, an operational flow chart showing detailed operation of the manipulative control operation routine in Fig. 2; Fig. 4, an operational flow chart showing detailed operation of instruction execution routine in Fig. 3; and Figs. 5 to 9, operational flow charts showing detailed operations of

1 respective instruction routines in Fig. 4.

18

19

20

21

22

23

24

25

2 When an unshown key switch is turned on in an automobile comprising the elements or devices 1 to 9 shown in 3 Fig. 1 at the time of starting operation, electric power is 4 supplied from the automobile battery to respective electrical 5 6 systems to render the same active. The microcomputer 3 starts operating from the starting step 100 of Fig. 2 to set 7 the registers, counters and latches in the microcomputer 3 to 8 their initial conditions which are necessary for starting 9 operation. The operation of setting to initial conditions 10 11 includes a step of resetting all flags, which will be described later, and a step of setting initial values for 12 airflow mode data, blow off mode data and so on. Operation 13 of the main routine, which will be described hereinbelow, 14 comprising an air conditioner control routine 300 and a 15 manipulative control routine 400 is repeatedly executed at an 16 interval of several hundreds of milliseconds. 17

In the air conditioner control routine 300, various instruction signals are sent to the opening degree ajdustor, the motor drive circuit, and to the outlet switching atuator of the air conditioner control unit 5 by executing operational processing for pertinently controlling the air in the automobile compartment, namely by calculating the opening degree of the air mixing damper and the airflow rate data W etc. on the basis of detection signals from various sensors

and temperature setting data T preset in a temperature setting circuit and airflow rate and blow off mode data based on mode information preset in an airflow rate and blow off mode setting circuit. The sensors for measuring inner and outer temperatures and for detecting air mixing damper opening degree, and the temperature setting circuit as well as the airflow and blow off mode setting circuits are not shown in Fig. 1 for simplicity. As a result of the operation, instruction signals are fed to the opening degree adjustment actuator of the air conditioner control unit 5, the motor drive circuit and the outlet switching actuator.

In a following manipulative control operation routine 400, the turn-on signal from the manipulative switch 2 is monitored, which turn-on signal indicates that a deman has occurred for a change in operating conditions of at least one of the devices 5, 6 and 7. When detecting the turn-on signal during monitoring, the names of various manipulations of the radio, stereo unit and the air conditioner are announced in a predetermined sequence. When another turn-on signal from the manipulative switch 2 is detected, an operation is executed so that an instruction signal is fed to an objective control unit, with which instruction signal of the announced manipulation at the last will be performed.

Fig. 3 shows a detailed operational flow of the manipulative control routine 400. When reaching the

manipulative control routine 400, if the manipulative switch 1 2 has never been turned on till this time, the answer of a 2 starting flag deciding step 401, which comes first, assumes 3 NO because all the flags used in the manipulative control routine 400 have been reset. Then the operational flow 5 6 enters into a manipulative switch state deciding step 402, where the answer thereof assumes NO when the manipulative 7 switch 2 has not been turned on, to terminate one cycle of the operation of the manipulative control routine 400. Ater 9 this. the above-operation is executed whenever reaching the 10 manipulative control operation routine 400 as long as the 11 manipulative switch 2 is not turned on. 12 13 After this, when the manipulative switch 2 is turned on to change the power of the radio from OFF state to ON 14 state, the level of the signal from the manipulative switch 2 15 16 varies to cause the answer of the manipulative switch state deciding step 402 of Fig. 3 to become YES. 17 18 operational flow goes to the starting flag setting step 403 to set the starting flag. Then entering into a designation 19 region setting step 404 to set a designation region M to 20 M(0), and the operational flow goes to an execution step 405 21 to execute the contents of the region M(0) of the ROM of the 22 23 microcomputer 3. Namely, an instruction signal for 24 announcing "RADIO" according to the ROM table is sent to the

sound synthesizer 8, and the operational flow enters into an

instruction execution routine 500. With this operation, the sound synthesizer 8 starts synthesing the vocal sound of "RADIO".

In the instruction execution routine 500, since all the radio flag, stereo unit flag and the air conditioner flag are left in reset condition, which was done in the initial setting, all the answers of the radio flag deciding step 501, the stereo unit flag deciding step 502 and the air conditioner flag deciding step 503 assume NO to terminate one cycle of the operation.

When the operational flow reaches again the starting flag deciding step 401 of the manipulative control routine 400 of Fig. 3, the answer thereof becomes YES since the starting flag has been set. Because a continuation flag and a timer flag have been reset from the initial setting, the following continuation flag deciding step 418 and the timer flag deciding step 406 assume NO, and the operational flow enters into a vocal sound termination deciding step 407 where the answer thereof assumes NO because no vocal sound termination signal has been sent from the sound synthesizer 8. The operational flow enters into a manipulative switch state deciding step 408 whose answer assumes NO when the manipulative switch has not been turned on again. Thus, the operational flow enters into the instruction execution routine 500 to execute the above-described operation.

