[0001] This invention relates to water-based hydraulic fluids and metalworking compositions.
[0002] In the technology of hydraulic power transmission, mechanical power is imparted to
a fluid called "a hydraulic fluid" in the form of pressure by means of a hydraulic
pump. Power is utilized where desired by tapping a source of said hydraulic fluid
and thus transforming the power as pressure back to mechanical motion by a mechanism
called a hydraulic motor. The hydraulic fluid is utilized as a pressure and volume
transmitting medium. Any non-compressible fluid can perform this function. Water is
the oldest fluid used for this purpose and is still sometimes used alone for this
purpose. In the prior art, there has been a heavy emphasis on the development of petroleum
oils for use as hydraulic fluids and, consequently, much of the equipment utilized
with hydraulic fluids has been designed and manufactured specifically for use with
petroleum oils. A petroleum oil in comparison with water as a hydraulic fluid possesses
the advantage of inhibiting the development of rust of the ferrous components of the
mechanical equipment utilized in conjunction with hydraulic fluids, (i.e., hydraulic
pumps, motors, etc.) and in preventing wear of the machinery since the hydraulic fluid
must lubricate the equipment. Petroleum oils have a second advantage over the use
of water as a hydraulic fluid in that the petroleum oils normally exhibit a substantially
higher viscosity than water and thus contribute to reduction of the leakage of the
fluid in the mechanical equipment utilized. In addition, the technology relating to
additives for petroleum oils has developed to such an extent that the viscosity, foam
stability, wear prevention and corrosion prevention properties of such petroleum oil
based hydraulic fluids can be further enhanced by the use of said additives.
[0003] Over the past 25 years, various substitutes for petroleum oil based hydraulic fluids
have been developed in order to overcome one of the major deficiencies of petroleum
oils, namely, flammability. Recent interest in the use of hydraulic fluids having
up to 99 percent or more of water has resulted from the higher cost of petroleum oils
and recent emphasis on problems of ecologically suitable disposal of contaminated
or spent petroleum oil based hydraulic fluids.
[0004] Metalworking fluids of the so-called "soluble oil" type have been considered for
use as hydraulic fluids. Such fluids contain mineral oil and emulsifiers as well as
various additives to increase corrosion resistance and improve antiwear and defoaming
properties. Such fluids when used as hydraulic fluids are not generally suitable for
use in ordinary industrial equipment designed specifically for use with the petroleum
oil based hydraulic fluids since such fluids do not adequately prevent wear damage
in pumps and valves of such equipment. However, such fluids have found application
in specially designed, high cost, large size equipment which, because of said large
size and thus inflexibility, is not suitable for use in most industrial plants. The
soluble oil hydraulic fluid usage has thus been quite limited; usage has been largely
confined to large installations where flexibility and size are not critical such as
in steel mills.
[0005] It is known from U.S. Patent No. 3,249,538 to prepare an aqueous lubricant concentrate
and lubricating composition consisting essentially of molybdenum disulfide and a water-soluble
viscosity increasing agent such as polyvinyl alcohol and an emulsifiable mineral oil.
It is also known from U.S. Patent No. 3,970,569 to prepare aqueous lubricating compositions
containing a water-soluble mixed ester obtained by transesterification of a polyoxyethylene
glycol and a triglyceride.
[0006] It is also known from U.S. Patent No. 3,933,658 that a mixture of a phosphate ester
and a sulfur compound can be used in a water-based metalworking composition to obtain
extreme pressure, antiwear and corrosion inhibiting properties. Such additives are
used with a suitable vehicle such as mineral oil, vegetable oil, aliphatic acid ester,
etc. The sulfur compounds disclosed are not sulfurized molybdenum compounds but rather
are derivatives of 2-mercaptobenzothiazole. The phosphate esters of the invention,
however, are similar to those disclosed in this reference. These are alkylene oxide
derivatives of an alkyl, aryl or arylalkyl phosphate which are useful in the form
of the free acid or in the neutralized for wherein the phosphate ester is neutralized
with a metal hydroxide or carbonate, ammonia or an amine. The use of these phosphate
esters in water-based metalworking fluids is suggested in ASLE Transactions 7, pages
398 to 405, at page 405.
[0007] It is also known from U.S. Patent No. 4,151,099 and
U.S. 4,138,346 to prepare water-based hydraulic fluids and metalworking lubricants.
These hydraulic fluids which contain a phosphate ester and a sulfur compound or alternatively
a phosphate ester, a sulfur compound and a water-soluble polyoxyethylated aliphatic
ester are optionally thickened with a polyglycol thickener but there is no suggestion
in these references, or in any of the references above, that such fluids can be provided
by the utilization of an alpha-olefin epoxide-modified polyether polyol thickener
which reacts synergistically with certain components of the hydraulic fluid, particularly
the phosphate ester or the phosphate ester and amine components to provide greatly
increased viscosity in the resultant fluids.
