(1) Veröffentlichungsnummer:

0 061 067

A1

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 82101891.8

(22) Anmeldetag: 10.03.82

(5) Int. Cl.³: **G 21 F 5/00 G 21 F 9/36**

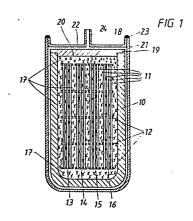
30 Priorităt: 20.03.81 SE 8101778

(43) Veröffentlichungstag der Anmeldung: 29.09.82 Patentblatt 82/39

(84) Benannte Vertragsstaaten: CH DE FR GB IT LI

(71) Anmelder: ASEA AB

S-721 83 Västeras(SE)


(72) Erfinder: Larker, Hans Prästvägen 4 S-915 00 Robertsfors(SE)

(72) Erfinder: Tegman, Ragnar Rödhakevägen 32 S-902 37 Umea(SE)

(74) Vertreter: Boecker, Joachim, Dr.-Ing. Rathenauplatz 2-8 D-6000 Frankfurt a.M. 1(DE)

(54) Verfahren zum Einschliessen verbrauchter Brennstäbe eines Kernreaktors in einem Behälter aus Kupfer.

(57) Verfahren, bei dem verbrauchte Brennstäbe (11) eines Kernreaktors in einem Körper aus Kupfer eingeschlossen werden, wobei die Brennstäbe in Kupferpulver (17) in einem Behälter (10) aus Kupfer eingebettet werden und der Behälter mit einem Deckel (18) aus Kupfer abgedeckt wird. Der Behälter mit Inhalt und Deckel wird in eine gasdichte Kapsel (21, 22) eingeschlossen oder es wird ohne Verwendung einer zusätzlichen Kapsel der Deckel gasdicht mit dem Behälter zusammengefügt. Der so gewonnene Körper wird isostatisch gepreßt bei einer Temperatur und einem Druck, die zur Bildung einer zusammenhängenden dichten Einheit aus dem Pulver, dem Behälter und dem Deckel ausreichen. Vor diesem isostatischen Pressen kann die verschlossene gasdichte Kapsel mit Inhalt bzw. der mit dem Deckel gasdicht verschlossene Behälter bei einer solchen niedrigeren Temperatur isostatisch gepreßt werden, daß eine Kriechdehnung des Materials von Behälter und Deckel und des Pulvers eintritt.

5

-1-

6 Frankfurt/Main 1 5.3.1982 Rathenauplatz 2-8 21 102 PE

Telefon: (06 11) *28 23 55 Telex: 4 189 066 itax d

ASEA AB, Västeras, Schweden

Verfahren zum Einschließen verbrauchter Brennstäbe eines Kernreaktors in einem Behälter aus Kupfer

Die Erfindung betrifft ein Verfahren zum Einschließen verbrauchter Brennstäbe eines Kernreaktors in einem Behälter aus Kupfer gemäß dem Oberbegriff des Anspruches 1.

Bei einem vorgeschlagenen Verfahren zur Handhabung radioaktiven Abfalls zwecks Endlagerung werden verbrauchte Brennstäbe eines Kernreaktors direkt, d.h. ohne Aufarbeitung, in
dichte Behälter aus korrosionsbeständigem Material einge15 schlossen. Gemäß einem bekannten Verfahren werden dabei verbrauchte Brennstäbe in einem Behälter aus kupfer plaziert
und in dem Behälter in Blei eingebettet, indem dem Behälter
geschmolzenes Blei zugeführt wird, das dann im Behälter erstarrt. Danach wird der Behälter mit einem Deckel aus Kupfer
versehen, der unter Bildung einer dichten Naht mit dem Behälter zusammengeschweißt wird.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der eingangs genannten Art zu entwickeln, bei dem der gewonnene 25 endzulagernde Körper gegen Korrosionsangriffe widerstands-fähiger und nach außen dichter ist.

Zur Lösung dieser Aufgabe wird ein Verfahren nach dem Oberbegriff des Anspruches 1 vorgeschlagen, welches erfindungs-30 gemäß die im kennzeichnenden Teil des Anspruches 1 genannten Merkmale hat.

Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen genannt.