In the case that the vocal sound termination signal is 1 not sent from the sound synthesizer 8 while the manipulative 2 switch 2 is not turned on again, the above operation is 3 repeatedly executed. When the sound synthesizer 8 completes synthesizing the vocal sound of "RADIO" and produces the vocal sound termination signal, the answer of the vocal sound termination deciding step 407 becomes YES when the operational flow reaches it. Then the operational flow 8 enters into a timer flag setting step 409 to set the timer 9 flag, and then goes to a time measuring step 410 to measure 10 the time counting the number of times of reaching. As two 11 12 seconds have not elapsed since entering into the time measuring step 410, the answer thereof assumes NO to go to 13 14 the manipulation switch state deciding step 408. Accordingly, whenever the operational flow reaches the timer 15 16 flag deciding step 406 from the next time, the operational flow directly goes to the time measuring step 410 because the 17 18 timer flag has been set to cause the answer of decision thereof to become YES. Namely, it is made possible to accept 19 responsive instructions via the manipulative switch 2 for the 20 operation of the radio until two senconds will have passed 21 from the emission of the vocal announcement of "RADIO". 22 When it is recognized by the operator, such as the 23 24 vehicel driver, that the radio should be manipulated and the manipulative switch 2 is turned on before the lapse of two 25

senconds, the answer of the manipulation switch deciding step

```
408 becoms YES as the operational flow reaches it to enter
2
       into a first designation region changing step 412. In the
3
4
       first designation region changing step 412, the designation
       regions are changed by one in connection with the designation
5
       region M according to the arrows shown below.
6
                M(0) \rightarrow M(1) \rightarrow M(2), M(3) \rightarrow M(4), M(5) \rightarrow M(6) M(7), M(8) \rightarrow
7
                M(9), M8(10) \rightarrow M(11) \rightarrow M(12), M(13) \rightarrow M(14) \rightarrow M(15),
8
                M(16) \rightarrow M(17), M(18) \rightarrow M(19) \rightarrow M(20) \rightarrow M(21),
9
                M(22) \rightarrow M(23), M(24) \rightarrow M(25) \rightarrow M(26), M(27) \rightarrow M(28),
10
11
                M8(29) \rightarrow M(30) \rightarrow M(31), M(32) \rightarrow M(33), M(34) \rightarrow M(35),
12
                M(36) \rightarrow M(37), M(38) \rightarrow M(39)
13
                Since the designation region M by that time has been
       M(0), the designation region M becomes M(1) after being
14
                   The operational flow enters into a next execution
15
16
        step 415 to execute the contents of M(1), where the radio
        flag is set according to the above-mentioned ROM table, and
17
18
        an instruction signal for announcing "TUNING" is sent to the
        sound synthesizer 8, while the timer flag is set. Then the
19
20
        operational flow goes to the timer flag setting step, and
        then goes to the instruction execution routine 500. With
21
        this operation, the sound synthesizer 8 starts synthesizing
22
        vocal sounds of "TUNING". When the operational flow reaches
23
        a radio flag deciding step 501 of the instruction execution
24
        routine 500, the answer thereof becomes YES to go to a tuning
25
```

flag deciding step 504, power flag deciding step 505 and to a 1 sound volume flag deciding step 506. Since all these flags 2 have been reset from the initial setting, all the answers 3 thereof assume NO to complete one cycle of operation. 4 When the operational flow reaches the timer flag 5 deciding step 406 of Fig. 3, the answer thereof becomes NO 6 because of the reset state of the timer flag, and thus the 7 operational flow changes to enter into the instruction 8 execution routine 500 via the vocal sound termination 9 deciding step 407 and the manipulative switch state deciding 10 step 408. When the sound synthesizer 8 completes 11 synthesizing the vocal sound of "TUNING" and produces a sound 12 termination signal, the operational flow goes from the vocal 13 14 sound termination deciding step 407 to the timer flag setting 15 step 409 to set the timer flag, and thus, the answer of the timer flag deciding step will be YES from the next time when 16 the operational flow reaches it, and the operational flow 17 goes via the time measuring step 410, time deciding step 411 18 19 and the manipulative switch deciding step 408 to the

When a period of time of two seconds passes without receiving the turn-on signal from the manipualative switch 2 with the operator's recognition that the emitted vocal sound of "TUNING" is different from one which is intended to manipulate, the answer of the time deciding step 411 becomes

instruction execution routine 500.

20

21

22

23

24

```
YES when the operational flow reaches it, and thus the
1
       operational flow goes to a termination deciding step 413.
2
       the termination deciding step 413, it is decided whether or
3
       not the designation region M corresponds to one of M(5),
4
       M(8), M(13), M(16), M(18), M(22), M(27), M(29), M(38). Thus,
5
       the answer of the decision becomes NO because the designation
6
       region M by that time is M(l), and therefore, the operational
7
8
       flow goes to a second designation region changing step 414.
       In the second designation region changing step 414, the
9
       designation region M is changed by one in accordance with the
10
       following arrows.
11
               M(0) \rightarrow M(10) \rightarrow M(18), M(1) \rightarrow M(3) \rightarrow M(5), M(6) \rightarrow M(8),
12
               M(11) \rightarrow M8(13), M(14) \rightarrow M(16), M(19) \rightarrow M(24) \rightarrow M(29),
13
               M(20) \rightarrow M(22), M(25) \rightarrow M(27), M(30) \rightarrow M(32) \rightarrow M(34) \rightarrow
14
               M(36) \rightarrow M(38)
15
16
               Since the designation region M has been M(1) by that
       time, the designation region M will be M(3) after being
17
                  Then the opeational flow goes to a next execution
18
       step 415 in which the contents of M(3) are executed, namely,
19
20
       an instruction signal for announcing "POWER" is sent
       according to the ROM table to the sound synthesizer 8, and
21
22
       the operational flow goes to the instruction execution
       routine 500 via a timer flag resetting step 416. With this
23
       operation the sound synthesizer 8 starts synthesizing the
24
       vocal sound of "POWER" to announce the same.
25
```

