(11) Publication number:

0 065 820

A2

(12)

EUROPEAN PATENT APPLICATION

(21) Application number: 82302072.2

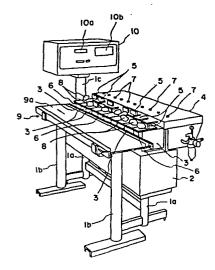
(22) Date of filing: 22.04.82

(5) Int. Cl.³: **G 01 G 19/32** G 01 G 13/00, G 01 G 13/285

30 Priority: 23.04.81 JP 59322/81

(43) Date of publication of application: 01.12.82 Bulletin 82/48

(84) Designated Contracting States: DE FR GB IT


(71) Applicant: KABUSHIKI KAISHA ISHIDA KOKI **SEISAKUSHO** 44, Shogoin Sannou-cho Sakyo-ku Kyoto-shi Kyoto 606(JP)

(72) Inventor: Mikami, Yoshiharu 126-12, Shimogamo Miyazaki-cho Sakyo-ku Kyoto(JP)

(74) Representative: Fane, Christopher Robin King et al, **HASELTINE LAKE & CO. Hazlitt House 28 Southampton Buildings Chancery Lane** London, WC2A 1AT(GB)

- (54) Combinatorial weighing apparatus.
- (57) Disclosed is a combinatorial weighing apparatus for combining weight values of articles to-be-weighed respectively placed on a plurality of juxtaposed weighing machines, selecting a combination of the articles having a weight equal or closest to a target weight and delivering the selected articles. Such combinatorial weighing apparatus comprises pushing members which can move frontward and backward on respective bowls of the plurality of juxtaposed weighing machines, a driver unit which selectively moves the pushing members frontward and backward, these pushing members corresponding to the weighing machines with the selected batches of the articles placed thereon, and a conveyor which is disposed along the juxtaposed weighing machines and which conveys the batches delivered by the pushing mem-

Fig.I

EP

COMBINATORIAL WEIGHING APPARATUS

This invention relates to a combinatorial weighing . apparatus. More particularly, it rel ates to a combinatorial weighing apparatus which is supplied manually with articles of various weights unsuited for automatic feed, which apparatus measures the weights of the respective articles and combines the measured weight values into a predetermined weight.

10

15

20

25

5

An automatic weighing apparatus based on a combination computing system (referred to as a "combinatorial weighing apparatus") includes a plurality of weighing machines. It operates by measuring the weights of articles automatically fed to the respective weighing machines, adding the actually measured weight values in each of an arbitrary or predetermined number of different combinations, comparing each resulting sum with a predetermined target weight, and selecting the combination whose weight sum is equal or closest to the target weight. In such combinatorial weighing apparatus, the distributive supply of the articles to the respective weighing machines, the computation for obtaining the best combination, the delivery of the articles belonging to the best combination, etc. are fully automatic. The apparatus can weigh the articles with great accuracy in a short period of time, and is especially suited to the combinatorial weighing of bulky articles such as vegetables, fruits and confectioneries.

Some kinds of articles, however, are not suitable

for distributive supply. They are, for example, articles which have large volumes, articles which are likely to be damaged when supplied automatically and distributively, and articles which are viscous and poorly distributed. It has therefore been impossible to apply the known fully-automatic combinatorial weighing apparatus to the combinatorial weighing of such articles.

According to the present invention there is provided a combinatorial weighing apparatus for combining weight values of articles respectively placed on a plurality of 10 juxtaposed weighing machines, selecting a combination of the articles having a weight equal or closest to a target weight and delivering the selected articles, which apparatus comprises pushing members which can move frontward and backward on respective bowls of the plurality of juxtaposed 15 weighing machines, a driving unit which selectively moves the pushing members frontward and backward, said pushing members corresponding to the weighing machines with selected batches of the articles placed thereon, and a conveyor which 20 is disposed along the juxtaposed weighing machines and which conveys said batches of the articles delivered by said pushing members.

An embodiment of the invention can provide a combinatorial weighing apparatus which is capable of the combinatorial weighing of articles unsuited for distributive supply.

Another embodiment of the invention can provide a semiautomatic combinatorial weighing apparatus which, merely by putting articles on weighing machines, can perform combinatorial weighing automatically, deliver the articles belonging to the best combination and carry the delivered articles to a predetermined location via a conveyor.

