EP 0 069 518 A2

Europaisches Patentamt
European Patent Office

Office européen des brevets

@ Application number: 82303343.6

(2 Date of filing: 25.06.82

0 069
A2

@ Publication number:

EUROPEAN PATENT APPLICATION

@ intc: G 09 G 1/16

518

Priority: 06.07.81 US 280619 ®

@ Date of publication of application:
12.01.83 Builetin 8372

Designated Contracting States:
BE DE FR GB IT NL SE

(@) Applicant: DATA GENERAL CORPORATION
4400 Computer Drive

Westboro Massachusetts 01580(US)

@ Inventor: Hunt, Glenn E.
7401 Haddick Circle
Austin Texas 78745(US)

@ inventor: Alexander, Michael C.
1818 South Lakeshore Boulevard
Austin Texas 78741(US)

@ inventor: Gittins, Robert S.
43804 Cabot Street
Austin Texas 78741(US)

@ Inventor: Lozano, Geraid L.
3407 Sanderling Trail
Austin Texas 78746(US)

Representative: Pears, David Ashley et al,
REDDIE & GROSE 16 Theobalds Road
London WC1X 8PL(GB)

@ Raster scan video display terminal and method of operation.

@ For each row of characters to be displayed the characters
and associated attribute information (underline, flashing,
etc.) are transferred to buffers 161-164 on bus 191 from the
terminal memory. The charagters are then converted by a
character generator 253 and shift registers 271 to a VIDEO
signal for 2 monitor 180 during the raster lines pertaining to
the row, counted off by a raster counter 254, The characters
are stored as strings in the memory in correct character order
but arbitrary row order. Associated row designators include
the address of the first character to be displayed in the row, a
pointer address to the next designator the number of the first

- raster line of the row to be displayed and the number of lines

to be displayed. At the end of the last line of each row the
newly pointed to row designator is transferred to registers
which address the first character to be transferred to the
buffers 161-164. Horizontal scrolling is effected simply by
changing the first character addresses in the designators.
Smooth vertical scrolling is effected by progressively in-
crementing first raster line number and decrementing the
number of lines to be displayed (or vice versa).

S

Croydon Printing Company Ltd.

f._--.‘-___-_—__----—..—--__.-_..

’ 101 Yote
~ ‘ CoNTROL
T
1
1 = 1%
i 37ATE CoUm?
1 stare |
1 comten
. state
i MACw"
1 T
! moraTOR
1 o=

_Jt

i

ST

L.
L

i i
L | A
!
1
LATON
"s
=
e w2 o f——] -
r - 1
1 = !
1 wAcG !
BATIS '
1
% - 17% 1
H 1
i 1
i Prand id R el '
1 - - t
oua LL] oua. 1 > i
AT LATDES
i i
i I
] 1
1 1
t o~ o -3 Pt i
ATTR ATTR ATTS
e } waTe incoomes | aron :
{ [To f
i v-uu-_J !
i 108 VG et }
i - 1
[S — S|
ey
RN

$

10

15

20

0069518

-1 -

RASTER SCAN VIDEO DISPLAY TERMINAL
AND METHOD OF OPERATION

Ipe present invention relates to a raster scan video display
terminal, as set forth in the introductory part of claim 1.

The image aon a CRT is generated by using an electron beam to
stimulate selected areas of a phosphorescent material located on the
inside of the CRT screen. The scanning of the CRT face is accom—
plished by deflectihg the electron beam relatively rapidly in one
direction, usually horizontal, and relatively slowly in a second
direcﬁion, usuvally vertical. The phosphorescent material on the
screen is continuous, but the screen can be considered to consist of
a large number of generally horizontal, parallel "raster .lines" or
lines of displayed information. As the beam scans along a raster
line, the information about the level of stimulation to be given a
particular area on the raster line is updated at fixed intervals
in accordance with a clock pulse or "dot clock". Therefore, each
raster line can be further considered to be a series of discrete
Segments or "dots" which are individually stimulatable by the electron
beam. '

The electron beam normally performs 50 or 60 "frames" or
complete scans of the CRT screen per second, depending on the

external electrical power available. From the viewpoint of an

" dbserver facing the screen the beam begins a frame at the left

10

15

20

25

30

-

-2 - 0069518 . -
side of the top raster line of the CRT and moves substantially
horizontally along the line to the right side of the screen
stimulating each dot to the appropriate level to create the !
desired image, The beam then performs a horizontal retrace to
the left side of the next lower raster line and again begins to
scan horizontally to the right. This cuntinues until the beam
reaches the right side of the lowest raster line, at vhich time
a vertical retrace is performed during which the beam moves backf
to the beginning of the toé raster line to begin the next
frame, No information is displayed during either horizontal or
vertical retrace,

Characters displayed on the screen are formed by an
arrangement of doks. A character area 7 dots wide and 9 dots
(i.e. 9 scan lines) high is adeqhate to allow display of all
common alphanumeric characters, The specific character desired
is created by stimwlating the appropriate pattern of dots within
the'7x9 dot character area. To énsure adequate horizontal
spacing between adjacent characters in a line or "row" of text
and vertical spacing between the rows, the character area is
typically considered to be part of a character field, generally
10 dots wide by 12 scan lines high, The size of the character
field énd the bharécteristics of the terminal determine the
ancunt of information that can be displayed on the monitor. If
the terminal, for example, displays 1000 discrete dots per scan
line, then, ét loidots,pe: character, up to 100 characters can
be shown on a horizontal row. Similarly, if the terpinal
perfétms, for example, 240 hoéizontal scans during each vertical
scan, then, at 12 scan lines per character row, 20 rows of
character information can be shown,

Some prior art terminals are capable of displaying more than

Y

10

15

20

25

30

- - 0069518

3
one dot density, but in these terminals only one density may be
used during any one frame. That is, during a given frame, every
raster line of the ‘display will have exactly the same number of

dots and therefore the same number of character fields per

line, This substantially limits the ability of the CRT user to
display his text on the screen., 7

Another problem in the prior art is the extremely higb work
load of the CPU which can result from user changes to the
display. 1In the prior art, data to be displayed is commonly
stored in sequential memory locations in terminal memory. The
first character to be displayed {i.e. the leftmost character of
the top row) is not necessarily located in the first memory
location and is typically indicated by a "top of page™ pointer.
The leftmost éharacter of displayed row 2 is stored in the
memory location immediately.following the rightmost character of
row 1, and so on, with the rightmost character of the last row
being the end of the "string®. 1If, for example, a character is
to be inserted into the displaf and therefore inserted into the
*string™ of characters sequentially stored in memory, the
addresses of all characters following the insertion mu;t be
changed to reflect their new position in the string. If the
insertion occurs near the top of the screen, a substantial
amount of processor work must be-performed to change the memory
1océti§ns of all following characters. To complete the
operation during vérticai retrace requires the terminal to have"
a very- fast CPU and memory. To allow the operation to continue
over multiple frames presents the terminal user with a visible
"ripple® effect as the memory is updated.

A related prior art problem ig.the high processor workload

resulting from the method of performing vertical or horizontal

10

15

20

25

30

35

-

0069518, -
-4 -
scrolling. To avoid display degradation or delays, prior art
terminals which provide scrolling capability must use a proéessor
capable of performing the data movements required under the prior art
method.

Yet another prior art prcblem is the regquirement to generate
the dot information for a character field that is, typically, 10 dots
wide. "Standard” ROM's (read only memories) are unavailable with 10
outputs and, while the actual character will occupy only a subset of
the field, typically 7 dots, the remaining dots cannot always be

blanked because of other terminal requirements such as the occasicnal

‘need to display a solid horizontal line across part or all of the

screen. Prior art terminals, therefore, have generally been required
to use either a "custom" 10-bit ROM or an B8-bit ROM in cénjunction
with a 4-bit ROM. Either alternative adds to the cost of the
terminal.

The present invention is concerned first and foremost with
reducing the workload on the CPU and is defined in the characterising
part of claim 1 below.

The display information for a row need only be stored if the
content of the display'informaticn for that row is changed. This
applies equally to the row description informatien. Updating can
take place during vertical retrace.

The display information can be retrieved by repé;ting for
each row the steps of xeading from the description information in the
memory the memory address of the information to be displayed on the
row, reading from memoxry the informatiqn to be displayed on the row,
and reading from the mémory the pointer address of the descripticn
information pertaining to the next row.

_ The method of retrieval and display of information can
involve: repeating for each row the steps of transferring the
information to be displayed to buffers while simultaneously displaying
the first raster liﬁe_of the row, displaying the remaining raster

The row description information for each row can include the
information relaéed to the address of the first character to be dis-
played on the row; the first raster line to be displayed within the
row; the number of raster lines to be displayed with the row;
control information related to vertical synchronization, end of frame

indentification and blanking of the display during vertical retrace;

10

0069518
-5 <
and the pointer address of the row description information for the
next row to be displayed.

Such row description information allows smooth vertical
scrolling by changing the first raster line and number of raster
lines to be displayed. Moreover, the row description information
allows horizontal scrolling without requiring changes to stored
character information, supply by changing the first character
addressed in the row description informations.

The row description information also allows for control of
vertical synchronization, display density, display blanking
identification of the end of the frame.

The invention will now be described in more detail, by way

of example, with reference to the accompanying drawings, in which:

15

20

25

30

z

- e - 0069518, °

BRIEF DFSCRIPTION OF THE DRAWINGS :
Fig, 1 is a block diagram of a CRT terminal embodying the E
presept invention, l

Fig. 2 is a block diagram of the Video Control Logic and
Video Character Generation Logic of Fig, 1.

Fig, 3 is a schematic diagram of the preferred embodiment of
the Address Latches of Fig. 1.

Fig. 4 is a block diagram of the Video Timing Logic of Fig.
1.

Fig. 5 is a schematic diagram of the preferred'em?odiment of
the Video Timing Logic of Fig, 4.

Fig. 6 is a tiﬁing diagram illustrating the operation of
certain portions of the Video Timing Logic of Fig. 5.