In the same manner as described in the above, it is 1 monitored, in connection with the announcement of "POWER", to 2 detect if the manipulative switch 2 is turned on until two 3 senconds elapse. When the manipulative switch 2 is turned on with the operator's recognition that the power source should 5 be turned on in response to the vocal sound emission, the 6 answer of the manipulative switch state deciding step 408 7 becomes YES when the operational flow reaches it, and thus 8 the operational flow goes to the first designation region 9 changing step 412. Since the designation region M has been 10 11 M(3) by that time, the designation region becomes M(4) after being changed according to the above-described changes. 12 in the next executing step 415, the contents of M(4) of the 13 ROM table, namely, the power flag is set. Accordingly, in 14 the instruction execution routine 500 following the timer 15 flag resetting step 416, when the operational flow reaches 16 the power flag deciding step 505 of Fig. 4, the answer 17 18 thereof becomes YES to go to a power instruction routine 513. In the power instruction routine 513, an instruction signal 19 for the operational processing shown in Fig. 5, i.e. an 20 21 instruction signal for changing the power condition in accordance with the power on-off state signal from the radio 22 23 control unit 5, is sent to the radio control unit 5. 24 Entering into an all-flag resetting step 520 of Fig. 4, all 25 the flags necessary for operating processing in the

manipulative control routine 400 to complete one cycle of the operation. Therefore, when the operational flow reaches the starting flag deciding step 401 of Fig. 3 next time, which step is encountered first in the manipulative control routine 400, the answer thereof becomes NO to assume the same condition as in the initial condition described in the above. The radio control unit 5 puts the radio power source in ON state in response to the power-on instruction signal.

.3

In the case that the manipulative switch 2 is turned on to tune the radio, and then the manipulative switch 2 is again turned on when the vocal sound of "TUNING" is emitted, tuning flag is set because the designation region M is changed to M(2) in the first designatin region changing step 412. Consequently, when the operational flow reaches the tuning flag deciding step 504, the answer thereof becomes YES to go to the tuning instruction step 512 in which a tuning instruction is sent to the radio control unit 5. With this operation, the radio control unit 5 causes the radio to be tuned.

Suppose the manipulative switch 2 is turned on to adjust the sound volume of the radio so that the designation region M is changed from M(3) to M(5) in the second designation region changing step 415 after vocal sounds of "RADIO", "TUNING" and "POWER" are emitted. If the manipulative switch 2 is again turned on when the vocal sound

of "SOUND VOLUME" is emitted, the designation region M is 1 changed from M(5) to M(6) in the first designation region 2 changing step 412. Then a sound volume flag is set in the 3 execution step 415 while an intruction for vocal sound of 4 "UP" is sent to the sound synthesizer 8. 5 Therefore, when the operational flow reaches a sound volume flag deciding step 6 506 of Fig. 4, the answer thereof becomes YES to go to a 7 sound volume adjustment instruction routine 514 in which 8 operational processing shown in Fig. 6 is executed, and no 9 sound volume instruction does not occur since none of up flag 10 and down flag has been set. When the manipulative switch 2 11 is continously depressed to be turned on in response to the 12 emission of the sound of "UP", the up flag will be set 13 because the designation region M is changed to M(7) in the 14 first designation region changing step 412. With this 15 operation. the continuation flag is set and simultaneously, 16 an instruction signal, with which increase by 3dB per one 17 second will result, is sent to the radio control unit 5 in 18 the sound volume adjustment instruction routine 514 of Fig. 19 6. As a result, the sound volume of the radio increases more 20 and more. The increase in sound volume stops by cancelling 21 the turn-on state of the manipulative switch 2, and all the 22 flags necessary for operational processing in the 23 24 manipulative control routine 400 are reset. In order to decrease the sound volume, the manipulative switch 2 may be 25

continously turned on in response to the vocal sound of

"DOWN" which is emitted after "UP", so that decrease by 3dB

per one second will result in the same manner as described in

the above.

16-

Namely, it is possible to emit various vocal sounds in a predetermined sequence in accordance with the contents of the above-mentioned ROM table, the first designation region changing step 412 and the second designation region changing step 414, while changes in operation in various manipulating elements can be efected by turning on the manipulative switch 2 at an appropriate time.

For instance, in the case of operating the stereo unit, the manipulative switch 2 is not turned on in response to the emission of the vocal sound of "RADIO", but is turned on in response to the sound of "STEREO UNIT" which is emitted subsequently. Thus, the stereo unit flag is set so that the answer of the stereo unit flag deciding step 502 of Fig. 4 becomes YES. When the manipulative switch 2 is turned on in response to the sound of "POWER" emitted after this, the power flag is set so that the answer of the power flag deciding step 507 becomes YES when the operational flow reaches it, and the operational flow goes to a power instruction step 515 to produce power on/off instruction signal (this is done by the same operating process as in Fig. 5) to turn on or off the stereo unit. When it is intended to

adjust the sound volume rather than the on/off operation of power, the manipulative switch 2 is not manipulated at all in response to the emission of the vocal sound of "POWER", but the manipulative switch 2 is again turned on in response to the sound of "SOUND VOLUME" which is emitted subsequently, the sound volume flag is set to cause the answer of the sound volume flag deciding step 508 to assume YES when the operational flow reaches it. The operational flow goes to a sound volume adjustment instruction routine 516 and the same operating processing as in Fig. 6, namely an operating processing for sending an instruction signal with which increase or decrease by 3dB per one second is effected when the manipulative switch is continously turned on in response to "UP" or "DOwN" to the stereo unit control unit 6, is executed.