[0008] This invention relates to thickened high-viscosity, water-based hydraulic fluids
and metalworking fluids. Said fluids comprise a water-soluble polyoxyethylated aliphatic
ester, a sulfurized metallic compound, a phosphate ester salt, and a polyether polyol
(polyether) thickening agent. Optionally, the fluids of the invention can include
a vapor or liquid phase corrosion inhibitor and a metal deactivator. Combination of
said fluids with a polyether polyol thickening agent, which is a high molecular weight
polyether polyol derived from the reaction of ethylene oxide or ethylene oxide and
at least one lower alkylene oxide having 3 to 4 carbon atoms with an active hydrogen-containing
initiator containing at least two active hydrogens and having a molecular weight of
about 1000 to about 75,000, preferably about 1000 to about 40,000, further modified
by reaction with an alpha-olefin epoxide (oxide) having 12 to 18 carbon atoms, unexpectedly
provides a surprising increase in viscosity, said increase not being simply additive.
[0009] The concentrates of the invention can be used when blended with a substantial amount
of water as a flame- retardant hydraulic fluid having excellent lubricity and antiwear
characteristics or as metalworking compositions used to cool and lubricate surfaces
which are in frictional contact such as during the operations of turning, cutting,
peeling, grinding metals and the like. The hydraulic fluids and metalworking compositions
of the invention are ecologically superior to those fluids and metalworking emulsions
of the prior art containing mineral oil or a glycol/water mixture.
[0010] In accordance with this invention, there are disclosed hydraulic fluids, metalworking
fluids and lubricating concentrates which can be diluted with water as a base to prepare
hydraulic fluids or metalworking compositions. The disclosed compositions provide
the desirable lubricity as well as antiwear properties which are necessary in a hydraulic
fluid or a metalworking composition. The thickened hydraulic fluids and metalworking
fluids of the invention can'be prepared at such viscosities as to substantially prevent
internal and external leakage in the mechanical parts of a hydraulic system during
the pumping of such hydraulic fluids and where the fluids are utilized as metalworking
fluids, the thickened fluids reduce spattering of the fluids which can occur under
high speed metalworking operations. As is conventional in this art, corrosion inhibiting
agents, defoamers, metal deactivators (chelating agents) can be used as part of the
compositions of the invention.
[0011] As an antiwear lubricant component of the lubricating concentrates of the invention
and of the hydraulic fluids and metalworking additives of the invention, there are
preferably utilized water-soluble esters of the ethoxylated C
8-C
36 aliphatic monohydric or polyhydric alcohols with aliphatic acids, and aliphatic dimer
acids. Such ethoxylated esters have a hydrophilic-lipophilic balance (HLB) in the
range of 10 to 20. The most desirable adducts are in the range of 13 to 18.
[0012] Useful ethoxylated aliphatic acids have about 5 to about 20 moles of ethylene oxide
added per mole of acid. Examples are ethoxylated oleic acid, ethoxylated stearic acid
and ethoxylated palmitic acid. Useful ethoxylated dimer acids are oleic dimer acid
and stearic dimer acid. Aliphatic acids can be either branched or straight-chain and
can contain from about 8 to about 36 carbon atoms. Useful aliphatic acids include
azelaic acid, sebacic acid, dodecanedioic acid, caprylic acid, capric acid, lauric
acid, oleic acid, stearic acid, palmitic acid and the like. Especially useful for
the purpose of obtaining the water-soluble esters of this invention are aliphatic,
preferably the saturated and straight-chain mono- and dicarboxylic acids containing
from about 8 to 18 carbon atoms.
[0013] The dimer acids employed in the formation of the water-soluble esters employed in
the aqueous lubricants of the present invention are obtained by the polymerization
of unsaturated fatty acids having from 16 to 26 carbon atoms, or their ester derivatives.
The polymerization of fatty acids to form the dimer fatty acids has been described
extensively in the literature and thus need not be amplified here. The preferred dimer
acids employed in the formation of the polyester are those which have 36 carbon atoms
such as the dimer of linoleic acid and eleostearic acid. Other dimer acids having
from 32 to 54 carbon atoms can be similarly employed. The dimer acids need not be
employed in pure form and can be employed as mixtures in which the major constituent,
i.
e., greater than 50 percent, is the dimer acid and the remainder is unpolymerized acid
or more highly polymerized acid such as trimer and tetramer acid.
[0014] The esters of the ethoxylated aliphatic acids and dimer acids utilized in the hydraulic
fluids and metalworking lubricant compositions of the invention are reaction products
with the ethoxylated monohydric or polyhydric alcohols.