25

Fig. 1 is a perspective view of a combinatorial weighing apparatus according to this invention;

Fig. 2 is a schematic view of a mechanism for driving

pushing members for use in the combinatorial weighing apparatus of Fig. 1;

Fig. 3 is a sectional view of a weighing machine for use in the combinatorial weighing apparatus of Fig. 1; and

Fig. 4 is a sectional view of a set of weighing machines.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

5

10

15

20

25

30

Referring to Fig. 1, a bed 2 is supported by legs On the bed 2, a plurality of weighing machines 3 are juxtaposed, and a housing 4 is mounted. Pushing members 5, 5.... are disposed in correspondence with the respective weighing machines 3, 3 in a manner to retractably advance from a side surface of the housing 4. The pushing members 5, 5 can move frontward and backward on bowls 6, 6 of the corresponding weighing machines 3, 3..... As will be described later, a driving mechanism for selectively advancing and retracting the pushing members 5, 5.... is disposed in the housing 4. On the top of the housing 4, selection indicating lamps 7, 7 ···· are mounted in correspondence with the respective weighing machines. The selection indicating lamps 7, 7 indicate the weighing machines 3, 3 on which articles 8, 8 belonging to the best combination are placed.

Mounted on legs 1b and 1b is a delivery conveyor holder 9, on which an endless conveyor 9a is disposed in a manner to be movable in the direction of the arrow.

The plurality of weighing machines 3, 3 mentioned above are juxtaposed in the moving direction of the conveyor 9a. The level of the conveyor 9a is somewhat lower

than that of the bowls 6, 6

5

10

15

20

A control box 10 is turnably supported on a leg 1c.

The control box 10 includes a switch portion 10a for setting
the data of a target weight value etc., a display portion
10b for indicating various data, and so forth.

In the weighing apparatus, when the articles 8, 8 are placed on the bowls 6, 6 manually, the weighing machines 3, 3 measure the weights of the respective batches of the articles. A combination computing unit, not shown, selects the best combination, namely the combination nearest the target weight, based on the weight values of the respective batches. The pushing members 5, 5 corresponding to the weighing machines. 3, 3 on which the articles 8, 8 belonging to the best combination are placed, are advanced. Owing to the advancing operation of the pushing members 5, 5, the particular batches of the articles 8, 8 fall onto the conveyor 9a. They are conveyed in the direction of the arrow, and are gathered into a pool hopper or the like, The pushing members 5 are normally held retracted, and the selectively advanced ones are retracted after a predetermined time.

Fig. 2 is a view for explaining a mechanism for driving the pushing members. Electromagnetic valves 12,

12 of a number equal to the number of the juxtaposed weighing machines 3, 3 are fixed at equal intervals longitudinally of an air circulating tube 11. Each electromagnetic valve 12 has ports 12a and 12b. The respective ports 12a are connected through pipes 13, 13 to ports

14a, 14a of air cylinders 14, 14 which are

disposed in correspondence with the weighing machines 3,
3, while the respective ports 12b are connected through
pipes 15, 15 to ports 14b, 14b of the air
cylinders 14, 14 Although not shown in the figure,
a piston is disposed in each cylinder 14. This piston has
one end of a piston rod 5a of the pushing member 5 attached
thereto, and a plate 5c is secured to the other end of the
piston rod 5a. A regulator 17 and an air filter 18 are
serially connected to a port 11a of the air circulating
tube 11 through a pipe 16.

10

When a combination control unit 19 is supplied with the weight values w_1 , w_2 and w_{10} of the articles 8, 8 from the respective weighing machines 3, 3, it performs a combination computation and provides signals indicative of the best combination. On the basis of the 15 best combination signals, an electromagnetic valve driver circuit 20 energizes the electromagnetic valves 12, 12 corresponding to the weighing machines 3, 3 on which the selected batches of the articles are placed. Thus, air 20 is fed into the air cylinders 14, 14 through their ports 14a, 14a via the ports 12a, 12a of the energized magnet valves 12, 12, to move the pistons upwardly as viewed in the figure and to advance the pushing members 5, 5 \cdots Owing to the advance of the pushing members 5, 5, the articles 8, 8 placed on the 25 bowls 6, 6 are delivered onto the conveyor 9a. After the electromagnetic valves 12, 12 have been energized for the predetermined time, they are deenergized. the air enters the air cylinders 14, 14 through the ports 12b, 12b, pipes 15, 15 and ports 14b, 30

14b, to move the pistons downwardly and to retract the pushing members 5, 5 to their initial positions.

Figs. 3 and 4 are sectional views of weighing machines.