On the other hand, in the case of operating the air conditioner, the manipulative switch 2 is not turned on in response to the emission of sounds of "RADIO" and "STEREO UNIT", but is turned on in response to emission of vocal sound "AIR CONDITIONER" which is emitted subsequently, and thus the air conditioner flag is set so that the answer of the air conditioner flag deciding step 503 of Fig. 4 becomes YES. When the manipulative switch 2 is turned on in response to the vocal sound of "TEMPERATURE" which is emitted subsequently, temperature control flag is set so that the

answer of the temperature control flag deciding step 509 1 becomes YES when the operational flow reaches it. Thus, the 2 operational flow goes to a temperature control instruction 3 routine 517 in which the operating processing of Fig. 7 is 4 executed in the same manner as in the case of sound volume 5 adjustment shown in Fig. 6. Namely, when the manipulative 6 switch 2 is continuously depressed to be turned on in 7 8 response to the emission of the sound of "UP" or "DOWN", the predetermined temperature data T is either raised or lowered 9 10 by 1 degree centigrade per two seconds, and an instruction signal for emitting the vocal sound of the value of the 11 changed, i.e. raised or lowered, temperature is sent to the 12 sound synthesizer 8. Accordingly, air conditioning is 13 effected so that the temperture in the automobile compartment 14 15 approaches the changed temperature setting by executing the 16 air conditioner control routine 300 with respect to the 17 changed temperature setting data T. In the case of adjusting the airflow rate rather than 18 the temperature adjustment, the manipulative switch 2 is not 19 manipulated at all in response to "TEMPERATURE". 20 manipulative switch 2 is turned on in response to the 21 announcement of "AIRFLOW" which is emitted subsequently, and 22 thus an airflow flag is set to cause the answer of an airflow 23 24 flag deciding step 510 to become YES when this step is encounterd. Then the operaional flow goes to an airflow 25

adjustment instruction routine 518 in which the operational processing shown in Fig. 8 is executed in the same manner as in the cases of Fig. 6 and Fig. 7. Namely, when the manipulative switch 2 is continuously turned on in response to the emission of the sound of "UP" or "DOWN", an operational process is executed to increase or decrease an airflow rate data W by AW per one second. Therefore, the airflow rate is either increased or decreased by executing the opertional process of the air conditioner control routine 300 of Fig. 2 with respect to the changed airflow rate data W.

In the case of changing the air outlets rather than the temperature adjustment and the airflow rate adjustment, the manipulative switch 2 is not manipulated at all in response to "TEMPERATURE" and "AIRFLOW", but is manipulated again in response to "OUTLETS" emitted subsequently so that outlet flag is set. Therefore, when the operational flow reaches an outlet flag deciding step 511, the answer thereof becomes YES to go to an outlet switching routine 519. If the manipulative switch 2 is not manipulated at all after reaching the outlet switching routine 519, vocal sounds of "VENTILATION", "HEATER", "BILEVEL", "DEFROSTER" and "AUTOMATIC" are emitted one after another. Thus, when the manipulative switch 2 is turned on in response to a vocal sound emission corresponding to an operating mode in which a ch

- ange should be made, the corresponding flag is set so that an
- outlet mode data is changed in the operating process of Fig.
- 9. Accordingly, the outlets are switched in accordance with
- the changed mode by executing the air conditioner control
- 5 routine 300 of Fig. 2 with respect to the corrected outlet
- 6 mode.
- 7 On the other hand, when the operational flow reaches
- 8 the termination deciding step 413 with the designation region
- 9 M being M(5), M(8), M(13), M(16), M(18), M(22), M(27), M(29),
- 10 M(38), while the manipulative switch 2 has not been turned on
- 11 again in response to emission of vocal sound of a
- manipulative element to be changed or the like, namely, when
- 13 two seconds have elapsed without receving the turn-on signal
- from the manipulative switch 2 after the emission of one of
- the vocal sounds of "SOUND VOLUME", "DOWN", "AIR
- 16 CONDITIONER", "OUTLET" and "AUTOMATIC", the answer of the
- termination deciding step 413 becomes YES. Then the
- operational flow goes to the all-flag resetting step 417 to
- 19 reset all the flags necessary for operational processing of
- the manipulative control routine 400, so that the operational
- 21 processing for manipulative control returns to the
- 22 above-mentioned initial condition.
- In the above-described embodiment, although the
- 24 manipulative switch 2, which is manually operable, is used to
- 25 produce a demand or instruction signal, it may be possible to

receive the demand or instructions from the operator by
recognizing the vocal sounds of "CHANGE", "YES" or "NO" of
the driver or others by employing a sound recognizing circuit
ll with a microphone 10 provided in the vicinity of the
steering wheel as shown in Fig. 10. The sound recognizer 11
detects a plurality of predetermined vocal words separately
to send corresponding recognition signals to the
microcomputer 3. Furthermore, both sound recognition and

switch manipulation may used.

Although an example, in which the order of emission of sounds is predetermined, has been described, the order of vocal sound emission may be changed by providing a fast feeding switch or the like, or by arranging such that vocal sound emission takes immediately after the last vocal sound emission. Furthermore, it may be possible to arrange such that vocal sounds which are needed frequently are emitted preferentially.

Furthermore, the various manipulative elements to be controlled are not limited to those described in the above, and therefore, they may include wiper switch, head light switch or the like.

Furthermore, although the sound synthesizer 8 has been described as a vocal announcment emittin means, it is possible to use a device utilizing a magnetic recording tape or the like in which words to be pronounced have been prerecorded.

