(1) Publication number:

0 062 128

	-
14	n
- 11	

EUROPEAN PATENT APPLICATION

21 Application number: 81305620.7

(f) Int. Cl.3: **C 21 D 8/00**, C 22 F 1/10

22 Date of filing: 27.11.81

30 Priority: 27.03.81 US 248121

- 71 Applicant: WESTINGHOUSE ELECTRIC CORPORATION, Westinghouse Building Gateway Center, Pittsburgh Pennsylvania 15222 (US)
- 43 Date of publication of application: 13.10.82 Bulietin 82/41
- (72) Inventor: Laidler, James Joseph, 2629 Harris Avenue, Richland Washington (US) Inventor: Borisch, Ronald Robert, 4002 West 3rd, Kennewick Washington (US) Inventor: Korenko, Michael Karl, 627 Warfield Drive, Rockville Maryland (US)
- 84 Designated Contracting States: BE DE FR GB IT SE
- Representative: van Berlyn, Ronald Gilbert, 23, Centre Heights, London, NW3 6JG (GB)
- (54) Method of improving post-irradiation ductility of precipitation hardenable alloys.
- (i) A method for improving the post-irradiation ductility is described which comprises a solution heat treatment following which the materials are cold worked. They are included to demonstrate the beneficial effect of this treatment on the swelling resistance and the ductility of these austenitic precipitation hardenable alloys.

METHOD OF IMPROVING POST-IRRADIATION DUCTILITY OF PRECIPITATION HARDENABLE ALLOYS

5

10

15

20

25

This invention relates to a method of improving the post-irradiation ductility of precipitation hardenable alloys and more particularly to those alloys which undergo a gamma prime hardening precipitation reaction. In general, it has been found that these alloys develop an optimum combination of strength and ductility when they are solution heat treated and precipitation hardened, such solution heat treating usually taking place at a temperature in excess of about 950°C, following which the alloy is usually quenched to room temperature from such solution heat treatment temperature. It is a function of the solution heat treatment temperature to place into solid solution all of the components which will enter into the precipitation hardening mechanism. In this case, iron-nickel-chromium matrix in its austenitic phase configuration is the solid solution into which such components as titanium and aluminum are taken into said solid Following quenching to room temperature the solution. alloys are heated usually to a temperature between about 600°C and about 825°C for discrete periods of time during which the titanium, aluminum and nickel are precipitated from the solid solution usually in the form of Ni3(Ti,Al). This configuration is known as the gamma prime configuration and is effective for rendering the alloy with its optimum combination of strength and ductility.

10

15

20

25

30

35

In contrast thereto, the present invention has unexpectedly found that following solution heat treatment, which advantageously renders the alloy in its most workable condition, the alloy can be cold worked to effect a reduction in cross-sectional area of between about 10% and about 60% and, as cold worked, the alloy will exhibit sufficient strength and post-irradiation ductility as to make the composition of matter highly desirable for use in a nuclear reactor where the components are subject to high fluences during the operation of the reactor.

Accordingly the present invention resides in a method of improving the post-irradiation ductility of precipitation hardenable alloys, characterized by solution heat treating the alloys at a temperature within the range between 950°C and 1150°C and thereafter cold working the alloys to effect a reduction in cross-sectional area of between 10% and 60%.

The alloys to be treated in accordance with the invention have a composition which usually falls within the range between 25% and 45% nickel, 8% and 15% chromium, up to 3.5% molybdenum, from 0.3% to 3.5% titanium, from 1.5% to 3.5% aluminum, up to 1% silicon, up to 1% zirconium, up to 4% niobium, up to 0.01% boron, up to 0.05% carbon and the balance essentially iron with incidental impurities. An alloy having a composition falling within the foregoing range will, upon heat treatment, undergo a gamma prime precipitation hardening mechanism. prime will be precipitated from the austenitic phase of the alloy and when so precipitated and substantially distributed throughout the austenitic matrix, will provide the alloy with an optimum combination of strength and ductility. The precipitation hardening reaction is initiated by the alloy being subjected to a solution heat treatment temperature, usually at a temperature within the range between 950°C and 1150°C, following which the alloy after all of the components are in solution is quenched to room temperature. Following the quenching to room temper-