.Pig, 7 is a timing diagram illustrating the operation of
other po:tions of the Video Timing Logic of Fig 5.

Fig, 8 is a schematic diagram of the preferred embodiment of
the Video Control Logic of Fig,. 2.

Fig, 9 is a schematic diagram of portions of the preferred
embodiment of the Video Character Generation Leogic of Fig, 2,

Fig. 9A is a schematic diagram of the preferred embodiment
of the Line Buffers and other portions of the Video Character
Generation Logic of Fig. 2.

Fig. 9B is a schematic diagragrof the preferred-embodiment -
of further portibns of_the Video Character Generation Logic of
Fig. 2. '

gFig. 9C is a schematic diagram of the preferred embodiment
of yet other portions of the Video Character Generation Logic of
Fig., 2. |

Fig., 10 is a block diegram illustrating a possible

structuring of display data.

- 0069518
- 7.. :

Fig. 10A is a block diagram illustrating another possible
structuring of display data.

Fig. 11 is a block diagram illustrating a technique for
upward Qértical display scrolling.

Fig. 12 is a block diagram illustrating a technique for

downvard vertical display scrolling,

10

15

20

25

30

"———

x

-8 - - 0069518 .

DESCRIPTION OF THE PREFEREED EMBODIMENT
Introduction

For clarity of presenting and illustrating the invention, a
terminal having specific parameters will be used as the basis
for discussion, but it should be understood that the invention
is not limited to a single specific set of numbers or
dimensions. OQbviously, many terminal pdrameters will depend on
such factors as CRT size, semiconductor operating limitations
and monitor performance characteristics. Therefore, the
following discussion will assume a terminal having 288 total
displayed scan lines, The displayed scan lines allow 24
displayed horizontal "rows” of characters of 12 scan lines
each, Within eaéh row, the displayed character occupies scan
lines 2 through 10 (i.e., character heigpt is 9 scan lines). If
22 scan line times occur during vertical retrace while no
information is being displayed, the terminal can be viewed as

cyclicly performing 310 (288 + 22) horizontal scans per vertical
scan cycle. i _ '

To be able to vary the number of characters that can be
displayed per row, either the den;ity of the dots on-the scan
line or the number of dots per character f£ield must be
changeable, A preferre@ embodiment combines both capébilit@es
in a novel manner to allow the terminal user to simultaneously
di;play rows having different charécter densities, - Again for
purposes of i;}ustration and ease of discussion, the terminal
will be described as having character modes of 81 displayed
char:cte:s per row and 135 displayed charactersrper row. Taking
into account the time which transpirgs during horizontal

retrace, there are 111 character times per horizontal scan cycle

in the 81 column format ‘and 185 character times per horizontal

£

15

25

30

. interface a different address space of RAM (Random Access

P 10069518,

scan cycle in the 135 column format. The 81 column character
field is selected to be 10 dots wide and the 135 column

character field to be 9 dots wide. The actual disﬁlayed

character within the f£ield is normally maintained at 7 dots wide

in both formats., These numbers are not the only possible

: bhoices, but have merely been selécted as a preferred embodiment

of the invention.
. ‘o 3 Tnt £

Referring to Pié. l.an overview of the internal logic of an
iﬁtelligent Yideo display terminal is shown. CPU 100 interfacesf
with Character Data Bus 191 via bidirectional buffer.l10, Systemi

Data Bus 192 via bidirectiopal buffer 111, Attribute Data Bus

193 via bidirectional buffer 112 and Downline Loadable Character

Bus 194 via bidirectional buffer 113. Buffers 110 and 112 each

}

Memory) 150 to CPU 100. Data are transferred over Character
Data Bus 191 to Address Latches 300, RAM 150, Video Control
Logic 200 and Video Character Generation Logic 250. Data '

related to the various system devices with which the terminal

may interface (e,g. keyboard, printer) is carried via System
Data Bus 192 to agé frém System De;ices Logic 130. ﬁata
specifying the att;ibutes (e.g.'dim, blink, underscore, inverse)-
of the characters to be displayed are transferred via Attribute
Data Bus 193 to RAM 150 and Video Character Generation Logic _
250. Downline Loadable Character Bus 194 allows terminal users
to tgansfef their ownnﬁnique characters to CPU 100 for display.
Address Bus 195 }s connected to Address Latches 300, Decoders
120, System Devices Logic 130, Buffers 140 and RAM 150.

Decoder Logic 120 contains logic to decode the information

on Address Bus 195 to determine which, if any, system device is

10

15

20

25

30

S0 0069518

being addressed., Buffers 140 provide the appropria;e TTL to MOs
interface, as reguired by RAM 150 and some elementslof System
Devices 130 (e.g. ROM'S). .

Video Control Logic 200 is connected to éPU 100, Address
Latches 300, Buffer 110, Line Buffers 160,Video Timing Logic
400, Latch 170, RAM 150, Video Character Generation Logic 250
and CRT Monitor 180. Video Character Generation Logic 250 is
cﬁnnected to Buffers 110 and 11&, Line Buffers 160, Video Timine
400, Latch 170, and RAM -150. CPU 100 is connected via System
Device Logic‘130 to the host computer (not-shown) external to
the terminal and communicates with the host over System Data Bug
192.

Referring now to Fig. 2, a more detailed schematic of Video
Control Logic 200, Line Buffers 160 and Video Character
Generation Logic 250 is shown. Video Control Logic 200
generates the horizontal synchronization signal for the monitor
drive electronics; provides synchronization between CPU 100 and
RAM 150; controls the transfer of information from RAN 150 to
Character Generation togic 250 and Line Buffers 161-164; and
prevents access by CPU 100 to RAM 150 during transfers of
display.information'(described below) to Line Counter.203,
Rasteg Counter 254; Status Latch 202, and Line Buffers l61-164.

CPU 100 controls Video Control Logic 200 only by'mgans of a

'discrete halt line, vhich is used during initial setup of the

disp;ay 1nformation after a hardware restart.

Character Generation Logic 250 receives character and

attribute data from data buses 191 and 193 and from Llne Buffers
161—164, control information from Video Control Loglc 200, and
timing signals from Timing Logic 400 (not shown in Fig. 2).

Character Generation Loguc 250 combines ?he charact?t, attribute
»

§
4

10

15

20

25

30

- 0069518
-1 - .

and control infozmation and generates the dot paftern for
transmission to monitor 180,

State Counter 201 counts the character time periods during
each scén line and provides the character count to State Machine
210. Line Counter 203 receives information from Character Data
Bus 191 and notifies State Machine 210 when the first scan line

of each character row is being displayed. Status Latch 202,

undeg,control of State Machine 210, provides an interrupt signal.
to State Machine 210, character format information to Latch 220,A
a vertical sync signal to Latch 170 and a vertical blanking
signal to Attribute Encoding Logic 263. State Machiné 210
provides control signals to CPU 100, Address Latches 300 and

State Counter 201, State Machine 210 also supplies. the

- horizontal synchronization signal to Latch 220,

Character Latch 251 receives charactef data from bus 191 on
the first scan line of each character row. This data is
supplied simultaneously to Line Buffers 161 and 162 and
Character Latches 252. similariy Attribute Latch 261 receives
attribute data from bus 193 during the first scan line of each
character row and supplies it simultaneously to Line Buffers 163
and 164 énd Agtribute Latch 262. Raster Counter 254, under
State Machine 210 éontrol, receives raster address information
from bus 191. This information is supplied to Character
Generator 253, which also receives the chagaéter information
from Latches 252; Similariy, Raster Counter 254 is connected to
Attribonte Encoding Logic 263, as-is Attribute Latch 262.

The output of Character Generator 253 is provided to Shift

Registers 271. The output of Attribute Encoding Logic 263 is

"provided to Latch 270, two outputs of which are supplied to

Gates 280 where they are combined with the outputs of Shift

10

15

20

25

30

-t s aganyel

*

Ca- ~ 0069518: -
Registers 271, B third output of Latch 270 is supplied directly?
to Latch 170 along with the vertical synchronization signal from
Status Latch 202 and the output of Gates 280,

For proper operation, the monitor must receive certain
timing signals, such as a dot clock pulse, a character clock
pulse, and horizontal and vertical synchronization signals, The
horizontal synchronization pulse must remain very stable in both
width and periodicity during monitor operations. Variations of
as few as ten nanoseconds result in significant degradation in
character gquality (e.q. wavering vertical lines). .

Maintaining a.stable horizontal sync pulse is normally no
problem in a fixed column width terminal, but in a terminal
having mhltiple dot clock rates and, therefore, being capable of
the simultaneous displaying of multiple column widths, such
degradation can result unless the dot clock frequencies are
carefully selected and the circuitry is specifically designed to
ensure constant sync pulses, ' '

As the vertical scan is in progress, the transition from one
display column width to another column width can be seen to

present a situation where the last scan line of 'a row is clocked

at one ftequency vhile "the next scan line (i.e. first scan line

- - Y
. of the next row) must be clocked at a different frequency., 1If

therclock frequencies, are not “compatible™ some slight --
foreshorteniﬁg 0£ 1engthening of the horizontal sync pulse will
usually result at.the transfer of dot clock contfol from one
sourte frequency to another, This sync pﬁlsé variation would,
as mentioned, céhse unacceptable degradétion of displayed ‘
characters, The ability to simultaneously display multiple

column widths without diktortion or degradation of displayed

ORI

10

15

20

. 25

30

- 0069518
- 13-
characters is, therefore, dependent on the ability to perform a
smooth transfer of control among the dot clock sources (i.e. a
transfer vhich does not disrupt the horizontal synchronization),
fo ensure a smooth transfer, the frequencies of the dot
clock sources must be such that all clock sources begin and end
the horizontal scan period "together®, This compatibility can
be éreated by using a single master clock source and performing

division operations to yield multiple clock frequencies having a

specific ratio to each other,

Referring how'to Fig. 4, an overview of Timing Logic 400 is
shown, Signal SC135 controls the source of the Dot Clock
pulse., Clock 401. receives signal SC135 from Latch 220 and
ocutputs the appropriate-DOT;CLOCK signal. This clock pulse is
supplied to Clock Counter 402 andmis used for various operaticns
which must occur on a2 dot time basis., Clock Counter 402 also
receives the signals SEL 135 from Status Latch 202, VIDEO_RESET
from video Control Logic 200 and PIPE_ENABLE from Ciock Counter
403. One output of Clock Counéer 402 is the PIPE_CLOCK pulse,
Fach PIPE_CLOCK pulse is equal to a character time and is
therefore equal to the length of a Dot Clock pulse times the
number of dots in the character width, i.e. the number of dots
per scan line in tﬁe character fiéld. PIPE_CLOCK and PIPE
ENABLE are used for operations which must occur on a character
time Basis. The second output is provided to Clock Counter 403,
as-is VIDEd_RE?ET. Clock Counter 403 outputs PIPE_ENABLE, used

to tontrol the loading of registers and counters clocked by PIPE
CLOCK.