1	From the foregoing description, it will be understood
2	that various devices mounted on a motor vehicle or the like
3	can be readily and accurately controlled by issueing
4	instructions by means of a manually operable switch or by
5	pronouncing predetermined vocal words. Since there is no
6	need to manipulate various switches or keys to turn on, to
7	adjust or to select a desired operating mode of the device
8	which is intended to operate, the vehicle driver can
9	concentrate on driving the vehicle, and thus safe driving can
10	be ensured.
11	The above-described embodiments are just examples of
12	the present invention; and therefore, it will be apparent for
13	those skilled in the art that many modifications and
14	variations may be made without departing from the spirit of
15	the present invention.
16	
17	·
18	
19	
20	
21	
22	•
23	
24	
25	

1 WHAT IS CLAIMED IS:

2

- 3 1. A method of controlling devices each having at least 4 one manipulative element, comprising the steps of:
- 5 (a) detecting an action of an operator indicating 6 that a demand has occurred for a change in operating
- that a demand has occurred for a change in operating

 conditions of at least one of said devices which are arranged
- 8 to operate under the control of predetermined instructions;
- 9 (b) emitting sequential vocal announcements each
- 10 corresponding to the manipulations of manipulative elements
- of said devices in response to the detection of said action,
- each of said vocal announcements being emitted at an interval
- 13 to allow the operator to issue responsive instructions;
- 14 (c) monitoring said responsive instructions from the
- operator for a predetermined period of time after the
- 16 emission of each announcement; and
- 17 (d) changing the operating conditions of one of said
- 18 devices by automatically operating one of said manipulative
- 19 element which has been announced just before the receipt of
- 20 said responsive instructions.

- 22 2. A method as claimed in Claim 1, wherein said step of
- 23 detecting is performed by detecting a predetermined condition
- of a manually operable switch or by detecting a predetermined
- 25 vocal demand from said operator.

- 1 3. A method as claimed in Claim 1, wherein said step of
- 2 emiting vocal announcements comprises a step of synthesizing
- 3 at least one predetermined vocal word by selectively reading
- 4 the contents of a memory in which data corresponding to
- 5 various vocal words indicating said manipulations is stored.

- 7 4. A method as claimed in Claim 1, wherein said step of
- 8 monitoring said responsive instructions is performed by
- 9 detecting a predetermined condition of a manually operable
- 10 switch or by detecting a predetermined vocal demand from said
- 11 operator.

12

- 13 5. A method as claimed in Claim 1, wherein said step of
- emitting vocal announcements comprises a step of emitting a
- vocal sound only when no responsive instruction is detected
- within said predetermined period of time.

- 18 6. A method as claimed in Claim 3, further comprising a
- step of changing a designation region with which
- 20 predetermined contents of a predetermined region in said
- 21 memory are read out, said step of changing the designation
- region being performed, when said responsive instructions are
- detected within said predetermined period of time, by
- 24 changing said designation region by one to a next region in a
- 25 sequence predetermined for each of said regions.

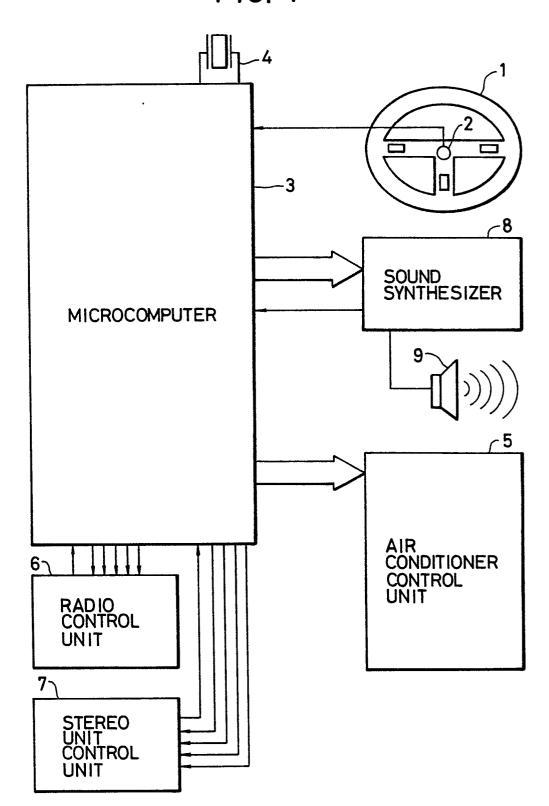
- 1 7. A method as claimed in Claim 6, further comprising
- 2 another step of changing the designation region in a
- 3 different manner from the first-mentioned changing step, said
- 4 another step of changing being performed when said responsive
- 5 instructions are not detected within said predetermined
- 6 period of time, while the designation region assumes one of
- 7 predetermined designation regions, said another step of
- 8 changing the designation region being performed to change
- 9 said designation region by one

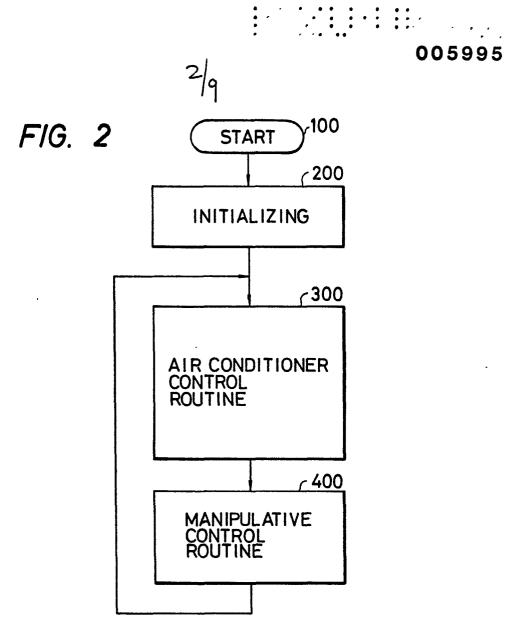
- 11 8. A method as claimed in Claim 1, wherein said operating
- 12 conditions to be controlled includes on/off operation, tuning
- and sound volume control of a radio mounted on a motor
- vehicle; on/off operation and sound volume control of a
- stereo unit mounted on said motor vehicle; and on/off
- operation, temperature adjustment, airflow rate control and
- air outlet switching of an air conditioning system mounted on
- 18 said motor vehicle.