[0015] Useful representative monohydric alcohols are n-octyl, n-decyl, n-dodecyl (lauryl),
n-tetradecyl (myristyl), n-hexadecyl (cetyl) and n-octadecyl alcohol. Useful representative
polyhydric alcohols are ethylene glycol, diethylene glycol, polyethylene glycol, sucrose,
butanediol, butenediol, butynediol, hexanediol and polyvinyl alcohol. Glycerol, sorbitol,
pentaerythritol, trimethylolethane, and trimethylolpropane are particularly useful
polyhydric alcohols which can be ethoxylated and subsequently esterified to produce
the esters of ethoxylated aliphatic alcohols useful as essential components of the
hydraulic fluids and metalworking compositions of the invention.
[0016] Suitable monohydric aliphatic alcohols are generally those having straight chains
and carbon contents of C
8-C
18. The alcohols are ethoxylated so as to add about 5 moles to about 20 moles of ethylene
oxide by conventional ethoxylation procedures known to those skilled in the art. Such
procedures are carried out under pressure in the presence of alkaline catalysts. The
preferred monohydric aliphatic alcohols useful in producing the esters of the ethoxylated
aliphatic alcohols of the invention are the linear primary alcohols having a chain
length of C
12-C
15 and sold under the trademark "
Neodol 25-3" and "Neodol 25-7" by the Shell Chemical Company.
[0017] Representative water-soluble polyoxyethylated esters having about 5 to about 20 moles
of oxide per mole are the polyoxyethylene derivatives of the following esters; sorbitan
monooleate, sorbitan trioleate, sorbitan monostearate, sorbitan tristearate, sorbitan
monopalmitate, sorbitan mono- isostearate, and sorbitan monolaurate.
[0018] The sulfurized oxymolybdenum or oxyantimony organo- phosphorodithioate additives
of the invention are represented by the formula:

wherein M is molybdenum or antimony and R is organic and is selected from the group
consisting of C
3-C
20 alkyl, aryl, alkylaryl radicals and mixtures thereof.
[0019] Representative useful molybdenum and antimony compounds are sulfurized oxyantimony
or oxymolybdenum organo- phosphorodithioate where the organic portion is alkyl, aryl
or arylalkyl and wherein said alkyl has a chain length of 3 to 20 carbon atoms.
[0020] The compositions of the invention contain a phosphate ester salt selected from the
group consisting of

and mixtures thereof wherein ethylene oxide is represented by EO; R is selected from
the group consisting of linear or branched chain alkyl groups or alkylaryl groups
wherein said alkyl groups have about 6 to about 30 carbon atoms, preferably about
8 to about 20 carbon atoms, wherein the alkyl groups have about 6 to about 30 carbon
atoms, preferably about 8 to about 18 carbon atoms and X is selected from the group
consisting of the residue of ammonia or an amine and an alkali or alkaline earth metal
or mixtures thereof and n is a number from 1 to 50. Metals such as lithium, sodium,
potassium, ribidium, cesium, calcium, strontium, and barium are examples of X.
[0021] The phosphate ester salt composition utilized in the compositions of the invention
are those more fully disclosed in
U.S. Patent No. 3,004,056 and U.S. Patent No. 3,004,057, incorporated herein by reference.
[0022] The phosphate esters utilized are generally obtained by esterifying 1 mole of phosphorus
pentoxide with 2 to 4.5 moles of a nonionic surface active agent obtained by condensing
at least 1 mole of ethylene oxide with 1 mole of a compound having at least 6 carbon
atoms and a reactive hydrogen atom. These nonionic surface active agents are well
known in the art and are generally prepared by condensing a polyglycol ether containing
a suitable number of alkanoxy groups or a 1,2-alkylene oxide, or a substituted alkylene
oxide such as a substituted propylene oxide, butylene oxide or preferably ethylene
oxide with an organic compound containing at least 6 carbon atoms and a reactive hydrogen
atom. Examples of compounds containing a reactive hydrogen atom are alcohols, phenols,
thiols, primary and secondary amines and carboxylic and sulfonic acids and their amides.
The amount of alkylene oxide or equivalent condensed with a reactive chain will generally
depend upon the particular compound employed. About 20 to 85 percent by weight of
combined alkylene oxide is generally obtained in a condensation product, however,
the optimum amount of alkylene oxide or equivalent utilized will depend upon the desired
hydrophobic-lipophilic balance desired.
[0023] Preferably, the nonionic surface active agents utilized are derivatives of alkylated
and polyalkylated phenols, multibranched chain primary aliphatic alcohols having the
molecular configuration of an alcohol and are produced by the Oxo process from a polyolefin
of at least 7 carbon atoms or straight chain aliphatic alcohols of at least 10 carbon
atoms. Examples of suitable nonionic surface active agent condensation products which
can be in turn reacted with phosphorus pentoxide to produce the phosphate esters utilized
as additives in the hydraulic fluids of the invention are exemplified below. In this
list, "EO" represents "ethylene oxide" and the number preceding this abbreviation
refers to the number of moles thereof reacted with 1 mole of the given reactive hydrogen-containing
compound.