~

Referring now to Fig. 5, a detailed schematic of Timing
Logic 400 is shown. Master Clock 501 provides a highly accurate

source of clock pulses. For example, the K1114A- 61,938 MHz

10

15

20

25

30

-

- 14 - _' 0069518 .

crystal oscillator manufactured by Motorola Components Inc.
provides a TTL compatible pulse with an accuracy of plus or
minus 0,05%, The falling edge of the pulse from Master Clock
501 clocks £1lip flops 502, 503, 504 and 505 (for example;
748112's), ’ | :
The output of Master Clock 501 is divided by two to create

the appropriate Dot Clock rate for display of an 81 charaéter)

line and by three to create the Dot Clock rate for a 135 §
character line., The diyision is performed by flip flops 502 andg
503 to achieve the 135 character dot clock rate 2nd by flip flop%
504 ko achieve the 81 character rate, Flip flop 505 performs
reset funcéions.

Looking first at the case of generating the dot clock for -
the 135 character line (i.e., SC135 is high). Input C'of gates

508 will be high and input A will be'low, having been inverted

‘by gate 507. The output of gates 508 {i.e., DOT_CLOCK) will

therefore be controlled by £lip flop 504, Flip f£lop 504 is _

connected as a toggle, and its Q output will change'state every

other master clock cycle. Therefore, Dot Clock will be one-half
the Master Clock rate, as shown ip Fig, 6, -

. Looking now at the case of generating the dot clock for the
81 character line (i.e.,-SC135 low). The Dot Clock will be .
controlled by the Q output of f£lip flop 503. The Q output of
flip flop 503 is connected to the J input of flip flop 502. The
Q output of flip flop 502 is in turn connected as the K input.of
flip flop 503. Referring to Figure 6, just prior to master
clockro (and every 3 master clocks thereafter) 503 Q is high,
502 Q is high ané 503 Q is low. At master clock 0, 503 Q is
forced low and 503 Q is forced high by 503 K (i.e., 502 Q) being
high. Since 502 J was low, 502 Q remains high. At the second

10

15

20

25

30

- 0069518
_15-

1
H
!
t
t

Q and 503 6 are unchanged, since 503 K was low, while 502 Q :

master clock pulse (master clock 1) 503 @ returns high and 502 6

and 503 Q return low. At the third pulse (Master Clock 2), 503

returns high., The states of flip flops 502 and 503 are now
identical to the states just prior to master clock 0. It can be
seen that the Bl character dot clock falling edge will occur at
every third master clock falling edge.

To ensure that the HSYNC signal is stable, the circuit is
designed such that the transition from the 81 column dot clock
to the 135 column dot ciock or vice versa occurs at the time
when both dot clocks are in the low state followed by a high
state., It can be seen from Figure 6 that this situation is
present every 6 m;ster clock cycles, fhe number of master clock
cycles per horizontal sync period is therefore chosen to be an
even multiple of 6, insuring that the handover alwayé happens on
the same master clock pulse, i.e; when the low followed by high
conditions exist. This coordination of dot clock sources at the
time of changeover from 81 to 135 or vice versa eliminates
foreshortened or lengthened horizontal sync pulses which could
result in visibly degraded displayed characters,

At initial terminal start up of after some event that
interrupted the no;mal timing seguence, the RESET signal,
normally high, is asserted low. This forces 5050 low and, since
5050 is connected to flip flops-502, 503 and 504, will force
outputs 502Q, 503Q and 504Q high.- When RESET is unésserted,
5050 goes high on the next master clock pulse. The initial
states of flip flops 502-505 have now been set up and, on the
following master\clock pulse (Mastef Clock 0), dot clock

generation begins as described above.

Gates 507 (for example, a 74S01) and 508 (for example, a

10

15

20

25

30

e = e e e e e t— - —

cs - 0069518 -

74851) act as the selecting mechanism between the Dot Clock
pulse from flip flop 504 {135 column dot cloc&{ and flip flop . ;
503 (81 column dot clock). The state of SC135, which is high |
for 135 column format, enables cither input B or input D of gate
508, The output of gate 508 bLecomes the Dot Clock for all
terminal operations during that character row. |

The Dot Clock signal from gates 508 is supplied to the
clocking input of clock counters 510 and 511 (for example,
748161's)., CountersVSlo and 511 trigger on the rising edge of
the Dot Clock pulse, As discussed earlier, the number of Dot
Clock pulses in a Pipe Clock pulse may vary, f£or example the 81
column Pipe Clock contains 10 Dot Clock pulses while the 135
column Pipe Clock contains 9. The division of the Dot Clock
pulses by 9 or 10 to yield Pipe Clock pulses is controlled by
inverting the SEL_COL_135 signal from Video Control Logic 200
with gate 509 {(for example, a 74502) and using the output to
vary the value preloaded into counters 510 and 511.

Referring to Figs. 5 and 7, the operation of counters 510
and 511 is illustrated. In the B8) column case {(i.e, SEL 135
low), counters 402 and 403 are preloaded to 1l1. After five Dot
Clock pulses the PIPE_CLOCK output of counter 402 goes low,
After four more cléck pulses, the PIPE_ENABLE output of counter
403 goes.low, which forces both PIPE_CLOCK and PIPE_ENABLE high
at the.next clock pulse. Therefore, the 81 column PIPE_CLOCK
signal is high for five Dot Clock pulses aﬁd low for five Dot
Clock pulses. PIPE_ENABLE is high for nine Dot Clock pulses and
low for one.

The 135 column case is similar except the counters are

preloaded to 12 rather than 11, fhe 135 column DOT _CLOCK pulse

» will therefore be high fgr four Dot Clock pulses and low for

10

15

20

25

30

7 - 0069518

five, while PIPE_CLOCK will be high for eight Dot Clock pulses

and low for one,

vid ~ontro)l .

Referring now to Fig, 8, a detailed schematic of Video
Control Logic 200 (Fig. 2) is given. State Counter 201 is seen
to consist of counters 204 and 205 (for exémple, 74L8161's),
Sﬁaté Machine 210 is impleménted as 512 x 8-bit PROM 211 (for
exémple, an MHMI 6349), 3-to-8 line decoder 213 (for example, a
74L§138), multiplexer 214 (for example, a 74LS257), CPU Halt

flip flop 212 (for example, a 74LS74) and gate 215 (for example,
a 74s802).

L3

Counters 204 and 205 receive VIDEO_RESET from flip flop 505
{Fig. 5)., This signal is used for initialization and clears the
éognter. Counters 204 and 205.also receive RELOAD_STATE from
PROM 211 to restart the counters at zero at the appropriate
state, depending on whether the current display mode is 81
column or 135 column. The counters are clocked by PIPE_CLOCK.

The output from the counters is supplied to PROM 211, along
with signal SC135 indicating whether the display mode is 81 or

135. 8C135 can be considered as a pointer to either of two 256

- byte segments of PROM 211. Therefore, for each possible value

from counters’204 énd 205, there is a unigue 8-bit byte location
in PROM 211.) | .

PROM 211 output DO is supplied to Latch 220 {for example, a
745161) and originates the horizontal synchronization signal to
the terminal monitor.- Output Dl is supplied to Multiplexer
214, ‘Butputs D2, D3 and D4 are supplied to Decoder 213. Output
D5 (RASTER_COUN&) is supplied to Raster Line Counter 254 (Fig. '
9) to enable counting of scan lines in the character now being

displayed. Output D6 (LINE_COUNT) is supplied to Line Counter

10

15

20

25

30

sy

k4

- 18 - 0069518
203 (for example, a 74LS161) to enable scan line counting,
Finally, output D7 (RELOAD_STATE) is supplied to State Counters
204 and 205, as discussed above,

Decoder 213 requires two enabling inputs, The first, HALT
ACK, comes from CPU 100 and indicates that CPU 100 (for example,
an MC 6808) has relinquished control of the sddress and data
buses to Video écntrol Logic 200. Since FROM 211 is always
enabled, the second input, PIPE_CLOCK, is used to prevent
possible false decoder outputs.

In response to the three input signals from PROM 211,
Decod?r 213 provides six output signals as follows:

~ A clocking input'tc CPU Relt flip flop 212;'

~ LOAD_RASTER_INFO, supplied to Line Counter 203{

~ LOAD_STATUS_INFO, supplied to Status Latch 202; and

~ SEL_PAGE_ZERQO, LOW_REG_LOAD, and HIGH_REG_LOAD, all
supplied to Address Latches Logic 300,

CPU Balt flip flop 212 and gate 215 combine to generate the
CPU_HALT signal., This signal, asserted when low, reguests CPU
100 to relinquish control of the address and data buses. CPU
100 will respond to this request only after completing execution
of the current instruction,

Because the leﬁgth of time required to complete the current
instruction may vary significantly, Video Control Logic 200‘
waits a period of time which is édequate to allow completion of'
execution ofrthe iongest instruction prior to takiné any action
in £egard to the éddress and data buses, - This ensures CPU 100
has Kalted.,

FIRST_SCAN_LINE is received by flip flop 212 and gate 215
from Line Counter 203. Flip flop 212, clocked by an output from

decoder 213, is necessary to latch the Q output of 212 high and

10

15

20

25

30

LINE will go low before CPU 100 should be allowed to regain bus

control.