Der Erfindung liegt die Erkenntnis zugrunde, daß erhebliche Vorteile erzielt werden, wenn als Einbettungsmaterial für die verbrauchten Brennstäbe Kupferpulver anstelle von Blei verwendet wird und wenn das Verschließen des Behälters und 10 des Deckels dabei durch isostatisches Pressen erfolgt. Eine höhere Widerstandsfähigkeit gegen Korrosionsangriffe wird dadurch erreicht, daß der aus dem Kupferpulver, dem Behälter und dem Deckel gebildete massive Körper aus Kupfer gegen Korrosion widerstandsfähiger ist als ein Behälter aus Kup-15 fer mit einem darin angeordneten Körper aus Blei. Dies hängt zum einen damit zusammen, daß Kupfer an sich widerstandsfähiger als Blei ist und zum anderen damit, daß die Schutzschichten aus einem einheitlichen Material bestehen. Ein weiterer Vorteil besteht darin, daß das Innere des Behälters 20 frei von Kavitationen hergestellt werden kann, was beim Eingießen von Blei in den Behälter und Festschweißen eines Deckels kaum möglich ist. Ein weiterer Vorteil besteht darin, daß die Naht zwischen dem Behälter und dem Deckel bei dem Verfahren nach der Erfindung vollkommen dicht und völlig 25 zuverlässig wird. Die Materialien von Behälter und Deckel gehen in diesem Fall ineinander über, ohne daß zwischen Behälter und Deckel eine Fuge oder eine Übergangsstelle mit einer anderen Materialzusammensetzung vorhanden ist. Das Zusammenschweißen von Kupferteilen mit großer Wandstärke, 30 wie dies bei dem bekannten Verfahren der Fall ist, ist mit großen Schwierigkeiten verbunden und ergibt eine Naht, die eine andere Struktur hat, als das daran angrenzende Material. Die Naht kann daher eine geschwächte Stelle im verschlossenen Behälter werden.

35

Normalerweise kann die gasdichte Kapsel auf dem fertig gepreßten Körper verbleiben, wenn dieser zwecks Endlagerung

deponiert wird. Die Kapsel kann aus Blech derselben Qualität wie der Behälter hergestellt werden, d.h. aus Kupfer. Hierdurch wird die Wahrscheinlichkeit, daß ein zusammenhängender Materialfehler oder ein Defekt im Kupfermaterial auftreten 5 kann, erheblich vermindert. Die äußere Kapsel kann auch aus einem anderen Material, das einen ergänzenden Korrosionsschutz für Kupfer ergibt, wie z.B. rostfreier Stahl oder Titan, hergestellt werden.

10 Der Behälter, der Deckel und das Kupferpulver werden vorzugsweise aus einem Kupfer hochreiner Qualität mit einem niedrigen Sauerstoffgehalt, mindestens 99,95 % Cu (einschließlich kleiner Mengen Ag), einer sog. OFHC-Art (Oxygen Free High Conductivity) hergestellt. Es wird angenommen, 15 daß eine solche Qualität dem fertigen Produkt eine gute Korrosionsbeständigkeit gibt. Alternativ kann hochreines Kupfer verwendet werden, das mit kleinen Mengen Phosphor (max. 0,015 % P) desoxidiert wurde. Die Partikel des Kupferpulvers sind vorzugsweise sphärisch oder wenigstens zum 20 überwiegenden Teil sphärisch. Partikel mit einer solchen Form haben ein gutes Fließvermögen und ergeben dadurch einen hohen Füllungsgrad. Der Füllungsgrad kann durch die Verwendung von sphärischem Pulver mit mindestens zwei verschiedenen Korngrößen verbessert werden. Eine geeignete Korngröße für die 25 eine der beiden Fraktionen ist dabei 0,5 - 1,5 mm und für die andere Fraktion 0,1 - 0,2 mm. Bei der letztgenannten Fraktion kann es sich alternativ um eine gradierte Fraktion mit einer Korngröße von maximal 0,2 mm handeln. Dadurch, daß man den Behälter und/oder die Brennelemente bei Füllen 30 leichten Schlägen oder Vibrationen aussetzt, kann der Füllungsgrad des Kupferpulvers weiter verbessert werden. Außerdem kann zu demselben Zweck vorübergehend eine vibrierende Stampfvorrichtung auf oder in dem eingefüllten Kupferpulver angebracht werden.