[0024] Nonylphenol + 9 - 11 EO
[0025] Nonylphenol + 2 EO
[0026] Dinonylphenol + 7 EO
[0027] Dodecylphenol + 18 EO
[0028] Castor oil + 20 EO
[0030] Oleyl alcohol + 4 EO
[0031] Oleyl alcohol + 20 EO
[0032] Lauryl alcohol + 4 EO
[0033] Lauryl alcohol + 15 EO
[0034] Hexadecyl alcohol + 12 EO
[0035] Hexadecyl alcohol + 20 EO
[0036] Octadecyl alcohol + 20 EO
[0037] Oxo tridecyl alcohol:
(From tetrapropylene) + 7 EO
(From tetrapropylene) + 10 EO
(From tetrapropylene) + 15 EO
[0038] Dodecyl mercaptan + 9 EO
[0039] Soya bean oil amine + 10 EO
[0040] Rosin amine + 32 EO
[0041] Coconut fatty acid amine + 7 EO
[0042] Cocoa fatty acid + 10 EO
[0043] Dodecylbenzene sulfonamide + 10 EO
[0044] Decyl sulfonamide + 6 EO
[0046] Polypropylene glycol (30 oxypropylene units) + 10 EO
[0047] ' The hydraulic fluids and metalworking compositions of the invention generally consist
of about 60 percent to about 99 percent water and about 40 percent to about 1 percent
of additives. These additives can consist of concentrates comprising combinations
of the water-soluble esters of ethoxylated aliphatic acids and monohydric and polyhydric
aliphatic alcohols, molybdenum or antimony compounds, a phosphate ester, and, in addition,
can contain polymer thickening agents, defoamers, corrosion inhibitors and metal deactivators
or chelating agents. Preferably, said fluids consist of about 75 percent to 99 percent
water and about 25 percent to about 1 percent concentrate. The fluids are easily formulated
at room temperature using distilled or deionized water although tap water can also
be used without adverse effects on the fluid properties.
[0048] Stable concentrates of the hydraulic fluids and metalworking compositions of the
invention can be prepared. These can be completely free of water as indicated below
or contain any desired amount of water but preferably contain up to 75 percent by
weight of water to increase fluidity and provide ease of blending at the point of
use. These concentrates are typically diluted with water in the proportion of 1:99
to 10:90.
[0049] Representative concentrates are as follows:

[0050] The proportions of phosphate ester to sulfurized molybdenum or antimony compound
of the invention are generally about 0.1:1 to about 2:1 based upon the weight of the
sulfur in the sulfurized molybdenum or antimony compounds. The proportion of the water-soluble
ester of the ethoxylated aliphatic acid or alcohol to the sulfurized molybdenum or
sulfurized antimony containing compound is about 0.5:1 to about 2:1 based upon the
weight of the sulfur in the sulfur- containing compound. Preferably, the proportion
of phosphate ester to sulfurized molybdenum or antimony compound is 0.5:1 to 1:1 and,
preferably, the proportion of the ester of the ethoxylated aliphatic acid or alcohol
to the sulfurized molybdenum compound is about 1:1 to about 1.5:1.
[0051] The concentration of sulfurized molybdenum or antimony compound to water in the hydraulic
fluid or metalworking compositions of the invention is generally about 0.05 percent
to about 3 percent by weight and the concentration of the phosphate ester to water
in the hydraulic fluid or metalworking compositions of the invention is generally
about 0.05 percent to about 1 percent by weight. The concentration of the water-soluble
ester of the ethoxylated aliphatic acid or alcohol to water in the hydraulic fluid
or metalworking compositions of the invention is generally about 0.1 percent to about
5 percent by weight. Preferably, these proportions by weight are respectively 0.75
percent to 0.5 percent, 0.25 percent to 0.5 percent, and 1 percent to 2 percent.
The Alpha-Olefin Epoxide Modified Polyether Polyol Thickening Agent
[0052] The modified polyether polyol thickening agents utilized to thicken the hydraulic
fluids and metalworking fluids of the invention can be obtained in one embodiment
of the invention by modifying a conventional polyether polyol thickening agent with
an alpha-olefin epoxide having about 12 to about 18 carbon atoms or mixtures thereof.
The conventional polyether polyol thickening agent can be an ethylene oxide homopolymer
or a heteric or block copolymer of ethylene oxide and at least one lower alkylene
oxide having 3 to 4 carbon atoms. Said ethylene oxide is used in the proportion of
at least 10 percent by weight based upon the total weight of the polyether polyol.
Generally, about 70 to 99 percent by weight ethylene oxide is utilized with about
30 to 1 percent by weight of lower alkylene oxide having 3 to 4 carbon atoms.