10

15

20

25

30

35

ature, the alloy is subjected to one or more aging treatments, usually at a temperature within the range between 600°C and 850°C for a time period usually of up to about Such aging heat treatment has the effect of 24 hours. precipitating the gamma prime phase which is usually viewed as Ni3(Ti,Al) in a fairly uniform manner within the grains of the alloy. As this precipitation hardened, the alloy will have optimum strength combined with optimum ductility, the same as is measured by both the stress rupture tests as well as the short time tensile tests. Unfortunately alloys when in this condition and which are thereafter subjected to the influence of neutron irradiation, for example in the environment of a nuclear reactor, will undergo drastic changes in the observed mechanical properties. Foremost among these is the fact that the alloy will swell and as a result change its density. addition thereto it has been found that these materials which had heretofore exhibited good ductility now become quite brittle after they have been subjected to the neutron influence in a nuclear reactor. Unexpectedly it has been found that where these same materials are subjected to the standard solution heat treatment temperature and thereafter cold worked to effect a reduction in crosssectional area of between 10% and 60% and thereafter in the cold worked condition are subjected to the same neutron influence, not only is there observed a great improvement in the swelling characteristics of these alloys but more importantly these same alloys after irradiation will show a high degree of ductility, especially as measured by the disk bend test.

Thus the method of the present invention for improving the post-irradiation ductility includes a solution heat treatment at a temperature within the range between 950°C and 1150°C for a time period of up to about one hour. Thereafter, the solution heat treated alloy is subject to cold working to effect a reduction in the cross-sectional area of between about 10% and about 60%

and more preferably within the range between about 15% and about 30%. Outstanding results have been achieved where the cold working effects a reduction in cross-sectional area of between about 20% and about 25%. It is immaterial how the cold working is effected. 5 In this regard it should be noted that where a flat product is desired the alloy in its solution heat treated form can be cold rolled to effect a reduction in the cross-sectional area within the limits set forth hereinbefore, usually by just reduc-10 ing the gauge of the material. On the other hand, forexample, where a tube type product is required, such cold working can be effected by drawing the tube through a die with a mandrel placed between the die opening and the tube, as is well known in the art. Since the alloy is in 15 its solution heat treated condition, the cold work ability of the alloy is usually optimum so that these reductions in area can be readily achieved without the necessity for interposing a stress relieving heat treatment to the underlying alloy. In order to more clearly demonstrate the improvement in the post-irradiation ductility, refer-20 ence may be had to Table I which describes the effects of cold working in reducing the swelling in the precipitation hardening alloys. The column headed ϕ_+ is the total fluence to which these alloys have been irradiated and the temperature column indicates the temperature of irradia-25 The last column shows the percentage of density change and the indication STA is the prior art heat treatment which includes a solution heat treatment following aging, whereas the CW indicates the cold working of either 25% or 30%. 30

η	Σ	B	H.T	Т

	Alloy	¢t*	Temp. (°C)	Δρ/ρ°(%)
5	D21 (STA)	6.6 6.3 7.3	428 482 510	0.59 0.57 4.5
	D21 (CW)	5.8 5.2 6.6	427 482 510	59 85 78
10	D66 (STA)	6.6 7.3	427 510	0.58 0.01
	D66 (CW)	5.8 6.6	427 510	-1.16 79
	A286 (STA)	4.3 5.1	427 510	2.16 1.37
15	A286 (CW)	6.6 7.3	427 510	-0.64 -0.41

*10²² n/cm² (E 0.1 MeV) STA = Solution Treated and Aged CW = Cold Worked

20 By inspection of the data contained in Table I it is noted that there is a slight densification of the alloys after irradiation when they are in the cold worked This is indicated by the negative values and as such will demonstrate the fact that the treatment of 25 the present invention is effective for reducing the swelling tendency of these alloys when they are subject to the neutron irradiation influence. Perhaps the most outstanding data however concern the disk bend test. bend test is more clearly described in U.S. Application Serial No. . These materials as detailed in Table 30 II were subjected to the heat treatments contained therein and the bend ductility results clearly demonstrate the outstanding nature of this thermomechanical treatment.