-is - -

Flip flop 212 holds CPU_Balt in the low state until

0069518

therefore hold CPU_HALT in the low (i.e. asserted) state. This

is required since Line Counter 203 will be reset and FIRST_SCAN

reset by another clocking pulse from Decoder 213 under control

of PROM 211,

inputs based on the state of 212 Q.

address buses,

Multiplexer 214 selects four outputs from eight available

Address Latches 301-304.

If 212 Q is low, (i.e. CPU not halted)

CPU_CLOCK is supplied to Latches 301-304. If 212 Q is high

(i.e. CPU halted), PIPE_CLOCK is supplied. ADDR_COUNTER_LD

controls loading of Address Latches 301-304. It is selected

That is, based on whether
CPU 100 or Video Control Logic 200 is controlling the data and

ADDR_COUNTER_CLK is the timing pulse provided to

between a signal from PROM 211 if 212 Q high and a continually

high signal if 212 Q low. LINE_BUF_CS controls writing of data

into Line Buffers 161-164.

It is selected between a

continuously low dignal if 212 Q is low or PIPE_CLOCK if 212 Q

is high,

LINE_BUF_WE also controls writing of data into Line

Buffers 161-164 and is selected between a continuously high

signal if 212 Q is low and PIPE_CLOCK if 212 Q is high.

andris clocked at the dot clock rate.

Latch 220 is enabled by PIPE_ENABLE, has a reset input KILL,

SEL 135 from Status Latch 202, a horizontal synchronization

signal from PROM“211,'ahd CHAR_SET_SB indicating a user optional

character set is being used. Output SC135, indicating character

line format, is supplied to Timing Logic 400. The horizontal

synchronization signal HSYNC is supplied to the monitor

Inputs to Latch 220 are

electronics and CSS3 is supplied to character Generation Logic

250.

10

15

20

25

30

- 20 - 006951§e§

Status Latch 203 (for example, a 74LS161) is clocked by PIPE
CLOCK and, when LOAD_STATUS_INFO from Decoder 213 is received, :
will receive the four most significant bits of the character
byte then being read on Character Bus 191, These bits contain
the signal indicating end of frame, display mode (i.e, 81 or 135
characters), vertical synchronization and display blanking, At
the next PIPE_CLOCK pulse END_OF FRAME is provided to CPU 100,
VER_BLANK is provided to Video Character Generation Logic 250,
VER_SYNRC is prqviged to Latch 170 and the signal indicating
display mode is provided to Latch 220,

e ey o P M ke | A 8 i it % BBt b 42 o o hn —— &

Line Counter 203 is also clocked by PIPE_CLOCK and loads the
four_least significant bits of the character byte then being
read on Character éus 121 when LOAD_RASTER_INFO iz received fromr
Decoder 213.‘ These four bits identify the number of scan lines
of the character row to be displayed. This information, i
together with information from Raster Counter 254, provides the
ability to accomplish smooth vertical scrolling of displayed
characters. Counter 202 and Latch 203 receive clearing signal
SCREEN_ENABLE from the términal hardware,
s:ba :ag:g: S-.:gng[atj on !IQaj c

Referring now to Figs. 9. 2A, 9B and 9C, a detailed
schematic .0of an eméodiment of Character Generation Logic 250 and
Line Buffers 161-164 is shown..

Character Latch 251 (for examéle, % 74L5374) is connected to
Character Dafé Bus 191 and Attribute Latch 261 (for example, a
74L8S374) is goﬁhected éo Attribute Data Bus 193, Both Latches
are‘Ciockéé b& PIPE_CLOCK. On the first scan line of each
character ;ow, video Control Logic 200, thch has control of the
data and address buses at khis time, will £ill Line Buffers 161~

164, via Latches 251 and 261, with the character and

10

15

20

25

30

0069518

- 21 -

attribute data for that row from RAM 150. In this embodiment

Line Buffers 161-164 are implemented as 1Kx4 MOS RAM's (for example,
2114's). The data will be removed from Line Buffers 161-164 as
required during the horizontal scan cycles needed to display the row.
LINE BUF CS and LINE BUF WE, both controlled by PIPE CLOCK during the
£fill period, ensure stable data addresses in the line buffers. When
Line Buffers 161-164 have been filled, LINE BUF CS goes low to ensure
the data is available in the shortest possible time and LINE BUF WE
goes high to ensure Line Buffers 161-164 are always in the "read"
state. .

The state count from State Counters 204 and 205 is supplied
to Line Buffers 161-164. As the state count is incremeqted by
PIPE.CIOCK (i.e. on a character~time basis), the four output bits
of Line Buffers 161-164 will present attribute and character
information for the character stored in Line Buffers 161-164
correspanding to that count. Line Buffer 161 provides the four
least significant character bits to character Latches 254 and 258
{(latches 252 of Fig. 2) and Line Buffer 162 provides the four most
significant character bits to Character Latches 254 and 258 (for _
example, 74 1LS377's). Line Buffer 163 provides the four attribute
bits to Atttibute Latch 262 (for example, a 741LS377). The attribute
bits indicate whether the character will be dim, inverse, underlined
or blinking. The outputs of Line Buffer 164 relate to use of user
optional character sets and may or may not be used in a given
terminal application. Use of an optional character set is indicated
to Multiplexer 256 and to Character Generators 255 and 256 by CSS3,
which is supplied as an enabling input.

In this embodiment of the invention, Character Generators

255 and 256 (generator 253 of Fig..2) are 4Kx8 MOS ROM's (for example,
2732's). 7 Due to

15

20

25

30

-

S

0069518

- 22 -

spced limitations of Character Generators 255 and 256 used in
this embodiment, two character latches and two character
generators are used. This allows the information to be read and
stored in Character Generators 255 and 256 for two character
times hefore dot information is forwarded for display. Latch
254 and Generator ﬁ56 are enabled by the least significant bit
of the state count (SCAO), SCAOQ is inverted by gate 259 (for
example, a 74LS20) and provided as the enabling input to Latch
258 and Generator 255, Therefore, alternately, either Latch 258

enecadof”
and Character Generator 255 or Latch 254 and Charéd terL?Sé will

be enabled, l

.

To synchronize attribute data with the character data from

Generators 255 or 256, Attribute Latch 262 loops back on itself,

—-_—. e

Two PIPE_CLOCK pulses are thereforg required to forward.
attribute data to Attribute'Encodng Logic 263, shéwn in Fig. 93;
to be constructed of gates 264-268 and 4-line Multiplexer 269
{for example, a 74LS257). :
‘Gates 264-268 and Multiplexer 269 provide the proper
attribute encoding prior to merging of attribute and character
data, Gate 264 (for exanmple, a 74L§20) *ands” UNDERLINE with 3
raster line bits from Raster Counter 342, All input conditions
will be satisfied if underlining is requested and the eleventh
raster line of the character row is being displayed. Gate 265
(for example, a 74LS00) prevents dimming if underlining is
taking'place,nsince'the output of gate 264 will be low if all
und%;lining conditions are met. Gate 266 (for example, a
74LS00) “ands™ the BLINK signal with BLINK ENABLE, Gate 267
(for example, a ;4L820) inverts the INVERSE signal and gate 268
(for example, a 74LS20) disables Multiplexer 269 if either

horizontal sync or vertical blinking is underway., Outputs F(A)

10

15

20

25

30

_237...
and F(B) of Multiplexer 269 are therefore based on the state of
INVERSE and are selected by the outputs of gates 264 and 266.

F(A) and F(B) are provided to Latch 270 (for example, a
7458161), along with the ATTR_DIM and HOR_SYNC signals. Latch
270 is clocked at the dot clock rate and provides dimming
information tc Latch 170 (for example, a 74S5195). ULatch 270
also cobtrols the output of Merging gates 280 (for example, a
74851) based on the state of F(A) and F(B). If F(A) and F(B)
are both high, all dots sent to monitor 180 are “on®". If F(A)
and F(B) are both low, éll dots are turned "off". if F(a) is
low and F(B) is high, the normal chéracter bit stream from
register 272 is sent and, finally, if F(A) is high and F(B) is
low, the inverse of the bit stream is sent to monitor 180.

Character Generators 255 and 256 also receive RASTER A0-A3
from Raster Counter 254 (for example, a 74LS161). These signals
identify which of the twelve scan lines in the character row is
currently being displayed. The character generator will then
output the dot pattern to be displayed based on the particular
character and scan line. As discussed earlier, the displayed

character portion occupies 7 dots (2-8) in the character field

- which is either 9 dots wide in 135 character format or 10 dots

wide in 81 character format, To yield the 9 or 10 dot signals
required for each raster line character field, outputs Q0-Q6 of

Character Generators 255 and 256 are used for the character ?