[0053] Polyether polyols are generally prepared utilizing an active hydrogen-containing
compound in the presence of an acid or basic oxyalkylation catalyst and an inert organic
solvent at elevated temperatures in the range of about 50°C. to 150°C. under an inert
gas pressure generally from about 20 to about 100 pounds per square inch gauge. Polyether
polyols suitable as thickeners can be prepared by further reacting a polyether polyol
having a molecular weight of about 1000 to about 75,000, preferably 1000 to about
40,000 with said alpha-olefin epoxide so as to provide an alpha-olefin epoxide cap
on the polyether polyol. Polyethers suitable as thickeners for the hydraulic fluids
of the invention can be obtained by the heteric polymerization of ethylene oxide and
said alpha-olefin epoxide. The amount of alpha-olefin epoxide required to obtain the
modified polyether polyol thickening agents of the invention is about 1 to about 20
percent by weight based upon the total weight of the modified polyether polyol thickeners.
Alternatively, the modified polyether polyol thickening agents can be obtained by
the heteric copolymerization of a mixture of ethylene oxide and at least one other
lower alkylene oxide having 3 to 4 carbon atoms with an alpha-olefin epoxide having
about 12 to about 18 carbon atoms or mixtures thereof. Further details of the preparation
of the alpha-olefin epoxide modified polyether polyol thickening agents useful in
the preparation of the hydraulic fluids and metalworking fluids of the invention can
be obtained in copending applications Serial No. 86,839, filed on October 22, 1979
and Serial No. 86,849, filed October 22, 1979 both incorporated herein by reference.
[0054] Alternatively to the use of the abovevdescribed alpha-olefin oxides to modify high
molecular weight polyether polyols, it is possible to substitute glycidyl ethers which
can be prepared by reaction of an alcohol having 12 to about 18 carbon atoms with
epichlorohydrin in accordance with the teachings of U.S. 4,086,279 and references
cited therein, all incorporated by reference.
[0055] Generally, at least 10 percent by weight, preferably about 40 to 60 percent by weight
of the modified polyether polyol is used together with about 60 to about 40 percent
by weight of an unthickened hydraulic fluid or metalworking fluid concentrate.
[0056] The metal deactivators and corrosion inhibitors which can be added either to the
concentrate or to the hydraulic fluid or metalworking compositions of the invention
are as follows:
Liquid-Vapor Phase Corrosion Inhibitors
[0057] The liquid-vapor corrosion inhibitor can be any of the alkali metal nitrites, nitrates,
phosphates, silicates and benzoates. Certain amines are also useful. The inhibitors
can be used individually or in combinations. Representative examples of the preferred
alkali metal nitrates and benzoates which are useful are as follows: sodium nitrate,
potassium nitrate, calcium nitrate, barium nitrate, lithium nitrate, strontium nitrate,
sodium benzoate, potassium benzoate, calcium benzoate, barium benzoate, lithium benzoate
and strontium benzoate.
[0058] Representative amine type corrosion inhibitors are morpholine, N-methylmorpholine,
N-ethylmorpholine, ethylenediamine, dimethylaminopropylamine, dimethylethanolamine,
alpha- and gamma-picoline, piperazine and isopropylaminoethanol.
[0059] Particularly preferred vapor phase corrosion inhibiting compounds are morpholine
and isopropylaminoethanol. As corrosion inhibitors, a proportion of from about 0.05
percent to about 2 percent by weight is used based upon the total weight of the hydraulic
fluid or metalworking composition of the invention. Preferably, about 0.5 percent
to about 2 percent by weight of these amines are used.
Metal Deactivators (Chelating Agents)
[0060] The metal deactivators are used primarily to chelate copper and copper alloys. Such
materials are well known in the art and individual compounds can be selected from
the broad classes of materials useful for this purpose such as the various triazoles
and thiazoles as well as the amine derivatives of salicylidenes. Representative specific
examples of these metal deactivators are as follows: benzotriazole, tolytriazole,
2-mercaptobenzothiazole, sodium 2-mercaptobenzothiazole, and N,N'-disalicylidene-l,2-propanediamine.
[0061] It is also contemplated to add other known corrosion inhibitors. Besides the amines,
alkali metal nitrates, benzoates and nitrates listed above, the alkoxylated fatty
acids are useful as corrosion inhibitors.
[0062] The phosphate ester and the esters of ethoxylated aliphatic acids and monohydric
and polyhydric alcohols, as described above, are water-soluble in the sense that no
special method is required to disperse these materials in water and keep them in suspension
over long periods of time. The sulfurized molybdenum or antimony compounds on the
other hand are insoluble in water and require emulsification prior to use, for instance,
with anionic or nonionic surfactants. Useful representative anionic or nonionic surfactants
are: sodium petroleum sulfonate, i.e., sodium dodecylbenzene sulfonate; polyoxyethylated
fatty alcohol or fatty acid and polyoxyethylated alkyl phenol.