35

Das isostatische Pressen zur Bildung der zusammenhängenden dichten Einheit aus Behälter, Deckel und Pulver geschieht

vorzugsweise bei einem Druck von mindestens 10 MPa und bei einer Temperatur von $600 - 800^{\circ}$ C, oder noch besser bei einer Temperatur von $500 - 800^{\circ}$ C.

- 5 Um schnell und sicher ein dichtes und beständiges Zusammenfügen von Deckel und Behälter bei dem isostatischen Pressen
 zu erreichen, ohne daß es erforderlich ist, hohe Temperaturen und lange Behandlungszeiten zu verwenden, ist es wichtig, daß die zu verbindenden sich berührenden Flächen vor
 10 dem Zusammenlegen durch eine geeignete Behandlung, wie z.B.
 Schruppen, Sandstrahlreinigung, Metallbürsten, Abwaschen
 oder Atzen, von fremden Stoffen befreit werden. Besonders
 wichtig ist es, daß diese Flächen von Oxydbelägen befreit
 werden, was durch Abwaschen mit Säure oder durch Wasser15 stoffgasreduktion des Oxydbelags bei erhöhter Temperatur
 geschehen kann.
- Dadurch, daß man den eben genannten Fugenflächen eine gewisse Textur, wie Rillen, Risse oder ein geprägtes Muster, 20 gibt, werden beim Aufbringen des Druckes Teile der Kontaktflächen kräftig plastisch verformt und gleichzeitig werden reine und frische Metallflächen erzeugt. Hierdurch wird der Fugenbereich reaktionsfreudiger, was die Bildung einer dichten Naht zwischen Deckel und Behälter bei dem isostatischen 25 Pressen erleichtert. Ferner kann man einerseits durch die genannte Texturierung der Fugenflächen und andererseits dadurch, daß man die aneinander anliegenden Flächen von Deckel und Behälter an mindestens einem dieser beiden Teile stufenförmig oder konisch ausbildet, oder dadurch, daß man 30 den Deckel mit einem zentralen, in den Behälter mit Passung hineinragenden Zylinderteil verzieht, die tatsächliche Fugenlänge im Vergleich mit einem ebenen und glatten Deckel : auf das Zwei- bis Dreifache verlängern. Hierdurch wird die Sicherheit weiter vergrößert, bei dem nachfolgenden iso-35 statischen Heißpressen eine zusammenhängende dichte Einheit aus Deckel und Behälter zu erreichen. Außerdem wird die Montage des Deckels auf der Kapsel durch die mechanische

Führung erleichtert, die durch eine stufenförmige Ausführung der aneinander anliegenden Teile oder durch ein zentrales Zylinderteil erzielt wird. Zugleich wird hierdurch verhindert, daß beim Aufbringen des Druckes und bei der 5 Kompaktierung Lageverschiebungen eintreten.

Damit jeder Brennstab für sich allseitig in einer vorbestimmten Lage im Behälter eingebettet wird, können die Brennstäbe bei der Zufuhr des Kupferpulvers und dem Schließen des Be-10 hälters durch Distanzelemente auf Abstand voneinander gehalten werden. Gemäß einer vorteilhaften Ausführungsform handelt es sich bei den Distanzelementen um Abstandshalter, normalerweise aus rostfreiem Stahl, in welchen die Brennstäbe, zu Brennelementbündeln zusammmengefaßt, während des 15 Betriebs im Kernreaktor angeordnet sind. Die Brennelementbündel können dabei, nachdem die Brennstäbe im Reaktor verbraucht sind, ohne Montagearbeit im Kupferbehälter plaziert und gemäß der vorliegenden Erfindung zum Einschließen und zur Endlagerung behandelt werden. Gemäß einer anderen vor-20 teilhaften Ausführungsform der Erfindung bestehen die Distanzelemente aus Kupfer. Diese Ausführungsform ist besonders dann geeignet, wenn die Brennstäbe demontiert, d.h. nicht in Form von Bündeln in Abstandshaltern angeordnet sind. Distanzelemente aus Kupfer mit dem sie umgebenden 25 eingeschütteten Kupferpulver ergeben beim Pressen eine homogene Einheit ohne Übergangsstellen mit anderer Struktur.