5

10

15

20

25

30

Referring to Fig. 3, the weighing machines 3 which contains a suitable detection mechanism such as load cell is formed with an opening 3b in a predetermined part of the top of a frame 3a thereof. The weighing bowl 6 has a structure in which depending portions 6b and 6b are provided on the periphery of a bowl portion 6a. The bowl thus is open downward. The bowl 6 is so supported as to be fitted in the weighing machine 3, and the peripheral sides 3c and 3c of the frame 3a are covered by the depending portions 6b and 6b of the bowl. Symbol 3d indicates a mounting member which has a protuberance 3e centrally of its bottom wall and drip holes 3f around the protuberance and which is provided with a peripheral wall 3g rising at its periphery. The weighing machine 3 on which the bowl 6 has been mounted, is fitted into the mounting member 3d and is fixed to the protuberance 3e in such a manner that the suspended portions 6b of the bowl 6 are surrounded by the peripheral wall 3q.

In the weighing machine of Fig. 4, the bottom wall of a mounting member 101 having a predetermined length is formed with a plurality of protuberances 3e at equal intervals. A plurality of weighing machines 3 are mounted and fixed onto the respective protuberances 3e in parallel. An upstanding peripheral wall 3g formed on the periphery of the mounting member 101 surrounds the outer surfaces of the depending portions 6b of the respective bowls 6. In Fig. 4,

the same parts as in Fig. 3 are assigned the same symbols.

According to the weighing machines shown in Fig. 3 and 4, even in such a case where the bowls 6 are washed with water, the invasion of the water into the weighing machine bodies can be reliably prevented. Moreover, any weighing error ascribable to the contact of anything other than the article to-be-weighed with the bowl 6 can be prevented.

Described next will be a weighing operation with

the weighing apparatus according to this invention.

First, a power switch, not shown, is closed, and various data such as the number of selection and the target weight of the articles 8 are set by means of the control box 10. Therefore, an operator places the articles 8 on the respective bowls 6 manually and closes a start switch disposed on the control box 10. Then, the weight values w_1 , w_2 and w_{10} of the respective batches of the articles 8 placed on the bowls 6 are applied to the control unit 19 (refer to Fig. 2). Here, they are combined and added, and the combination to which the preset number of 20 batches belong and which exhibits the target weight value or an approximate value thereof is selected. Thus, the indicating lamps 7, 7 corresponding to the selected batches are turned on, while at the same time the electro-25 magnetic values 12, 12 corresponding to the weighing machines 3, 3 on which the selected batches are placed are energized by the electromagnetic valve driver circuit Upon the energization of the electromagnetic valves, the corresponding air cylinders 14, 14 are actuated to advance the pushing members 5, 5, so that the batches 30

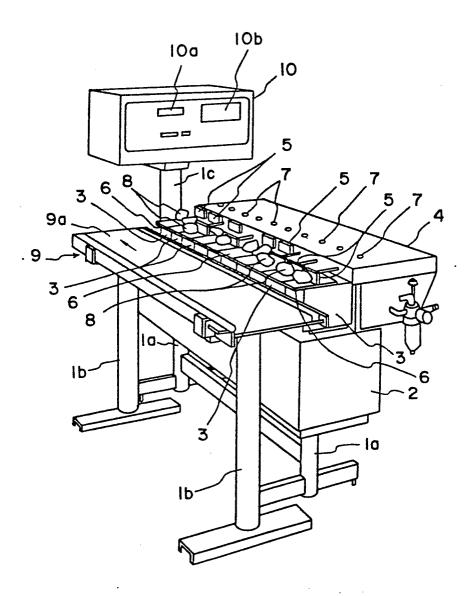
5

8 on the bowls 6 are pushed out onto the conveyor 9a. batches 8 pushed out are transferred to the next station by the delivery conveyor 9a, whereas the batches 8 on the unselected bowls 6 are held intact on these bowls 6. When the advanced pushing members 5, 5 have been moved back to their original positions after the predetermined period of time, the articles 8 are again placed on the empty bowls 6 manually. When the start switch is subsequently closed, the weight values of the respective batches of the 10 articles 8 are combined and added again by the combination control unit. The batches 8 selected are pushed out onto the delivery conveyor 9a as in the foregoing step. forth, the articles are weighed according to the same procedure.

An embodiment of the invention can be semiauto-15 matic as described above, and can be suited to weighing a commodity of large volume, a commodity susceptible to damage, etc. into a target weight. Moreover, since the apparatus is designed to be compact, it can be fabricated by an 20 already-installed job line. Further, since the apparatus adopts the system of combining and selecting measured weight values, the variation in the weights of the individual articles need not affect the precision of weighing.