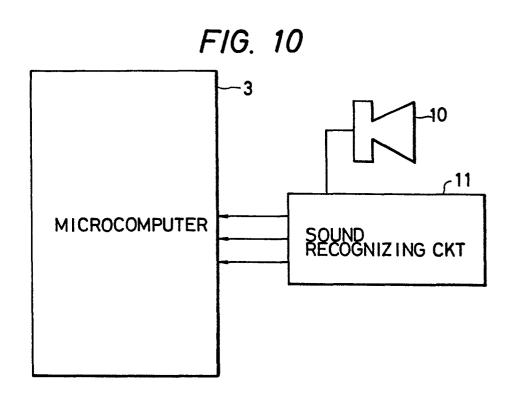
- 20 9. Apparatus for controlling devices each having at least
- 21 one manipulative element, comprising:
- 22 (a) control means for effecting manipulative control
- of each of said devices in accordance with manipulative
- 24 instruction signals;
- 25 (b) means responsive to the action of an operator for

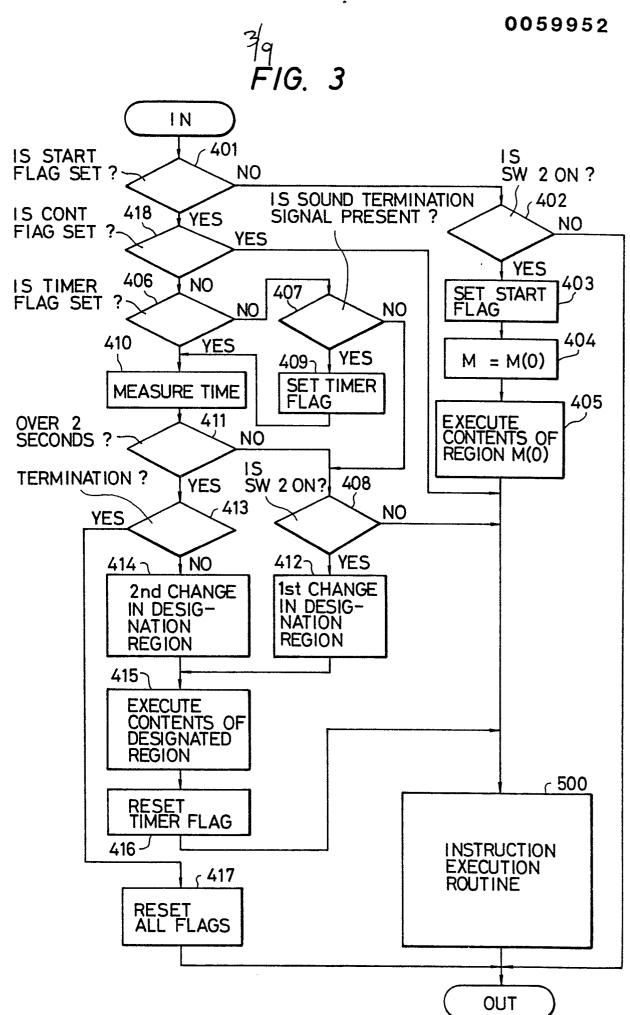
- receiving a demand for a change in operating conditions of at least one of said devices;
- 4 sequential vocal sounds indicative of the names of said
 5 devices in response to the detection of said action, said
 6 vocal announcements being emitted at an interval to allow the
 7 operator to issue responsive instructions, said vocal
 8 announcements emitting means being capable of emitting
 9 sequential vocal sounds indicating the names of manipulative

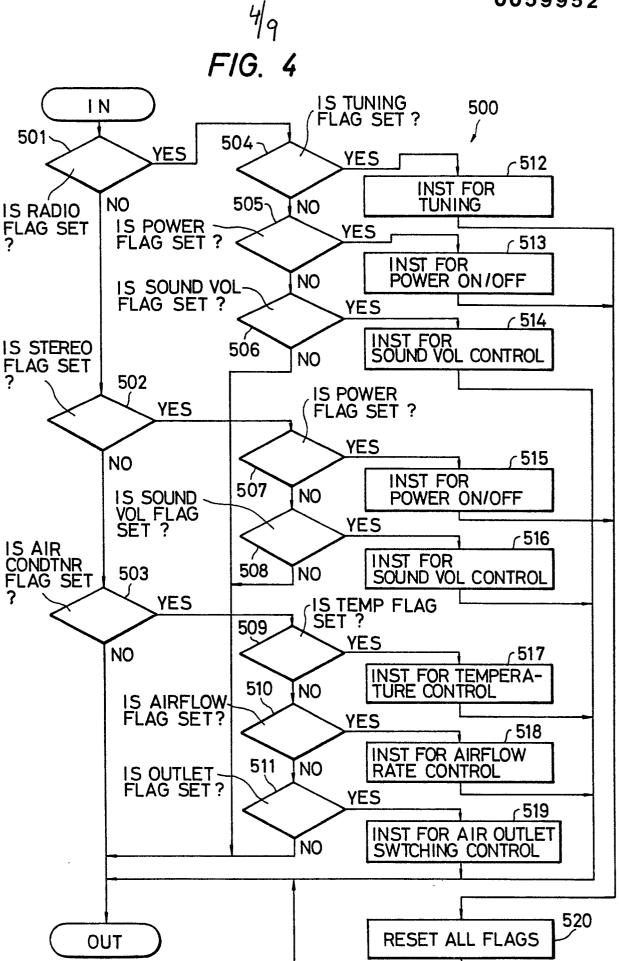
elements of each of said devices;