.itself {(i.e. DOTQ-bOTB), while output Q7 is routed to

Multiplexer 257 (for example, a 74LS257), where it is used to
control selection of the remaining required dot signals, 4
Multiplexer 257 is enabled unless a user optional character set
has been selected, indicated by CSS3 going high, If CSS3 is

high the outguts of multfplexer 257 are tri-stated and

- 0069518

10

15

20

25

30

- 24 - 006951

overridden by data on DLL bus 194, The A inputs to Multiplexer
257 are held low. Inputs Bl and B2 are connected to the DOT 8
signal from the character generators and igbut B3 is connected
to the DOT 2 signal. If output Q7 of the character generators
is lovw the A inputs will be selected and outputs DOT 1, DOT 8
and DOT lq will be low. If Q7 is high, Multiplexer 257 outputs
DOT 9 and DOT 10 will have the same state as DOT 8 while output
DOT 1 will have the same state as DOT 2., This implementation,
using standard logic components is less expensive than
implementations using non-standard ROM's having a 10 bit output
or using an 8 output ROM ganged with an additional 4 output ROM,
yet provides the capability for the terminal to display a solid
horizontal line acéoss the monitor screen or display the
intersection of 2 horizontal line and a vertical line,

The dot information is therefore provided at the Pipe Clock
rate to Shift Registers 271, shown in Fig, 9C as constructed of
4 bit registers 272, 273 and 274 (for example, 74S195's). The
dot information will be shif ed out of these registers at the
dot clock rate starting with the first dot to be displayed (i.e,
Dot 1), Dots 1-4 are initially provided to Register 272, Dots
5~8 to Register 273 and Dots 9-10 to Register 274. These
registers receive éIPE_ENABLE from Clock Counter 403,

Each dot and its inverse will be supplied to gate 280, whé:e
characfer'infoimation from register 2727and attribute

information from Latch 270 are merged. The combined dot

infdrmation is supplied to Latch 170, which synchronizes t?e dot;

information (VIDEO) transfer to Monitor 180 with transfer of the
vertical synchronization signal and the dimming signal (HB).
Address Latches

Referring to Fig. 3, & detailed schematic of an embodiment

.
! ,
!
8 %

- o o

8 et e s enn &

e m—r e = e

10

15

20

25

30

* Decoder 213 forces Latches 301 and 302 to all zeros to assure

i
|

!

- 25 - 0069518

of Address Latches 300 is presented. As discussed above, Video
Control Logic 200 will request CPU 100 to relingquish its controil
over Address Bus 195 (BUF0-BUF15) on the last scan line of each
character row. Since Video Control Logic 200 does not know what
operation CPU 100 is performing, it will wait long enough after
generation of CPU_HALT to allow the maximum length instruction
to complete execution. This removes the possibility of a
contention over control of the address and data buses.

Video Control Logic provides addresses t6 Address Latches
301-304 (for example, 74LS161's) by means of Latches 305 and 306
(for exaﬁp}e,-?4LSB74's), which are loaded from Characger Bus
191 by Vidéd Control Logic 200. Latches 305 and 306 are clocked

by HIGE_REG_LOAD ané LOW_REG_LOAD respectively from Decoder

}

213. The outputs of Latches 305 and 306 are connected as inputs,

to Address Latches 301-304. Latches 301-304 are clocked by PIPE%

CLOCK, if CPU 100 is halted and Video Control Logic has bus §
control, or by CPU_CLOCK, if CPU 160 jas bus control. Loading _‘
of Latches 301-304 is controlled by ADDR_COUNTER_LD from :
Multiplexer ii4. When CPU 100 has bus control, this signal is

always low {i.e, loading always enabled). SEL_PAGE_ZERO from i
\ .

the memory space containing the RDB lists is addressed.
Rovw Descriptor Blocks

For purposes of illustration, assume again the typical -
terminal having 288 displayed scan lines with 22 horizontal scan
cycles required for vertical retrace. These 288 lines are

equivalent to 24 character rows of 12 scan lines each, but,

because of the smodth scrolling capability discussed below,

during some vertical scans the top and bottom rows in the scroll

"window" will be 6n1y partially displayed. This requires CPU

LT
[$4

1 AJ .

A L l
R CE . ", . . ‘
. .“ 'y
W % !

.A::‘.. -y,
. | SO

10

15

20

25

30

* be displayed and how many scan lines of the character row will

*

- 26 - 0069518-°
100 to maintain 25 rows of character information in RAM 150.
This terminal embodiment allocates 8K bytes of RAM 150 for
storage of attribute and character information, This memory

space-allows CPU 100 to store character and attribute

information for 162 characters in RAM 150 for each of the 25
character rows.

During each vertical retrace period, CPU 100 will update and
store the row information from which the display will be created . -
during the next vertical scan. This row data (character and
até:ibute) ig organized on a row basis, rather than a screen
basis, That is, each rov of characters is stored in gonsecutive
memory locations, but the rows are not arranged in any
particular order, They are, instead,; "linked" by means of RDB's%

{Row Descriptor Blocks), also assembled by CPU 100.

Each character row has associated with it one RDB consisting;
of five 8-bit bytes of information., The first, or Status byte
contains the information about row format (81 or 135 character
line), end of frame, vertical synchronization and vertical oo
blanking. The second, or scroll, byte contains information

about which scan line in the character row will be the first to

be displayed., This information enables ®"smooth™ vertical

scrolling_by allowing less than the entire character row to be ‘
displayed du:ing a frame. The third and fourth bytes contain '
the starting address in RAM 150 of the 81 or 135 characters
(deénding on the format identified in the Status byte) to be
dispféyed on that row. This information enables horizontal
scrolling of the~6isplay within the 162 chéracters stored in RAM
150 for that row by simply changing the address in RDB bytes

three and four, No chang® to character information in RAM 150

15

20

25

30

o - 0069518

is required. The fifth, or Next RDB, byte is a pointer to the
next RDB. That is, it contains the address of the next RDB to '
be used. Since the 8 bits of the Next RDB byte allow only 256 :

addresses, the RDB's are placed in the lowest memory locations

in RAM 150. With five bytes per RDB, up to 51 possible RDBs can

! be used.

Advantages of RDB usage can now be clearly understood. For

" example, significant reductions in CPU work load and required
memory speed can be realized. Since the display information is
stored in RAM 150 by rowé, rather than in a continuous sequence ‘

for the entire screen, the CPU is no longer required to move

lengthy -strings of character and attribute information for each
character change, Rather, all character rows which do not
require modification during a vertical retrace.need not be moved
in memory. Only the memory locations for the row being éhanged
are affected,

Moving displayed rows on the screen requires only that the
RDB's be "relinked™., That is, that the Next RDB bytes be
chanéed. Wifh 24 rows of character information, there will be
24 linked row RDB's, In addition, three vertical retrace.ﬁDB‘s
are inserted after the last displayed row. These rétrace RDB's
do not display any-infofmation and cover a total of 22 scan
lines ii.e. the retrace -period). fhe last retrace RDB points to
the RDB of the first diépléyed row. The complete RDB list will
contain either 27 RDB's (54+3), if 24 rows are complétely
displayed, o£ 28 RDB's (25+3) if scrolling is underway and two
rows are only partially displayed. A possible linking situation:
is shown in Figq, io.

For simplicity of design, RDBl is chosenyto always reside in

the lowest memory location. The RDB's in Fig., 10 are shown in

15

20

25

30

- 26 - 0069518 -

the order of displayed character rows. That is, bytes three and
four of RDBl contain-the starting memory address of displayed
row 1 and the Next RDB byte (byte five in this embodiment)
contains the address of RDBS, Bytes three and four of RDB5
contain the starting memory address of displayed row 2 and the
Next RDB byte contains the address of RDB3. The remaining RDB's
are similarly linked. RDB28 in this example is the last i
character row and, therefore, the Next RDB byte of RDB28
‘contains the address of the first of three vertical retrace
RDB's., The third verti&al retrace RDB points back to RDBI.

Now, assume the terminal user wishes to remove displayed row
2. Rather than the CPU having td revise and store a substantial .
part of the entire screen in memory, only the row associated ‘
with RDBS and three RDB bytes need to be changed. Specifically,'
in this example, the Next RDB byte of RDBl is changed to the
address of RDBS; the Next RDB byte of RDB28 is changed to the
address of RDBS, and the Next RDB byte of RDBS is changed to the
address of RDB22. RDB3 is now the RDB of the last character row%
and previous rows 3-25 have been “"moved uﬁ". This.sitvation is

illustrated in Fig, 2857 [0A.

o mimmase - wey e

Also, smooth scrolling either up or down can be performed
for all displayed éows on the screen or a subset thereof
selected by the terminai user, As stated above, the scroll byteé
of each RDB contains information about which of the 12 scanu, .

lines in the row will be the first to be displayed and how many

of the lines will be displayed. Smooth scrolling can be
K3

_accomplished by modifying the scroll bytes of the RDB's

associated with the top and bottom character rows in the scroll
area and relinking the RDB's as required.

Fig. 11 presents an illustrative example of RDB activity

emem wa pmrs

.
et ettty Mt o R

10

15

20

25

30

b d

0069518

- 29 -
related to vertical scrolling at a rate of one scan line ever&
frame, Of course, the particular RDB reference numbers and RDB
linkaée order shown is of no particular importance beyond this

example,

The numbers inside the RDB boxes in Pig. 11 indicate the

" data in the scroll byte of that RDB. Specifically, the total

number of scan lines of that character row to be displayed and

the starting scan line within the row are given. For example,

- looking at RDB7 in Fig. 11, 12/1 indicates that all 12 scan

lines of the character row will be displayed starting with the

first (i.e. top) line, i ¢

Each of the columns in Pig. 11 shows a segment of the nlist®

of linked RDB's. Looking first at Frame n, assume upward
vertical scrolling of the screenrarea now occupied by the
character rows associated with RDB12 and RDBY9, i.e. a scrolling
space 24 scan lines high, is about to begin. During Frame n
there are a tota1 ;f 27 RDB's linked as described earlier, As
shown for Frame n+l, however, during a scrolling operation two

character rows will normally be only partially displayed, -

requiring that an additional RDB be linked into the RDB list,

- Of course, the total number of displayed scan lines in the

scroll area is conétant (24, in this example).

During the vertical retrace between Frame n and Frame n+i,
CPU 100 will load the appropriate locations of RAM 150 with the
information for the new RDB (in this exampie RDB 20) and with
the character and attribute information for ;he LOW now

associated with that RDB. In addition, the scroll byte of RDB

‘12 must be modified to indicate that only 11 scan lines,

beginning with line 2, will be disélayed and the Next RDB byte

of RDBY must be modified to point to RDB 20 instead of RDB 11.

10

15

20

25

30

Cs0- 0069518

The Next RDB byte of RDB 20 will contain the address of RDB 11.