Bevor das isostatische Pressen des Behälters mit Deckel und Inhalt zur Bildung einer zusammenhängenden dichten Einheit 30 aus den Kupferbestandteilen durchgeführt wird, werden die Kupferbestandteile gemäß einer besonders vorteilhaften Ausführungsform der Erfindung durch isostatisches Pressen bei einer niedrigeren Temperatur als der, die beim endgültigen Pressen verwendet wird, einer Kriechdehnung unterworfen. Dabei sind die Kupferbestandteile entweder in der verschlossenen gasdichten Kapsel angeordnet, die beim endgültigen Pressen verwendet wird, oder sie sind – wenn ohne Kapsel gearbeitet wird geordnet, daß der Deckel gasdicht mit dem Behälter verbunden

ist. Für die Kriechdehnung wird vorzugsweise mit einem Druck von mindestens 10 MPa und einer Temperatur von 300-500°C gearbeitet. Dadurch, daß man die Teile aus Kupfer auf diese Weise bei einer Temperatur isostatisch preßt, die niedstiger ist als die bei dem endgültigen Zusammenfügen der Teile verwendete Temperatur, erzielt man einen effektiven Stützdruck auf die Brennstoffrohre der Brennstäbe während der weiteren Erwärmung. Hierdurch kann man die Gefahr beseitigen oder zumindest wesentlich verringern, daß in den Brennstoffrohren befindliches Gas bei der weiteren Erwärmung auf die Temperatur, die für die Bildung einer zu-

- 10 in den Brennstoffrohren befindliches Gas bei der weiteren Erwärmung auf die Temperatur, die für die Bildung einer zusammenhängenden Einheit aus den Kupferbestandteilen Pulver, Behälter und Deckel erforderlich ist, einen solchen Druck bewirkt, daß in den Brennstoffrohren ein Dehnungsbruch auf-
- 15 tritt. Die Brennstoffrohre enthalten nämlich Gase, unter anderem Helium und Spaltgase, die bereits bei Zimmertempe-ratur einen Druck von 50 80 Bar in den Brennstäben verursachen können.
- 20 Anhand der Figuren soll das Verfahren nach der Erfindung näher erläutert werden. Es zeigen

25

- Figur 1 eine erste Ausführungsform eines Behälters mit Brennstäben, Pulver und Deckel vor Durchführung des isostatischen Pressens, wobei eine zusätzliche äußere Hülle verwendet wird,
- Figur 2 eine andere Ausführungsform eines Behälters mit Brennstäben, Pulver und Deckel vor dem isostatischen Pressen, jedoch ohne zusätzliche äußere Hülle,
- Figur 3 einen Teil der Anordnung nach Figur 1 in vergrößertem Maßstab.

In einem Behälter 10 aus Kupfer wird gemäß Figur 1 eine Vielzahl verbrauchter Brennstäbe 11 eines Kernreaktors angeord35 net. Die Brennstäbe, die aus Zirkaloyrohren mit darin gestapelten Tabletten aus Urandioxyd bestehen, verbleiben in den Abstandshaltern 12, welche die Brennstäbe jedes Brennelementbündels im Kernreaktor zusammenhalten. In den Figuren 1 und 2 sieht man vier Brennelementbündel 13, 14, 15 und 16.

Die Brennelementbündel können eventuell auf nicht dargestellten Stützen am Boden des Behälters oder auf einem Bett
aus Kupferpulver plaziert werden. Der Behälter wird da
nach auf einem Bett aus Kupferpulver plaziert werden. Der