[0063] A typical recipe for the emulsification of the sulfurized molybdenum or antimony
compound of the invention (sulfurized oxymolybdenum or oxyantimony organo-phosphorodi-
thioates) is as follows:

Emulsifiable concentrate (hereafter termed emulsion)
[0064]

[0065] A typical high water-base hydraulic fluid or metalworking additive of the invention
will contain the components shown in Table II.

[0066] The hydraulic fluid and metalworking compositions of the invention, when formulated
as above, are transparent liquids having a viscosity of up to 400 S.U.S. at 100°F.,
which are stable over long periods of storage at ambient temperature. In addition,
the hydraulic fluids and metalworking additives of the invention are oil-free and
will not support combustion in contrast to those flame-resistant fluids of the prior
art based upon a glycol and water or petroleum oils. The hydraulic fluids and metalworking
additives of the invention are ecologically clean and nonpolluting compositions when
compared to existing petroleum- based hydraulic fluids. Since the hydraulic fluids
and metalworking additives of the invention are largely based upon synthetic materials
which are not derived from petroleum, the production of such fluids is relatively
independent of shortages of petroleum oil and not materially influenced by the economic
impact of such shortages.
[0067] The hydraulic fluids of the invention can be used in various applications requiring
hydraulic pressures in the range of 200-2000 pounds per square inch since they have
all the essential properties required such as lubricity, viscosity and corrosion protection.
The hydraulic fluids of the invention are suitable for use in various types of hydraulic
systems and are especially useful in systems in which vane-type pumps or the axial-piston
pumps are used. Such pumps are used in hydraulic systems where pressure is required
for molding, clamping, pressing metals, actuating devices such as doors, elevators,
and other machinery or for closing dies in die-casting machines and in injection molding
equipment and other applications.
[0068] In evaluating the hydraulic fluids of the invention, a test generally referred to
as the Vickers Van Pump Test is employed. The apparatus used in this test is a hydraulic
system which functions as follows: Hydraulic fluid is drawn from a closed sump to
the intake side of a Vickers V-104C vane-type pump. The pump is driven by, and directly
coupled to, a 25 horsepower, 1740 rpm electric motor. The fluid is discharged from
the pump through a pressure regulating valve. From there it passes through a calibrated
venturi (used to measure flow rate) and back to the sump. Cooling of the fluid is
accomplished by a heat exchanger through which cold water is circulated. No external
heat is required; the fluid temperature being raised by the frictional heat resulting
from the pump's work on the fluid. Excess heat is removed by passing the fluid through
the heat exchanger prior to return to the sump. The Vickers V-104C vane-type pump
comprises a cylindrical enclosure (the pump body) in which there is housed a so-called
"pump cartridge". The "pump cartridge" assembly consists of front and rear circular,
bronze bushings, a rotor, a cam-ring and rectangular vanes. The bushings and cam-ring
are supported by the body of the pump and the rotor is connected to a shaft which
is turned by an electric motor. A plurality of removable vanes are inserted into slots
in the periphery of the rotor. The cam-ring encircles the rotor and the rotor and
vanes are enclosed by the cam-ring and bushings. The inner surface of the cam-ring
is cam-shaped. Turning the rotor results in a change in displacement of each cavity
enclosed by the rotor, the cam-ring, two adjacent vanes and the bushings. The body
is ported to allow fluid to enter and leave the cavity as rotation occurs.
[0069] The Vickers Vane Pump Test procedure used herein specifically requires charging the
system with 5 gallons of the test fluid and running at temperatures ranging from 100
to 135°F. at 750 to 1000 psi pump discharge pressure (load). Wear data were made by
weighing the cam-ring and the vanes of the "pump cartridge" before and after the test.
At the conclusion of the test run and upon disassembly for weighing, visual examination
of the system was made for signs of deposits, varnish, corrosion, etc.
[0070] The following examples more fully describe the hydraulic fluids of the invention
and show the unexpected results obtained by their use. The examples are intended for
the purpose of illustration and are not to be construed as limiting in any way. All
parts, proportions, and percentages are by weight and all temperatures are in degrees
centigrade unless otherwise noted.
Examples 1 - 3
(Control or Comparative Examples)
[0071] Hydraulic fluid concentrates were prepared having the compositions in percent by
weight of:

[0072] The fluids were clear, dark amber in color, free flowing and showed no phase separation
upon aging at room temperature. Upon diluting the concentrates with tap water to obtain
hydraulic fluids containing 1, .3 and 5 percent of each of the concentrates, homogeneous
mixtures were obtained.
[0073] The alkyl phosphate ester utilized in these examples was obtained by the reaction
of two moles of phosphorus pentoxide with the surface-active agent condensation product
obtained by reacting one mole of oleyl alcohol and 4 moles of ethylene oxide.