As indicated in Fig. 11, only the top line of the RDB 20
character row will be displayed during Frame n+l, The total
number of displayed scan lines in the scroll area has stayed
constant at 24,

During the vertical retrace between Frame n+l and Frame n+2,
no RDB‘:elinking is required and no change to the character or
attribute information stored in RAM 150 is required. Only
changes to the scroll byte of fhe RDB of the top row currently
being displaged in the scroll area (in this example, RDB12) and
the RDB of the:bottom now currently being dispiayed in the
gcroll area (in this example, RDB 20) are necessary,
Specifically, the.scroll byte of RDB12 must be modified such
that only 10 scan lines, beginning with line 3, are displayed.
Similarly RDB20 is modified such that now the top two scan lines
of its associated character row are displayed during frame n+2,

Modification of the scroll byte of RDB12 and RDB20 continues
in this manner until the vertical retrace prior to Frame n+l2,
Since the RDB12 character row has now been completely scrolled

"off* the screen, RDBl12 is removed from the RDB linked .sequence

- and the Next RDB byte of RDB7 is modified to point to RDBY. To

the user, the display has scrolled upward by one character row.
At the next vertical retrace, a new RDB (in this example, RDB
T

12) is linkeﬂ'into the list and the process described above for

P .

Frame n+l is %?peated..‘_“

At aitybicaiymonitpr operating rate of 60 frames per second,
this téﬁhnique will_r;sulé in a scrolling rate of 60 scan lines
{i.e. five chara;ter rows) per second, Other scrolling rates
can be achieved. Faf example, a 10 row per second rate can be
obtained by modifying thé scroll bytes by two scan lines per

frame rather ihan one as in Fig, 11,

L

——— At - P S " o S i ittt £ 8 &

10

15

et o o ¢ & cm—

20

25

30

0069518

- 31 -

Fig. 12 presents an illustrative example of downward

scrolling at two scan lines per frame. The relinking and scroll

byte modification is similar to that described above for upward
scrolling except that the new RDB is linked in at above the
other RDB's of the rows in the scroll area rather than after.

Since scrolling is being performed at 2 scan lines per frame,

- the row associated with the bottom row in the scroll area (RDBS

in this example) will be completely removed from the screen in §
frames rather than 10, as in the example of Fig. 1l1.

This terminal also has the capability for horizontal
scrolling of displayed information, Horizontal scroliing is
accomplished by changing the starting memory addréss ({RDB bytes
three and four) for that row. As mentioned eariier, RAM 150
contains 162 characters for each row, of which only an 81 or 135
character subset is displayed at any one time. Changing the
contents of RDB bytes three and four causes a different subset
of the 162 characters available in RAM 150 to be loaded into
Line Buffers 161-164 for display. The actual character data in
RAMVISD therefore need not be chaqged during the horizontal

scrolling process,

_— €1 £ Video Control Logi

it can be seen that the format for each row is independent
of the format of any other row and is determined by the format
information stored ;n the Status byte (byte one in this
implementation) of the RDB for that row. BAny combination of the
aisplay;formats can, therefore, be set up by CPU 100 during
vertical retrace, The actions necessary to progress from
character row to-chafacter row during vertical scan are
controlled by Vidéo Control Logic 2b0. In summary, starting

during the last scan line of each row, Video Control Logic 200,

]

10

15

20

25

30

.
e et

-of a row and concludes with 9A on the first scan line of the

- 32 ~ 0069518

will request CPU 100 to relinquish bus control; will obtain
status, raster and address information from the next RDB; will.
transfer the character and attribute information for the row to
Line.Bufferg 161-164; and will release CPU 100 prior to the end
of the first scan line of the following row., This sequence of -
events continues to repeat during vertical retrace, even though
no information is being displayed, The three vertical retrace
RDB's, &g stated earlier, are designed to maintain proper
operation and synchronization during the retrace time period ;
until the next vertical ;can begins. The particular character
information in Line Buffers 161-164 during vertical retrace is
irrelevant since t@e blanking bit of the Status byte of the
three vertical retrace RDB's is set to preclude display of any
information during this period. |
To illustrate the coordination and operation of terminal
hardware, one possible time line is given in Table 1. The
entries under STATE are the hexadecimal counts in State Counters
204 and 205. The State columns show the sequence for the 81
column format and the 135 column format. As mentioned eaflier,rz
in the preferred embodiment the 81 column format has a total of
111 characte: times per complete horizontal scan, therefore
State Cﬁunters 204.and 205 will recycle every 111 counts.
Similarly, the 135 column format has a total of 185 character

times per scan, The Bl column seguence starts-with State 37 of :

the last scan.-.line of a character rcw and ends with State 5C of
the first scan line of the following character row. The 135

column sequence starts with State Count 5D on the last ‘scan line

next row., The loading of Line Buffers 161-164 is timed such

S ——— i #e = S

that the first scan line &f ‘the character row is being displayed§

o e G e

I —— o ft—— i b B &

s - 0069518

synchronously with the buffer loading obetation. This is
necessary to ensure the information displayed on subseguent scan
lines of the row match up with the first scan line,

Assume the last scan line of a character row is being
displayed, necessitating the transfer of the next rows' RDB

information during HSYNC.

10

15

20

25

0069518

-34-
TABLE 1
STATE DATA TRANSFERRED AND/OR ACTION TAKEN
81 135)
Char/Row Char/Row
37 (5D) Assert LINE COUNT (PROM 211)- Causes FIRST

SCAN_LINE to be asserted by Line Counter 203
which informs flip flop 212 that the last
scan line is being displayed and requests the
CPU to release the address and data buses,

5C (SA) Clock CPU Halt Flip Flop 212 - Latches
request to CPU to release buses
Assert HOR_SYNC (PROM 211) '(starts Horizonta)
Sync peried).

69 (B3) Clock CPU Halt Flip Flop 212 - No effect at
this time
6A-B (B4-5) Select page zero of RAM 150 (locations 0000~

00FF); Change Address Latches 301-304 clock
from CPU_CLOCK(Q}. This synchronizes memory
cycles to Video Control Logic (Piéé Clock)
for transfer of RDB and character and
attribute information.
Assert LINE_BUF_WE (ﬂultiplexer 214) . Note
that data transferred into the Line Buffers
161-164 is not valid text information. This
; is of no conséquence since the display is in
~ the horizontal retrace period and there is
special hardware to blank the video output

during this period.

[Y

-

10

15

20

25

30

6C

6D

6E

02

(B6)

(B7)

(B8)

(On)

- 35 -~

0069514

Transfer contents of Address Latches 304 and I

305, which at this time contains the next RDB ,

Address (byte five of the previous RDB), to
Address Latches 301-304. This is in
preparation for transferring the RDB
information to Line Counter 203 and Status

Latch 202, The eight most significant bits

{hddress Latches 301 and 302) z2re not used in

this transfer because 211 RDB c¢lements are
located in the lower 256 bytes of RaM 150.

This state therefore forces the eight most

significant bits to all zeroes by asserting

-

SEL_PAGE_ZERO (Decoder 213)., This allows use -

of a single byte for the Next RDB Pointer in
the RDB list, thus conserving page zero
memory. |

Transfer Status Information from the current
RDB in RAM 150 to Status Latch 202. These
four bits inform the Video Control Logic of
the end of the frame (END OF FRAME), display
mode (81 or 135 column), and generates the
.Vertical Synchroﬁizing and Blanking signals,
Assert RELOAD_STATE.(PROM 211). This causes
State Counters 207 and 205 to be loaded with
;all zeroes, which restarts vVideo Control
Logic 200 at state zero. The transition, if

required, from 81 to 135 format or from 135

to 81 format occurs now.

Transfer contents of Address Latches 305 and

- "306 to-Address Latches 301-304. - This is in

preparation for transferring the RDB
-yl

information to Line Counter 203 and Raster

Counter 254.

10

15

20

25

30

- — P s & et 4 o 0

-

-k e e dmmaan vy
Prrd

03

04

05

06

07

0B

.

(0B)

(0C)

(oD)

(OE)

{(oF)

(13)

" this display roﬁ.

0069518
- 36 -

Increment Address Latches 301-304 to point to
Raster Information (byte two) in the current
RDB.,

Transfer Raster Offset and Raster Count from
the current RDB in RAM 150 to Raster Counter
254 and Line Countér 203. This infoxmétion
indicates which scan line of the character is
first to be displayed and the number of
raster lines of the character to be
displé&éd. Line Counter 203 is given the
two's complement of the line number, Noté
that loading Line Counter 203 unasserts FIRST:
SCAN_LINE. This must be done to allow CPU
100 to run when transfer of the RDB and text
information is completed.

Transfer eight most significant bits of text
address from the current RDB in RAM 150 iﬁto_
the address Latch 305.

Tranéfer eight least significant bits of text
address from the current RDB in RAM 150 into
Address Latch 306.

.Transfer text address from Address Latches

305 and 306 into Address Latches 301-304 for
transfer of text into Line Buffers 161-164.
Transfer Next RDR Pointer from the current
RDB in RAM 150 into Adaress Latch 306 for use
in transferring RDB information at the end of
Unassert HOR_SYNC (PROM 211) (ends horizontal

synchronizing period)

T .25

10

15

20

30

0C-5R (14-99)
37 ® (5D)
5¢ (5A)

LY

cleared and CPU 100 is allowed to take

_the case when smooth scrolling the last line

into the bottom row of a window) FIRST_SCAN !

4 0069518

Display'scan line and £ill Line Buffers 161-
164 with text data.