TABLE 11

lity (%) + 110°C 550 600		.60	0.28	0	0.20	.61 0.81	0.36	0	0	0.30	0	0	0	0.16	0.15
Bend Ductility (%) .T. = I.T. + 110°C I.T. = 500 550 600	0.14	0.40 0.60				>0.50 0.61									
TMT	60% CW+800°C/11 hr/AC+700°C/2 hr/AC	1050°C/0.4 hr+60% CW	1050°C/0.5 hr+60% CW+960°C/0.5 hr	1050°C/0.5 hr+60% CW+1050°C/0.5 hr	1050°C/0.5 hr+60% CW+1150°C/0.5 hr	1050°C/0.5 hr+30% CW	1050°C/0.5 hr+30% CW+950°C/0.5 hr	1050°C/0.5 hr+30% CW+1050°C/0.5 hr	1050°C/0.5 hr+30% CW+1150°C/0.5 hr	1050°C/0.5 hr+60% CW	1050°C/0.5 hr+60% CW+950°C/0.5 hr	1050°C/0.5 hr+60% CW+1150°C/0.5 hr	1050°C/0.5 hr+60% CW+1050°C/0.5 hr+750°C/1 hr	1050°C/0.5 hr+60% CW+1050°C/0.5 hr+750°C/3 hr	1050°C/0.5 hr+60% CW+1050°C/0.5 hr+750°C/48 hr
Composition	Fe-45Ni-12Cr-3.0Mo-	0.50Zr-0.005B-0.03C				Fe-58.5Ni-25.0Cr-	1.0Fi-3.3AI-1.7Nb	0.000.048-0.000.0		12 0M2-0 18:-0 MM2-	0.31i-1.8AI-0.4NB-				
H1 Code	E E	3	Ľ	Z	LR	C0	17	L3	1.5	n 1	>	N.2.	NB RB	NC	NE
Alloys	990	990	990	990	990	D21	D2.1	021	D21	890	89Q	890	D68	D68	D68

From the foregoing it becomes clear that these materials, when subjected to the influence of the neutron irradiation, perform exceptionally well. Further it is noted that while the alloy will have the strength characteristics necessary, usually as a result of strain aging because of the cold working, the ductility as exhibited by the disk bend test as well as the swelling resistance shows such improvement over and above that condition of solution heat treatment plus precipitation hardening which has been utilized in the prior art alloys.

What we claim is:

- 1. A method of improving the post-irradiation ductility of precipitation hardenable alloys, characterized by solution heat treating the alloys at a temperature within the range between 950°C and 1150°C and thereafter cold working the alloys to effect a reduction in cross-sectional area of between 10% and 60%.
- 2. A method according to claim 1, characterized by cold working to effect a reduction in cross-sectional area of between 15% and 30% by cold rolling.
- 3. A method according to claim 1, characterized by cold working to effect a reduction in cross-sectional area of between 20% and 25%.

EUROPEAN SEARCH REPORT

0 0 6 2 ica io 2 number

EP 81 30 5620

	DOCUMENTS CONS		OLASSIEICATION OF THE					
Category	Citation of document with of releva	Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl. 3)					
Y	US-A-3 723 193 al.) *Claims; example	•	N et	1,3			D F	8/00 1/10
Y	US-A-3 432 291 *Claims 1 and 5;		al.)	1				
Y	FR-A-2 266 263 FUR KERNFORSCHUN *Claim 1* & GB -	Ġ)		1,3	•			
Y	FR-A-2 175 526 *Claims 1 and 2;			1				
A	FR-A-2 462 478	- (WESTINGHOU	SE)					
	& GB - A - 2 058	834					IICAL F HED (In	IELDS it. Cl. 3)
A A	GB-A-2 027 627 (KERNFORSCHUNGSZ GB-A-2 023 649	-	SE)			21 22		
A	GB-A-1 057 168		ŕ					
A	GB-A-1 055 317	- (U.K.A.E.A.)					
	The present search report has b	een drawn up for all clair	ms					
	Place of search THE HAGUE	Date of completio	n of the search 1982	MOLLE	r G.	Examin H.J	ier 「.	·
A: te	CATEGORY OF CITED DOCU articularly relevant if taken alone articularly relevant if combined w ocument of the same category chnological background on-written disclosure termediate document	rith another	T: theory or pr E: earlier pate after the fili D: document of L: document of document	nt document, ng date cited in the ap cited for other	but pu plication reasor	blishe on os	d on,	or