CLAIMS:

30


- 1. A combinatorial weighing apparatus for combining weight values of articles respectively placed on a plurality of juxtaposed weighing machines, selecting a combination of the articles having a weight equal or closest to a target. weight and delivering the selected articles, which apparatus comprises pushing members which can move frontward and backward on respective bowls of the plurality of juxtaposed weighing machines, a driving unit which selectively moves the pushing members frontward and backward, said pushing members corresponding to the weighing machines with selected batches of the articles placed thereon, and a conveyor which is disposed along the juxtaposed weighing machines and which conveys said batches of the articles delivered by said pushing members.
- 2. A combinatorial weighing apparatus according to claim 1, further comprising a control box which serves to set the target weight.
- 3. A combinatorial weighing apparatus according to claim 1, wherein said driving unit comprises electromagnetic valves and air cylinders which are respectively disposed in correspondence with said weighing machines, and a driver circuit which drives the electromagnetic valves corresponding to said weighing machines with said selected batches placed thereon, and wherein selected ones of said electromagnetic valves are energized, thereby to extend and contract piston rods connected to said air cylinders and to move said pushing members frontward and backward.
- 4. A combinatorial weighing apparatus according to claim 1, wherein said each weighing machine comprises the

bowl whose periphery is formed with a depending portion, and a body which contains a weight detecting mechanism, and a concave mounting member which extends upward and which has a peripheral wall, and wherein said bowl is supported on said body, a peripheral side of said body is covered with said depending portion, said body is mounted and fixed on said mounting member, and said depending portion of said bowl is surrounded by said peripheral wall of said mounting member.

- 5. A combinatorial weighing apparatus according to claim 1, wherein said each weighing machine comprises the plurality of bowls each of which is formed with a depending portion in its periphery, a plurality of body portions each of which contains a weight detecting mechanism, and a mounting member which has a peripheral wall and which has a plurality of protuberances on its bottom part, and wherein the respective bowls are supported on the corresponding body portions, peripheral sides of said body portions are covered by the depending portions, said body portions are mounted on the corresponding protuberances of said mounting member, and said depending portions of the respective bowls surrounded said peripheral wall of said mounting member.
- 6. Combinatorial weighing apparatus, including a plurality of weighing machines for weighing articles carried thereon and means for selecting a best combination of machines carrying articles having a total weight closest to a desired weight, wherein the apparatus further includes a conveyor, and pushing members locatedadjacent to respective weighing machines for pushing only those articles carried on the said best combination of machines onto the conveyor.

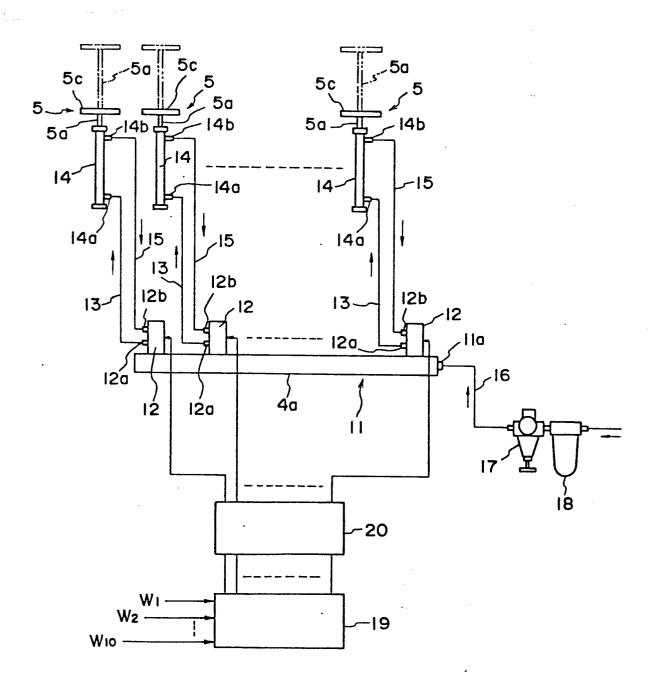

1/3

Fig.I

2/3

Fig. 2

. 3/3

Fig.3

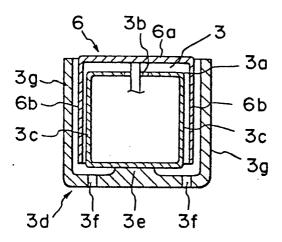
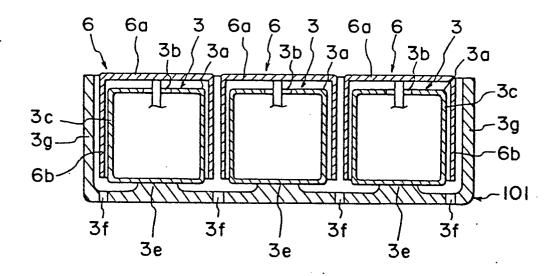



Fig. 4