Assert LINE_COUNT (PROM 211). This

increments the Line Counter 203. Since it is

incremented before the raster line is

finiched, the two's complement of the actual
number of raster lines to be displayed is
loaded into this counter i
Clock CPU Halt Flip Plep 212, Since PIRST
SCAN_LINE from Line Counter 203 was
unasserted when the Raster Information was

transferred, CPU Halt Flip Flop 212 is !

control of the address and data buses., Video

Control Logic 200 has completed its transfer

of text to Line Buffers 161-~164 at this

state, Note that if only one scan line of a

character row is to be displayed (which is ,i

of a row off the top of a window or smooth

scrolling the first line of a character row

LINE will be asserted when the Line Counter
203 is clocked in state 37 (5D) by the !
assertion of LINE COUNT. This is necessary '
because Video Control Logic 200 must transfer

the next row's RDB and text information on

~ this scan ling and CPU 100 must be kept off

the address and -data buses during this

transfer,

10

0069518

- 38 -~

Video Control Logic 200 has transferred the linked list RIB
information from RAM 150 to lLine Counter 203, Status Latch 202
and Raster Counter 254 and the text information to Line Buffers
161-164. As explained, the first scan line ofthe character row
was displayed while the text data was being loaded in Line Buffers
161-164. Counters 204 and 205 will now continue to count up and
be resetto zero and the remaining scan lines of the character row
will be displayed. Based on information from the Scroll byte of
the RDB for the row, Line Counter 203 will count the number of scan
lines which have been displayed and indicated when display of the
last scan line of the row is underway. The process shown in

Table I will then repeat. :

0069518

- 39 -

CLAIMS
1. A raster scan video display terminal comprising memory
means for storing a plurality of rows of characters to be displayed,
a buffer for storing one row of characters during the line scans in
which it is displayed, a dot matrix character generator responsive
to the buffer contents and line counter means to provide a video
signal for display of the characters, and means for transfexring
characters row by row from the memory means to the buffer during
each frame of the raster scan, characterised in that memory means
also store in respect of each row corresponding description
information comprising the address of the first character to be
displayed in that row and a pointer address for the description
information for the next row to be displayed, and in that the means
for transferring respond in respect of each row to the first
character address in the description information pointed to by the

description information for the preceding row.

2. A terminal according to claim’ 1, characterised in that

the memory means is updated during the vertical retrace intervals of

the scan.

3. A terminal according to claim 2, characterised in that

only rows which change are updated.

4, A terminal according to claim 2 or 3, characterised in that

the description information is only updated when it changes.

5. A terminal according to any of claims 1 to 4, characterised
in that attribute information is also stored in the memory means in

association with each stored character.

6. A terminal according to any of claims 1 to 5, characterised
in that the row description information also includes an indication

of the number of characters in a complete row.

7. A terminal according to any of claims 1 to 6, characterised
in that the row description information also includes an indication

of the first raster line of the character row to be displayed and of

0069518
- 40 -
the number of raster lines of the character row to be displayed.

8. A terminal according to any of claims 1 to 7, characterised
in that the row description information also includes an indication
of the end of the frame, vertical synchronization and blanking

during the vertical retrace.

9. A terminal according to any of claims 1 to 8, characterised
by register means for storing the row description information
pertaining to the current row, and in that the row description
information pointed to by the contents of the register means is
transferred to the register means in the horizontal retra‘ce intefval

following the last line scan of each row.

1o0. A method of operating a terminal according to any of claims
1 to 9, characterised in that characters are stored in strings larger
than can be displayed in a row and in that horizontal scrolling is
effected without changing ther stored strings by altering the first

character address in the row description informations.

11. A method of operating a terminal according to claim 7,-
characterised in that smooth vertical scrolling is effected by
progressively incrementing the number of the first line to be
displayed and correspondihgly decrementing the number of :raster lines

to be displayed, during the course of a plurality of frames. .

0069518

1/14

A sna viva nd H3d4ng
vet il
Sha v1va 31N8NLiV wasne K
/v "6t —
211
- y3d4ng
wu
m. = Sttt
NOILVHINID] S A“
[==== HILIYHYHI < sna viva Epwu%:o 2] uasana
I 1 03aIA L6l g
_ . > o
s >
—] [4}:14 w
_ ! , @
'
L o ¥,
“ woLnow oLV > ONIWIL Suading
Y n_ - 03aIA ann
l i o —" 1
1 !
“ " Snd SS36AGV
_ e \V
! { SIHOLY
Lo et TOHLNOD K suIding snd SS3UAAY gsaMaay A”U
081 0307 G61—" y .
or— 00E \/
ndo
o N iy
sHaaooza
ots—"
oot
o ’
Sna 3LV1S
60—

0069518

2/14
[e i =
1 197 VIDEO 7 200
CONTROL -
T |
. |
| | — 201 — 210 |
| STATE COUNT |
| sTaTE [— |
| COUNTER 'T STATE i
| MACHINE |
| | TO
| L HSYNC | MONITOR
l 208 : ==
FIRST | |
LNE |] L—scan b | I
COUNTER] |
I LINE 1 HSYNC |
' LATCH i] |
| | END OF FRAME —pm |
STATUS [d L sEL13S —r : | !
LATCH |- l— ysYNC cc135 vsYnNe |
—— VBLANK = 135 | —»] vioEo |
| 0 | — HB i
Lo d b e e e e d I |
180
\)£161 182 163 "
160 LINE 164 170
—1 BuFFERS LaTcH |
191 A
_1 250~
Fm———AH b —————————— e e
1 VIDEO 280
i 254 CHARACTER
MERGING
! RASTER RASTER ADDRESS GENERATION GATES
:;:> COUNTER ,
W
r— 253 (" 271
; CHAR. SHIFT
251 252 GEN REGISTERS

(-231 - — 282 263 — 270

ATTR ATTR b ATTR
j_LT;’ LATCH ———-:> LATCH :> ENCODING LATCH
183

———~ KILL

|

l V-BLANK

‘ ‘ H-SYNC. —————4
L

I
|

]

|

| |

| |

' 1

l i

| ‘ > !
. —L:Lr> CHAR }— CHAR. |
\ LATCH LATCHES ‘
|

|

|

i

|

}

|

|

|

|

00695138

3/14

£ 9ld

_] a1-H3LNNOD §S3HAAY
_ _ YAVAYA s+
| INT and [in3 an3 INT dN3 TR ML
_ 03 cvol 03 avol 1 avol oo ™ avor [
_ £ 4na ao a L 4n8—{ ao a 11 4ng-{a0 a gt 4ng~ ao a
z 4n8 20) 9 4na— 20 2 ot 4na-{9o0) p14na- oo)
!
_ i 2108 —~—— 80 q G sna—4 90 8 6 dna-{ 80 q gL4ng-{ a0 f
i !vD vOo v
| oans le o YV » u:mw R g ana—{"Q, ¥ vi— zL4n8 waux% '
~ | YOET 4 i mon.h% SnbmU _onb% |
_ ! * i 437 39vd - 13
_ %12 HILNNOD SSIHACY
— X
| * i OV Ndo m«
! i 1V Ndd
_ - i ZV N M«
| i EVNao |
1 P nao | Y
_ t sV ndd |
= i 9V ndd | v
| _ IV Ndd
90t S0E
| " 1 i 8V NdJ M« a2
_ so 8Q b LO-UVHD s1v nda—80 80}— £0-4VHD i ATEN
L0 10 }— 9Q-HVHD YLV Nd3—A{ (0 L0}~ 9a-uvHO ! otvnda =
I 90 90 }— SQ-HVHD £1V NdD—1 90 9a}— SQ-UVHD FVAD 1oy
S0 SQ}— yO-BvHD ZLv nda2—{90 SQj— ¥Q-HYHD | (AL PO
| *0 Y0 }— €£Q-HYHD 1LV ndd—{¥0 val— €a-uvHo | ELVNdD |
£0 £a}—za-uvHo otv ndd—Jeo £0}— ZO-uYHO [ICAITE) MM
| zo zal— La-uvno 6v naa—{z0 zaf— 10-uvHd [- 9vndd
_ 1o 1a}—oc-uvHa 8v nda—| 1o 1a}— 0a-uVHD b 00t —
o 1o SIHOLYT |~
z
32 ssavagay 00¢
_rl.llululﬂll. |I.|||.|I.|I..I|||||M....I.l|.lll.||....l| — e o
%OV - LIWH
avol 93Y MO b QY01 D34 HOIH

0069518

4/14

P OId

sl 1as
13534 0IQIA

b Y \ \

ITAVNI Fdid & - : -t
8€10S8
HILNNOD HILNNOD HI0TO
A0 AD01D
oy — wor — toy —

NI0TD IMd ~g—

IO 100 -

0069518

5/14

5 914

2012
104
€0y — % P or— M 0
N T ¥ 34
a1 NS —{oL u:uA
£ € £ €
—~Jz z —z T
HIINNOD YILNNOD
-1 L —1 L
b
- —{0
4y a°® 1 e mu
605
310vN3
Idid

AD201D Idd

S+

HA1SVN
0
H]
X los
1o GPo——o 1no
r —— —
nnow “l
8£198
& _
LI _
$19 Jo— “
s ' * !
Y ~zos _ gt

0069518

6/14

L 9

wwm e v {a -

Ll

ot

o
-]