Example 4
[0074] In this example, a heteric copolymer of ethylene oxide and 1,2-propylene oxide is
prepared having a molecular weight of about 23,000. Subsequently, this base heteric
copolymer is further reacted with a mixture of alpha-olefin epoxides having 15 to
18 carbon atoms sold under the trademark VIKOLOX 15-18 by the Viking Chemical Company.
[0075] A conventional polyether derived from ethylene oxide and 1,2-propylene oxide in the
ratio of 75 percent ethylene oxide and 25 percent 1,2-propylene oxide was prepared
by reaction with trimethylol propane in two stages in a stainless steel autoclave.
An intermediate product was first prepared by reacting a mixture of trimethylol propane,
potassium hydroxide, 1,2-propylene oxide, and ethylene oxide for a period of 18 hours
at 120°C. The cooled liquid product was discharged into a glass container.
[0076] The base copolymer product was prepared by reacting this intermediate product with
propylene oxide and ethylene oxide under a nitrogen atmosphere at 115°C. for 22 hours.
The reaction mixture was then cooled and the viscous liquid product transferred to
a glass container. The product had a molecular weight of about 23,000.
[0077] Into a two-gallon stainless steel mixer there was charged 3400 grams of the copolymer
prepared in Example 4. The contents of the mixer were blanketed with nitrogen and
then heated by steam utilizing an external jacket on the mixer. There was then added
6.8 grams of sodium and the mixture was stirred while the reaction was allowed to
continue. After 3.5 hours, 34 grams of a mixture of alpha-olefin oxides having an
aliphatic chain length of 15 to 18 carbon atoms sold under the trademark VIKOLOX 15-18
by the Viking Chemical Company, was added at once. The stirring and heating was continued
for another 43 hours before the reaction mixture was cooled and the viscous product
transferred to a glass container.
[0078] Tables III-V respectively, show the viscosity of the concentrate of Example 3 when
diluted with tap water to make a hydraulic fluid, the viscosity of the alpha-olefin
epoxide modified polyether polyol thickener of Example 4 upon dilution with water,
and the use of five percent by weight of the concentrate of Example 3 in combination
with 5 to 7.5 percent of the alpha-olefin epoxide modified polyether polyol of Example
4. The surprising increase in viscosity shown in Table V for the combination of thickener
and hydraulic fluid concentrate is unexpected and advantageous in that lesser amounts
of thickener would be required to produce a thickened hydraulic fluid or metalworking
lubricant thus resulting in a cost saving.
Example 5
[0080] Using 6 percent by weight of the thickener of Example 4 and 5 percent by weight of
the hydraulic fluid concentrate of Example 3 with the remainder of the composition
tap water, a water-based hydraulic fluid having a viscosity of 335 SUS was prepared
and tested for stability under conditions of high shear in a Vickers V-104C hydraulic
vane pump. The hydraulic fluid was tested at 1000 pounds per square inch pressure
at a temperature of 100°F, for a period of 194 hours. Samples of the dydraulic fluid
were taken at various time intervals during the test and the viscosity determined.
The variation in viscosity is indicative of the shear stability of the hydraulic fluid.

[0081] As shown in Table VI, the overall change in viscosity of the fluid after 194 hours
running time is less than
20 percent which indicates good shear stability performance in the Vickers Vane Pump.
[0082] The hydraulic fluid of Example 5 was also tested for wear performance in a hydraulic
vane pump. The test was conducted in the Vickers V-104C vane pump at 1000 pounds per
square inch pressure, at a temperature of 100°F., for a period of 194 hours. Ring
and vane wear losses were determined at various time intervals and the results are
shown in Table VII.

[0083] The weight loss of the ring and vanes shown in Table VII is indicative of acceptable
lubricity performance in the vane pump.
[0084] While this invention has been described with reference to certain embodiments, it
will be recognized by those skilled in the art that many variations are possible without
departing from the scope and spirit of the invention and it will be understood that
it is intended to cover all changes and modifications of the invention disclosed herein
for the purposes of illustration which do not constitute departures from the spirit
and scope of the invention.