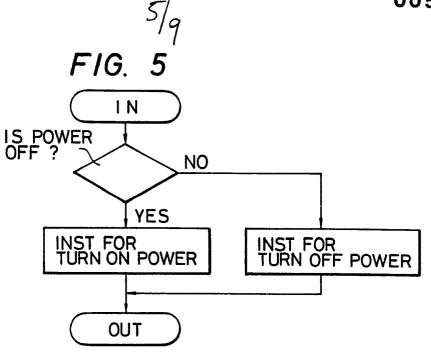

² 20

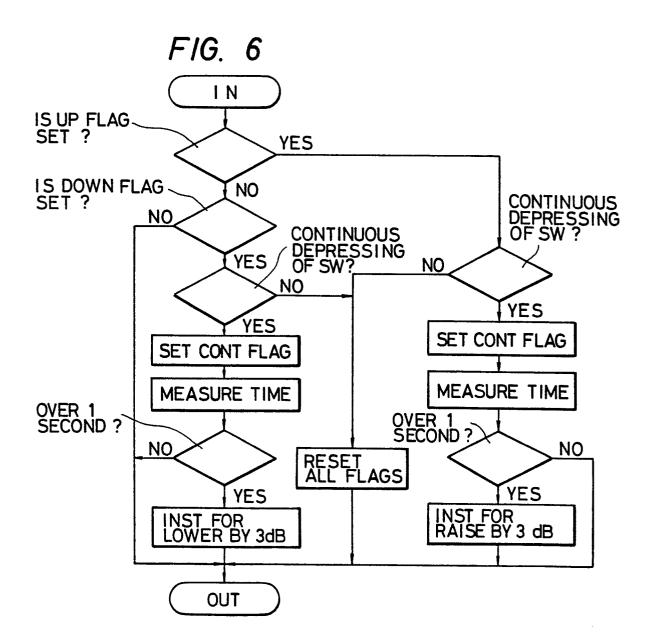

- (d) means responsive to said responsive instructions from the operator for a predetermined period of time after the emission of each announcement for controlling said vocal announcement emitting means so that said vocal announcements indicating the names of said manipulative elements of one of said devices are emitted in a sequence when said responsive instructions are received within said predetermined period of time after the emission of each announcement indicative of one of said devices; and
- (e) means for producing said manipulative instruction signals to cause said control means to effect a desired manipulation of said manipulative elements which has been announced just before the receipt of said responsive instructions which are received within said predetermined period of time.

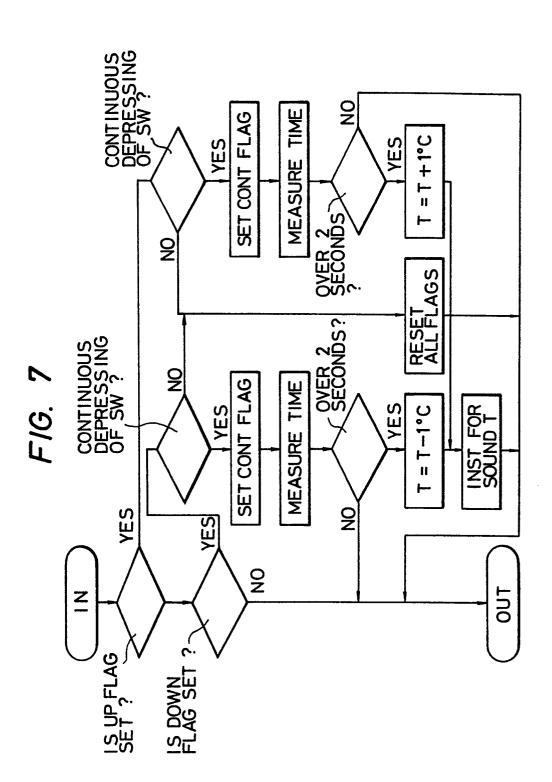

1	10. Apparatus as claimed in Claim 9, wherein said means
2	responsive to the action comprises a manually operable
3	switch; wherein said means responsive to the action comprises
4	a sound recognizer which detects a predetermined vocal demand
5	from said operator; wherein said vocal announcements emitting
6	means comprises a sound synthesizer which produces vocal
7	sounds by reading out contents of a predetermined region of a
·8	memory; wherein said means responsive to said responsive
9	instructions comprises a sound recognizer which detects a
10	predetermined vocal word from said operator.
11	
L2	
L3	
14	
15	
16	et e
17	;
18	
19	
20	
21	•
22	•
23	
24	÷
25	