9 9id

~

bssmsnne

£208/0€09
NE0S/DZ0S

{oeo9)
NJ0T 100 08

(oros)
NJI0TD 104 SEL

N0 HIALSVIN

NJ0TD 3did SEL

N2071D 3did 08

JI8VYN3I 3did SEL

3718VN3 3did 08

AD071D 104

0069518

7/14

10HLNOD 030A g D)]of

c
l
l
I
|
I

ml I_ : 318YNI N3IIUDS
$ _ z-dnd 1 T 1NNOD INIT
[YN I IN3 dNd 04Nt
. £ > HILSVY
iz | IM-ANG INN ————1 €2 | INIT NVOS LSHId 03 avol avoi
l $9-4n8-3811 zz Mu [MM a £0 HVHD
&) ZQ HYHD
m G1-HILNNOD-HAOY 1z g | N_v 80 9] L3 HYHO
v : : vO 1 00 HYHD
[w19-431nn09-uaay 0z 98 #0070 3did yto P
ov _ %3079 NdI N_W R
913s 1 }
_ T | ONAS H3A e Vi
i I e ANYIE HIA 04Nt
| ANYIE HIA 94Nl
GE1 138 N AN3 dN3 SNLVLS
- 02 avoip— avol
{ 31v1s ovorm ~1 3WvHY3 40 ON3 avo
. { 1NNOo3 3NN b e ao @ LQ YVHD
%I.m@l(!& Id1d { ANNOD H3LSYY 1z — L 30 o} 9Q HYHD
HILINNOD [T (- 0 g 50 YVHD
[0 0 “ ¥30053a 8V [—9EL3S | YO v ¥0 HVHO
¥ 3d
- L a LY 7R o) X0
—{oL ¥ q Yoo 1| avoroanom—-—do 9g 9V v _ﬂ 3ow
OVO1-934-MOT ——0]§ sa sv —_— o=
SELOS g € _ OY3Z-3DVd- 135 et ¥ T va v r ot [u t~t-dnd
oNAsH—]z z 0 SN1V15-0V01——d€ t €0 £V [TERPTE _
€ 880~ b ! 04NI-¥31SYE QYO —{—O T 0 Ta v | | 3ivis
o o £5 135 — L v | ~—loa avoip
uvho ! 9 o} | I/ qwai
1 4 —q0 o0 ov |
) l avni E1 : $ o -
(0144 [1
ﬁ b _ n-«tb [ﬂw M]
- _ _ ! wio W24 _
_ €-dnd | __ Y | I |
_ & 8+ | | AN3 dN3 |
_ | 09 avol p—
! fo e _ B
_ .I_ n ao a _
] 20 2
1WHN4D o xauA { ” 80 ;] _
| s | vo v
| o nz- q | L %oV LIVH “ zmo w.mu |
_ Z-dnd _) 1 _ 13834
, 301
L 1 -

—— y— —— A— ———— T S— VT S——— Y——

0069518

8/14

[e (oo (e po

M

_
~

L

—_do

6 DI

€S 13S HILIVHVYHO

TS 13S HALIDVHVYHD

1S 13S HILIVUVHD

0S 13S HILOVHYHD

WIQ HLIIY
ASUIANI HLLVY

INIIYIANN HLLY
MNYIE il

9V HI1JVHVHI
SV YILIVHVYHI

v YILIYHVYHI

EV HALIVHVYHI
ZV H31IVHVYHI

LY HILOVYHVHO
0Y YILIVHVHO

Sz

Z-dnd

_wNJ
80 8a
L0 La
80 :1¢}
50 sQ
v0 144
€0 €Q
t4e] za
3] La
30 u.uVU

B

_

LO-YLLY
90-HLLV
9Q-HLLY
va-HLLyY
£0-HLLY
ZA-HLILY
10-4LLY
0Q-gLLY

318VN3 N3JHOS

L1

INT dN3

LNNOD 3N

04NI SNLVLS aVOl

o3 avol

EV HI1SVH

ZV HALSVYH

LY HILSYH

OV HILSYY

ao a
30 b
80 f
vo v
o WP

1

19T
—{80 8a
Lo L0
80 9a
S0 sa
»O va
£0 €a
zo0 za
[R¢] 1a
3o N10

£0 HVHO

9Q HVHI

S0 HVHO

¥Q UVYHO
€Q HVHD

20 ¥VHO

1a HvHO

00 HYHO

FM-3nd-3NIT
%2010 3did

0069518

9/14
PIPE CLOCK
CHARACTER AQ 259
CHARACTER A% e
CHARACTER A2 b g e
CHARACTER A3 — - SCAD
CHARACTER A4 el
CHARACTER AB
CHARACTER A8 - 262 ~—
- il m ._.‘
6! i | b |
“CLK OE
STATE COUNT AQ AD Y1 o AL S cA1
STATE COUNT A1 Al v2 02 a2 CA2
STATE COUNT A2 A2 Y3l-m 103 a3 : cAZ
STATE COUNT A3 A3 Y4 ——pa aaf-—~l-—tecaz
STATE COUNT A& A4 L Llos ac Cas
STATE COUNT AB - Ab —4D8 Qs ! CAG
STATE COUNT A8 AB 3 07 Q7 ! CA7?
STATE COUNT A7 ﬁ; i dog a2 " ~CA8
A8 l
UNE BUF €8 : 0 l 2ee !
NE BUF WE ~3 WE
LINE Pr—*j -5——-—1L-._'_~..—.SCAQ
e ~CUK oF |
v W 1 -
A1 Y2 7102 Q2 oo e B2
A2 Y3 i 03 Q3 e CB3
A3 Y4 T 04 QA oy &84
A4 71108 Qs cas
AS {06 Qg p~—t———cge
ag o7 Q7 N cB?
:g | ps Qgfp-——————css
A9 |
- CE i e 354
WE -
i
CLK OE
A0 Y1 B a1 ’
Al Y2 D2 a2 BLINK
A2 v3 p3 @z
A3 va D4 Q4 UNDERLINE
A4 D6 Q5
AS D6 Qs INVERSE
AB 07 Q7
ﬁ; ~1 D8 Qs DiM
29
~dce ——262
A WE
f’lﬁ‘
L—J a0 Y1]—
A1 Y2
AZ Y3
A3 Ya
A4
AS
A6
A7
AB
AS '
—cl CE
) — WE
CHAR SET S3
CHAR SET S2
CHAR SET S1
CHAR SET SO
ATTR DIM
ATTR INVERSE
ATTR UNDERLINE
ATTR BLANK

FIG 9A

0069518

10/14
RASTER AO
RASTER A1
RASTER A2
RASTER A3
css3
SCAO —
Pk 7
cs C§ !
A0
Al | 253
ZR
e
cAl : ﬁi Q2 l
cA2 ilag 03 I
CA3 A8 Q4
CAS A7 as
CAB a8 as '
CAS ASO Q7
gﬁ; 1 :11 |
i
7o : : :
| [es &8 e - g
A0 |
Ay Qo - DCT 8
az a1 ! DOT 7
cB1 Tias 92 L DOT 6
cB2 ag 93 -—DOT 5
CB3 ' A6 Q4 ; DOT 4
CB4 ‘a7 QG5 — DOT 3
CBE 1la8 gg DOT 2
1
ge? Al N '
css A1l SELB |
l 258 —{A0" 20— l
] 1 A1 .
l_.-._..:__..._...z_“._.__... i 21 ' DOT-10
| ;/ | 82 22 DOT-8
*—i A3
UNDERLINE | 8y z3 DOT-1
| ' v ENAB
l E 285 L ?Lzsn J
| :} g ATTR. DIM
DIM
! |
| 266 j 269 |
BLINK A B _)
| ' jige s |
| — 162 1Y ; FlA)
| 267 b—| 260
INVERSE |
1 L_?/ 261 2v Fi8)
| 2c2 |
2¢3
1G__2G |
Hiresasns
l g 263
N B 1 R
-
we S A '
et —?‘_‘ :,..‘i“-({_':.-' K
“ r, ﬁ ‘_‘1 ‘ L ’
BLINK ENABLE .

HUR SYNC ——er——oro—
VER BLANK

0069518

11/14

26 DiId
DNAS HIA
——— e e e e T e e T T T T e e e 6 100
12z —..I oL 1040
& s 100
9 104
1 104
_ _ g8 loa
ﬂ_u ﬁ _ * q _ %2010 10G
(114 A ﬁ ElZ o) TLT 0
A*4 X, \"4
5w | o yip — 10 % _
ONASA] —~{a -4 [
~la a ! a al— —a a|l— —a ald 1 100
030IA) 3 -0 5 —o) —o o+ z 100
aH i v _ i v ay v a5 m H mwwm)
v v — v v —v v ~v M
s | 18 b— S b s _ 318VN3 3did
» r _ x_r »_r w_ el
E_U _ : “ H _ . \
O e i .l.ll..._ \—378VN3 N3ZHOS
08¢
13534 03AIA
nm & oz
w ad] A
—jo1L w11
1M ¢ £ INAS HOH WId "H1LY
' 1 (a)4
Y o : (v)d
) [,

s+

0069518

12/14
A Y
RDB 1 CR 1 I RDB 1 CR 1
A 4
ROBS | CR2 ! |DB 3 CR2
1 3
RDB 3 CR3 ROB 12 CR3

[-t——

RDB 28 | CR 24
l Y

RDB 28 | CR 1S RDB & CR 25
\ 3

RDB22 | VR1 RDB22 -| VR1
\ Y

RDB23 | VR2 ADB23 | VR2
Y |

RDB24 | VR3 RDB24 | VR3

FiG 10 FiG 10A

0068518

13/14

t/zt

t/t

1/

Z/ty

v/

€L +Y INvHd

1180y

zigay

ozaay

600y

4804

(9541

t/z

L/et

LIz

{
|
!

T1 Y INVHS = e o o o = =T U FINVHA

tiaqy

ozaay

saay

fLaay

L1914

(9 X 41

(Y44

t/z

€/01

[r43

Liagy

ozaay

sgau

ziaay

L80d

/L

LIz

T/t

Lz

L4+ 3NV

LLaqy

ozeau

68ay

zigay

4804

/el

t/zi

L/et

L/ze

U JNVHY

tiaqy

690y

zigay

Laaqy

0069518

14/14

L/t

zj/ot

t/zi

ot/z

tsze

L+Y INvYs

t18qy

zraay

ozZaay

zieay

L8804

ZL 914
|
|
‘ vz tiagy
4
|
]
|
Lzt LLaay v/8 680y
A A
L/z1 68aH Y ziaay
4 A
1/zL zisay a/v ozagu
Lzt L80y vz Laay
1 I
] |
]]
94U BWVHY — — = o e e T4V TNYYS

t/zi

T/0t

ot/z

1z

b4 U 3NVHS

tigay

68Qy

[43: (s}

ozaay

£90y

t/ze

/e

L/zt

¥ JIWVH4

[3%:1ei]

68Qy-

ziaqy

L8QY

	bibliography
	description
	claims
	drawings