- 5 Behälter wird danach im Ganzen unter Vibration mit einer Pulvermischung 17 aus 70 Gewichtsteilen eines Pulvers mit sphärischen Partikeln mit einem Durchmesser von 0,5 1,5 mm und 30 Gewichtsteilen eines Pulvers mit sphärischen Partikeln mit einem Durchmesser von 0,1 0,2 mm gefüllt.
- 10 Danach wird auf dem Behälter ein Deckel 18 aus Kupfer plaziert. Behälter, Deckel und Pulver bestehen aus der anfangs genannten Kupferqualität, die 99,95 % Cu (einschließlich kleiner Mengen Ag) enthält. Der Teil 19 des Deckels, der an dem Behälter anliegt, ist stufenförmig ausgebildet.
- 15 Der Deckel hat ein zentrales, unteres Teil 20, das in den Behälter hineinragt. Die aneinander anliegenden Flächen 10a und 18a von Behälter 10 und Deckel 18 sind, wie aus Figur 3 hervorgeht, texturiert. Die Flächen werden vor dem Aufsetzen des Deckels auf den Behälter gut gereinigt und mit Säure
- 20 von Oxyd befreit. Der Behälter mit Deckel und Inhalt wird in einer Kapsel 21 aus Kupferblech oder Stahlblech gesetzt, deren aus Kupferblech bzw. aus Stahlblech bestehender Deckel 22 unter Bildung einer gasdichten Naht 23 festgeschweißt wird. Der Deckel ist mit einem Rohrstutzen 24 aus
- 25 Kupfer bzw. Stahl versehen, der zwecks Evakuierung der Kapsel mit Inhalt an eine Vakuumpumpe angeschlossen werden kann. Nach der Evakuierung wird die Kapsel verschlossen, indem der Rohrstutzen oberhalb der oberen Fläche des Deckels zugeschweißt wird.

Die Kapsel mit Inhalt wird in zwei Schritten isostatisch heißgepreßt mit einem Gas, z.B. Argon, als Druckmittel in einem Ofen zum isostatischen Pressen der Art, wie er in der DE-OS 27 47 951 beschrieben wird. Beim ersten Schritt wird die Kapsel 2 - 10 Stunden lang einem Druck von 80 MPa und einer Temperatur von 450 - 500°C ausgesetzt. Dabei erfahren das Kupfer des Behälters, des Deckels und das Pulver eine

Kriechdehnung, die zur Folge hat, daß die Füllung aus dem Kupferpulver den Brennstäben einen wirkungsvollen Stützdruck gibt, der einen Dehnungsbruch in den Zirkaloyrohren verhindert, der dadurch auftreten könnte, daß der Druck des 5 in diesen Rohren befindlichen Gases bei weiterer Erwärmung zunimmt. Diese Behandlung hat jedoch nicht zur Folge, daß die Pulverkörner, der Behälter und der Deckel eine Einheit mit voll ausgebildeter Bindung bilden. Dies erreicht man dadurch, daß die Temperatur im Ofen auf ca. 700°C erhöht 10 wird, wobei der Druck ohne weitere Gaszufuhr gleichzeitig auf ca. 100 MPa steigt, und dadurch, daß diese Bedingungen 1 bis 4 Stunden beibehalten werden. Nachdem die Kapsel mit Inhalt während eines zweiten Schrittes also einem isostatischen Pressen unterzogen wurde, läßt man sie mit dem 15 eingeschlossenen Material abkühlen, wonach der Druck auf . Atmosphärendruck gesenkt und die Kapsel aus dem Ofen herausgenommen wird. Normalerweise kann die Kapsel auf dem zusammengepreßten Produkt sitzen bleiben, wenn dieses zwecks Endlagerung deponiert wird.

20

Bei einer alternativen Ausführung wird eine Mischung 17 benutzt, die aus 55 Gewichtsteilen eines Pulvers mit sphärischen Partikeln mit einem Druchmesser von 0,8 - 1,0 mm und aus 45 Gewichtsteilen eines Pulvers mit sphärischen Parti-25 keln mit einem Durchmesser von 0,2 mm und darunter besteht. Dabei erhält man eine Fülldichte von 81 % der theoretischen Dichte. Nach der Evakuierung der Kapsel 21 mit Inhalt wird die Kapsel auf 350°C erhitzt, worauf sie mit Wasserstoffgas mit einem Druck von 0,1 MPa gefüllt wird. Nachdem die-30 se Temperatur eine halbe Stunde lang aufrechterhalten wurde, wird die Kapsel evakuiert und wieder mit Wasserstoffgas gefüllt. Diese Behandlung mit Wasserstoffgas bei 350°C wird mehrmals, beispielsweise siebenmal, zweckmäßigerweise mit einer sukzessiv verlängerten Behandlungszeit, wie z.B. 35 bis zu 10 Stunden, wiederholt. Die Wasserstoffgasbehandlung bewirkt eine Reduzierung eventuell vorhandener Kupferoxyde. Nach beendeter Wasserstoffgasbehandlung wird die

- 9 -

Kapsel evakuiert und, wie im oben beschriebenen Fall, verschlossen. Das isostatische Pressen erfolgt während des ersten Schrittes bei 400 - 450°C und während des zweiten Schrittes bei 525°C. Diese alternative Ausführung erfolgt im übrigen unter denselben Bedingungen wie im vorher beschriebenen Fall.