1/9


FIG. 1







6/9

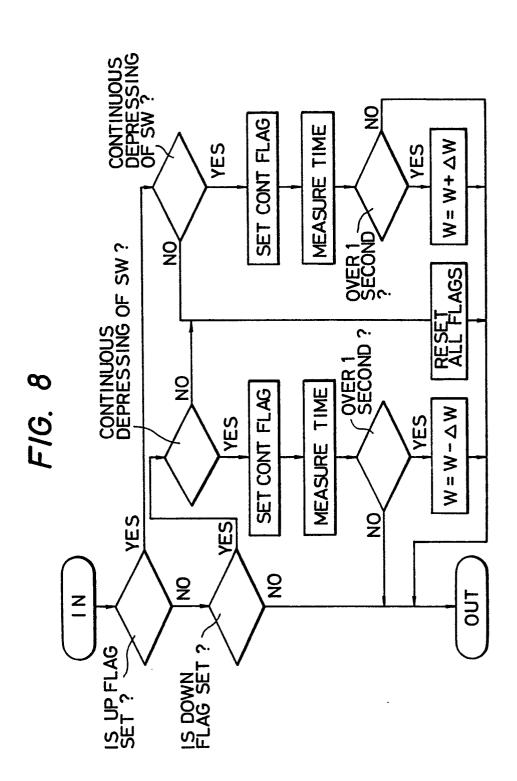
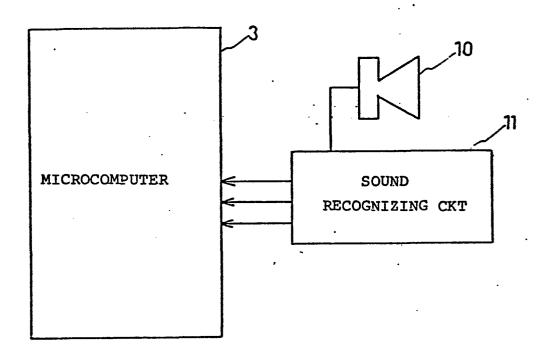



FIG. 9 IN IS VENTILATION FLAG SET? YES OUTLET MODE = VENTILATION NO IS HEATER . FLAG SET ? YES OUTLET MODE = HEATER NO IS BILEVEL FLAG SET? YES OUTLET MODE = NO BILEVEL IS DEFROSTER-FLAG SET ? YES OUTLET MODE = DEFROSTER NO IS AUTOMATIC-FLAG SET? <u>YES</u> OUTLET MODE = AUTOMATIC NO RESET FLAGS ALL

OUT

9/9

FIG. 10

£

EUROPEAN SEARCH REPORT

ΕP 82 10 1739

Category		indication, where appropriate, nt passages	Relevant to claim	CLASSIFICATION APPLICATION	
A	WS-A-4 060 848 (* abstract; column 28; column 4, column 6, lines 7, lines 10 to lines 18 to 20; column 23, lines 18 to column 23, lines 38 to column 24, lines 38 to column 25, lines 38 to column 26, lines 18, lines 38 to column 26, lines 18, li	nn 3, lines 25 to lines 35 to 50; s 7 to 65; column o 43; column 11, column 22, line 3 ne 30; column 31,	1-4,9, 10		1/00 1/02 1/02 1/00
A	Mikroprozessor-So	n (DE) 'Management von chnittstellen in rzeug-Elektronik;			
A	FUNKSCHAU, vol.50 14, 1978, Muncher D.K. LONG: Mikroprozessor-So	n (DE) "Management von	-	TECHNICAL SEARCHED (
		ug-Elektronik; 2.		B 60 R B 60 S B 60 S	1/08 1/48
A	ELECTRONICA TOP vol.4, no.6, June Bilthoven (NL) "Auto electronical			B 60 S B 60 S B 60 S B 60 R B 60 H B 60 J	
A	FR-A-2 445 769	- (RENAULT) - -	<u>/</u> .	E 05 F E 05 F H 03 J H 03 J H 03 G	15/16 15/08 1/02 9/04 1/02
	The present search report has b	een drawn up for all claims			
	THE HAGUE	Date of completion of the search 24-06-1982	VERLE	Examiner YE J.	
Υ:	CATEGORY OF CITED DOCU- particularly relevant if taken alone particularly relevant if combined we document of the same category technological background mon-written disclosure	E: earlier p	r principle unde atent document filing date nt cited in the a nt cited for othe	orlying the inventic t, but published or pplication or reasons	on n, or

EUROPEAN SEARCH REPORT

EP 82 10 1739

DOCUMENTS CONSIDERED TO BE RELEVANT				Page 2	
Category		th indication, where appropriate, vant passages	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. CI. 3)	
A	FR-A-2 453 443	(HITACHI)			
A	FR-A-2 437 312	(RENAULT)			
A	GB-A-2 026 723	(TEKRON)			
A	EP-A-O 002 435	(LOEWE-OPTA)			
?,x	EP-A-0 034 373	•	1-6,8-		
	24; page 7, li 10, line 24 to	.8 to page 3, line nes 9 to 16; page page 23, line 5; to page 27, line 9 *	 	TECHNICAL FIELDS SEARCHED (Int. Cl. ³)	
		·			
!					
<u>,, , , , , , , , , , , , , , , , , , ,</u>	The present search report has t	peen drawn up for all claims			
	THE HAGUE	Date of completion of the search 24-06-1982	VERLEY	Examiner E J.	
Y: pa do A: te	CATEGORY OF CITED DOCK inticularly relevant if taken alone inticularly relevant if combined with incument of the same category chnological background in-written disclosure termediate document	E : earlier pai after the fi vith another D : document L : document	ent document, t iling date cited in the app cited for other if the same pate	ying the invention out published on, or dication reasons nt family, corresponding	