1. A hydraulic fluid or metalworking fluid concentrate capable of imparting to water
the properties of a lubricant such as resistance to extreme pressure and corrosion
inhibition, said concentrate consisting essentially of:
A. a water-soluble polyoxyethylated aliphatic ester consisting of esters of ethoxylated
aliphatic monohydric and polyhydric alcohols and ethoxylated aliphatic acids wherein
said acids have about 5 to about 20 moles of ethylene oxide added per mole of acid
and wherein said alcohols and acids have carbon chain lengths of 8 to 36 carbon atoms
and wherein said esters are produced by first polyoxyethylating at least one of said
acids or alcohols and second, obtaining the ester reaction product thereof,
B. a sulfurized metallic compound of the formula:

wherein M is molybdenum or antimony and wherein R is selected from the group consisting
of alkyl, aryl, alkylaryl radicals and mixtures thereof having 3 to 20 carbon atoms
in the alkyl group and wherein the ratio of said water-soluble ester to said sulfurized
metallic compound is from 5:1 to 2:1 by weight based upon the weight of the sulfur
in said metallic compound,
C. a phosphate ester salt selected from the group consisting of

and mixtures thereof, wherein EO is ethylene oxide; R is selected from the group consisting
of linear or branched chain alkyl groups having about 6 to 30 carbon atoms or alkylaryl
groups wherein said alkyl groups have 6 to 30 carbon atoms; X is selected from the
residue of ammonia, an amine and an alkali or alkaline earth metal or mixtures thereof,
n is a number from 1 to 50 and wherein the proportion of said phosphate ester to said
sulfurized metallic compound is about 0.1:1 to about 2:1 based upon the weight of
the sulfur in said metallic compound,
D. a polyether polyol thickener having a molecular weight of about 1000 to about 75,000,
prepared by reacting ethylene oxide or ethylene oxide and at least one lower alkylene
oxide having 3 to 4 carbon atoms with at least one active hydrogen-containing compound
containing at least two active hydrogens and at least one alpha-olefin oxide or at
least one glycidyl ether having a carbon chain length of about 12 to about 18 aliphatic
carbon atoms and wherein said alpha-olefin oxide or glycidyl ether is present in the
amount of 1 to about 20 percent by weight based upon the total weight of said thickener,
and optionally
E. a corrosion inhibitor and a metal deactivator.
2. The composition of claim 1, wherein said phosphate ester is the ester of the reaction
product of 4 moles of ethylene oxide with 1 mole of oleyl alcohol esterified by reacting
1 mole of said reaction product with 2 moles of phosphorus pentoxide.
3. A hydraulic fluid or metalworking lubricant fluid consisting essentially of water
and the concentrate of claim 2,wherein said fluid consists of about 60 percent to
about 99 percent water and about 40 percent to about 1 percent concentrate.
4. A hydraulic fluid or metalworking composition consisting essentially of water and
the concentrate of claim 2, wherein said concentrate consists of about 50 percent to about 80 percent of said
thickener.
5. The hydraulic fluid of claim 3, wherein said corrosion inhibitor is selected from
the group consisting of an alkali metal benzoate, nitrate and nitrite, an amine, and
. mixtures thereof.
6. The hydraulic fluid of claim 5, wherein said amine corrosion inhibitor is morpholine.
7. The composition of claim 6, wherein said metal deactivator is the triethanolamine
salt of 2-mercaptobenzothiazole.
8. The thickener of claim 2, wherein said polyether polyol is prepared by copolymerizing
a mixture of said reactants to produce a liquid heteric copolymer.
9. The thickener of claim 2, wherein said polyether polyol is prepared by copolymerizing
a mixture of ethylene oxide and at least one of said lower alkylene oxides in the
presence of said initiator selected from the group consisting of alkane monoalcohols,
alkene monoalcohols, and alkyne monoalcohols to produce a liquid heteric copolymer
intermediate and subsequently reacting said intermediate with at least one of said
alpha-olefin oxides.
..10. The thickener of claim 2, wherein said polyether polyol is prepared by sequentially
reacting ethylene oxide with at least one of said lower alkylene oxides to produce
a block copolymer intermediate and subsequently reacting said intermediate with at
least one of said alpha-olefin oxides.
11. The thickener of claim 9 wherein said lower alkylene oxides are selected from
the group consisting of propylene oxide,1,2-butylene oxide, 1+3 butylene oxide,1,4-butylene oxide, 2,3-butylene oxide, and tetrahydrofuran and wherein
the proportion of ethylene oxide residue in said thickener is at least 10 percent
by weight of the total weight of said thickener.
12. The thickener of claim 11 whereinthe proportion of ethylene oxide residue to the
residue of said lower alkylene oxides is from about 70 to about 99 percent by weight
of ethylene oxide residue to about 30 to about 1 percent by weight of said lower alkylene
oxide residue and said active hydrogen-containing compound is a polyhydric alcoholhaving
from 2 to 10 carbon atoms and from 2 to 6 hydroxyl groups.
13. The thickener of claim 12wherein said initiator is an alkane polyol selected from
the group consisting of at least one of trimethylolpropane, glycerol,2,3,5,6-hexane-
tetrol, sorbitol, and pentaerythritol and the molar ratio of said initiator to the
combined molar amounts of said ethylene oxide, said lower alkylene oxides, and said
alpha-olefin oxide is in a mole ratio of about 1:5 to about 1:15.
14. A process of metalworking comprising working metal in the presence of the metalworking
composition of claim 4.
15. A process for the transmitting of force hydraulically comprising transmitting
force utilizing the hydraulic fluid of claim 3.