Bei dem in Figur 2 gezeigten Ausführungsbeispiel wird keine besondere Kapsel verwendet, um das Material gasdicht im Be10 hälter einzuschließen. Statt dessen ist der Behälter 10 und der Deckel 18 mit je einem Flansch 25 bzw. 26 versehen.

Nach der Plazierung der Brennstäbe im Behälter und Füllung desselben mit dem Kupferpulver werden die Flansche 25 und 26 durch Schweißen oder Kaltpressen zu einer gasdichten Naht
15 27 zusammengefügt. Der Deckel ist mit einem Rohrstutzen 28 aus Kupfer versehen, der nach der Evakuierung des Behälters mit gasdicht angebrachtem Deckel verschlossen wird. Nach dem Verschließen wird der geschlossene Behälter in zwei Schritten derart isostatisch gepreßt, wie es für die ver20 schlossene Kapsel gemäß Figur 1 beschrieben wurde.

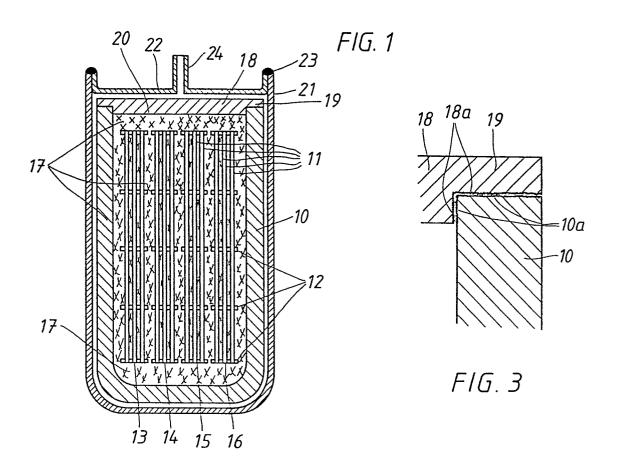
- 10 -

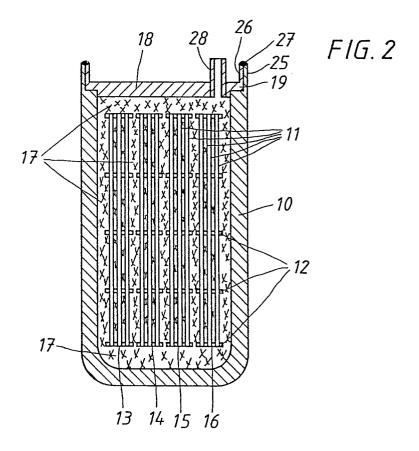
6 Frankfurt / Main 1
Rathenauplatz 2 - 8
Telefon: (06 11) * 28 23 55
Telex: 4 189 068 itax d

0061067 5.3.1982 21 102 PE

PATENTANSPRÜCHE

- 1. Verfahren zum Einschließen verbrauchter Brennstäbe (11) eines Kernreaktors in einen Behälter (10) aus Kupfer, wobei 5 die Brennstäbe in ein korrosionsbeständiges Material im Behälter eingebettet werden, dad urch gekennzeichnet, daß die Brennstäbe im Behälter in Kupferpulver (17) eingebettet werden und der Behälter mit einem Deckel (18) aus Kupfer abgedeckt wird, daß der Behälter mit 10 Inhalt und Deckel entweder in einer Kapsel (21, 22) gasdicht eingeschlossen wird oder der Deckel gasdicht mit dem Behälter zusammengefügt wird, und daß der so gewonnene Körper isostatisch gepreßt wird bei einem Druck und einer Temperatur, die ausreichen, um den Behälter, das Pulver und 15 den Deckel in eine zusammenhängende dichte Einheit zu überführen.
- 2. Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß die Kapsel aus Kupfer besteht.
 20
- 3. Verfahren nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß das isostatische Pressen zur Bildung der zusammenhängenden dichten Einheit bei einem Druck von mindestens 10 MPa und einer Temperatur von 25 500 800°C durchgeführt wird.
- 4. Verfahren nach einem der vorhergehenden Ansprüche,
 d a d u r c h g e k e n n z e i c h n e t, daß die Brennstäbe (11) durch Distanzelemente (12) im Behälter (10) auf
 30 Abstand voneinander gehalten werden.
- 5. Verfahren nach Anspruch 4, dadurch ge kennzeich chnet, daß es sich bei den Distanzelementen (12) um im Kernreaktor verwendete Abstandshalter für 35 Brennelementbündel handelt.


- 6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Distanzelemente (12) aus Kupfer bestehen.
- 5 7. Verfahren nach einem der vorhergehenden Ansprüche, dad urch gekennzeichnet, daß aneinander anliegende Teile (19) zwischen Deckel (18) und Behälter (10) am Deckel und/oder am Behälter stufenförmig ausgebildet sind.


10

8. Verfahren nach einem der vorhergehenden Ansprüche, dad urch gekennzeichnet, daß der Deckel (18) mit einem Teil (20) versehen ist, das mit Passung in den Behälter hineinragt.

15

- 9. Verfahren nach einem der vorhergehenden Ansprüche, dad urch gekennzeichnet, daß aneinander anliegende Flächen (18a, 10a) von Deckel (18) und Behälter (10) mit Rillen, Rissen oder einem anderen Oberflächen20 muster versehen sind.
- 10. Verfahren nach einem der vorhergehenden Ansprüche,
 d a d u r c h g e k e n n z e i c h n e t, daß vor dem
 isostatischen Pressen des Behälters (10), des Pulvers (17)
 25 und des Deckels (18) bei einem Druck und einer Temperatur,
 die ausreichen zur Bildung der genannten zusammenhängenden
 dichten Einheit, der Behälter mit Inhalt und Deckel entweder gasdicht eingeschlossen in der gasdichten Kapsel (21,
 22) oder mit gasdichter Zusammenfügung zwischen Deckel und
 30 Behälter derart bei einer niedrigeren Temperatur isostatisch gepreßt wird, daß eine Kriechdehnung des Behälters,
 des Pulvers und des Deckels eintritt.
- 11. Verfahren nach Anspruch 10, dad urch ge35 kennzeich net, daß das isostatische Pressen zur
 Erzielung der Kriechdehnung bei einem Druck von mindestens
 10 MPa und bei einer Temperatur von 300 500°C erfolgt.

EUROPÄISCHER RECHERCHENBERICHT

Nummer der Anmeldung

ΕP 82 10 1891

	EINSCHLÄG	IGE DOKUMENTE			
Kategorie		ls mit Angabe, soweit erforderlich, eblichen Teile	Betrifft Anspruch	KLASSIFIKATION DE ANMELDUNG (Int. C	
Y		eilen 27-39; Seite Seite 12, Zeile			5/00 9/36
Y		 (GAGNERAUD, F.) ≥n 5-24; Abbildun	g l		
A	US-A-4 115 311 * Spalte 2, Zei 3, Zeilen 11-14;	ilen 23-35; Spalt	e 1	•	
A	FR-A-2 430 651 * Abbildung 1 *	(TRANSNUKLEAR)	7,8		
А	FR-A-2 375 696 * Seite 6 Abbildungen 3,5	, Zeilen 6-26	; 1	RECHERCHIERTE SACHGEBIETE (Int. (
A		O, Seiten , DE. "Endlagerung vo Kernbrennelemente hältern" * Seit g 8; Seite 759	n e	G 21 C 1 G 21 F G 21 F G 21 F G 21 F	5/00 9/30
Dei	r vorliegende Recherchenbericht wur	de für alle Patentansprüche erstellt.			
	REEM'EHAAG	Abschuffdatur de 179892ch	GIAN	NI G.L.G.	
X : vo Y : vo ar A : te O : ni P : Zv	ATEGORIE DER GENANNTEN Den besonderer Bedeutung allein in besonderer Bedeutung in Verbideren Veröffentlichung derselbe chnologischer Hintergrund chtschriftliche Offenbarung wischenliteratur er Erfindung zugrunde liegende T	petrachtet nac pindung mit einer D: in d en Kategorie L: aus 	ch dem Anmelded: der Anmeldung an s andern Gründen	ent, das jedoch erst am atum veröffentlicht wor geführtes Dokument angeführtes Dokumen n Patentfamilie, übereir	den ist t