[0001] This invention relates to methods of decorating metal containers by dye diffusion
transfer, that is to say by a method in which, in respect of a succession of metal
containers, a flexible carrier, printed with indicia in sublimable dyestuff, is applied
over a coating receptive to such dyestuff on a surface of the container and the carrier
is held in intimate contact with the coating whilst the container is heated so that
at least some of the dyestuff migrates by sublimation into the coating before the
carrier is removed from the container.
[0002] In this specification, the term "decoration" means the application of indicia, and
"indicia" means'any or all of the possible markings (whether visible to the naked
eye or not) which may be applied to a substrate by printing, for example decorative
patterns, areas of colour, pictures or diagrams, trade marks, instructions, lists
of ingredients, statutory legends or other written matter, sales codes, factory codes,
and so on. The term "container" includes an empty container body.
[0003] Dye diffusion transfer techniques have long been used in the printing of textile
fabrics, which represent the field in which such techniques find their widest application,
particularly in respect of synthetic fibre products which include dresses, skirts,
household fabrics such an curtain or upholstery materials, and for the personalisation
of tee- shirts and sports wear.
[0004] Decoration by dye diffusion transfer is also increasingly used for non-textile products
to which a suitable coating is first applied. Thus, for example, household products
such as hob covers, saucepans, and jackets for toasters and other appliances have
been successfully decorated in this way. The materials that can be given a suitable
receptive coating and then decorated by dye diffusion transfer are not confined to
metals, but can for example include wood or wood products such as chipboard. Dye diffusion
transfer can also be used for direct application to certain ceramics after having
first applied a suitable receptive coating.
[0005] Whilst some of the above-mentioned products are mass produced in the sense that large
quantities of the product may be made in the course of a year, these quantities are
not of the same order of magnitude as those in which many kinds of common packaging
container are made. For example, the so-called open-top can in its various forms as
used for beer, other beverages or food products is made at a rate which may reach
hundreds of millions of cans in the course of a year from a single production line.
[0006] Modern production equipment may indeed operate at the rate of ten or more cans per
second, and it follows that if the line has to be stopped for any reason the cost
is correspondingly great. Thus it is highly undesirable to stop a can production line
except, for example, at the end of a shift or in an emergency.
[0007] Metal open-top cans have hitherto usually been decorated in one of two ways. The
first way is to attach a paper label around the can by means of a pick-up or hot melt
adhesive. The second method, which has become common in the case of so-called two-piece
cans (i.e. those having a one-piece can body made by processes involving deep drawing)
for beer and other beverages, is to print the decoration directly on to the can itself.
Certain other kinds of metal container such as paint cans, metal aerosol cans, fancy
boxes and other boxes are usually made by fabrication from sheet, the sheet metal
being pre-printed so that it is not the container itself that is subjected to a decoration
process.
[0008] Paper labels have the advantage that a large number of cans can be produced in uninterrupted
succession and then, if necessary, divided up into small batches, each batch being
labelled differently from the others according to the requirements of different canners
or to identify different products of a single canner. Labels do however have certain
disadvantages, such as the fact that the label is susceptible to damage. Paper labels
are also somewhat unsightly, and the advent of improved food cans in two-piece form,
made by the so-called draw/redraw process, emphasises this as a label tends to detract
from its appearance and there'fore its appeal to the eventual retail buyer. Perhaps
a more significant disadvantage, however, is the fact that a high proportion of canned
products are foodstuffs (including beverages) which often/frequently require to be
sterilised or pasteurised after the can has been filled and closed. A paper label,
if applied, is normally applied after the sterisilation or pasteurisation process
to prevent damage to the label. Thus if paper labels are to be used they must be applied
by the canner and not by the can manufacturer.
[0009] Other disadvantages of paper labels include the fact that they are easily torn; they
are susceptible to damage if the labelled cans (or the labels themselves when in store)
are subjected to a damp atmosphere; and they can become detached from the can due
to the effects of moisture or dust, thereby rendering use of the contents of the can
unsafe, since there is then no sure way of establishing the age of the contents, and,
in some cases, of establishing their exact composition and therefore of knowing under
what conditions they should not be used.
[0010] In practice hitherto, paper labelling has commonly been carried out by the canner
rather-than the canmaker. To this end the canner must not only carry stocks of printed
labels and adhesive, but must also have labelling equipment which is capab-le of applying
labels at a speed at least as high as that at which the filling equipment operates.
When using labels as the indicia-carrying element of containers, on the other hand,
a canner who produces several products requiring several different label designs does
not need to hold superfluous stock of empty can bodies, since his stock need only
comprise sufficient to satisfy his total expected needs, instead of being required
to satisfy the expected needs in respect of each and every one of the products as
would be the case if he held stocks of pre-printed cans. In this latter case the stocks
tend to be more than adequate because, in order to be economic, existing types of
machine for printing direct on to the cans must normally be operated for long periods
at a time; the result of this is that the printed cans may have to be stored for a
considerable time under the necessary controlled atmospheric conditions which are
themselves a source of additional cost besides the cost of the actual space which
they occupy.
[0011] Thus a canmaker may find it more economic to store the minimum number of empty, uncoated
and unprinted cans, and therein lies part of the attraction of applying his own decoration.
On the other hand, this attraction is largely nullified by the need to provide proper
protection for these cans during storage.
[0012] Paper labels have in fact been commonly used on three-piece food cans but not on
the beer and beverage cans which now form an increasingly significant proportion of
the open-top cans produced. This is due partly to the fact that cans can be filled
with liquid at substantially higher speeds than with solid products such as food.
Paper labelling, if used, is carried out by the canner, who must not only carry stocks
of printed labels and adhesive, but also has to have labelling equipment which is
capable of applying labels at a speed at least as high as that at which the filling
equipment operates. Thus for high-speed filling operations, it is also necessary to
provide either expensive high-speed labelling equipment or several lower- speed labelling
machines serving one filling line. In either case, from the canner's point of view
this represents a significant outlay in terms of capital cost, occupation of factory
space, and maintenance and labour costs.
[0013] For all these and other reasons it is desirable that decoration should be carried
out by the can manufacturer rather than by the canner. It will also be clear from
the foregoing that decoration should preferably be applied by printing on the can
itself rather than by use of paper labels. However, unless the cans are of the built-up
or three-piece kind made from pre-printed sheet, the manufacturer is then faced with
the problem of how economically to provide relatively small batches of cans in which
each batch carries different decoration from the others.
[0014] There are available high-speed decorating machines suitable for decorating the bodies
of two-piece cans by a dry offset technique using a common blanket impression. Such
machines do however represent a considerable capital investment and, since they are
high-speed machines, any time spent in an inoperative state in order to change the
impression is correspondingly expensive. They are thus not an attractive proposition
for short runs from the economic point of view. Other decorating machines, operating
at lower speeds and being accordingly (in theory) potentially less unattractive for
"short-run" operation, are available. These employ various printing techniques. Nevertheless,
they still require considerable capital investment and have to be stopped for the
purpose of changing the decoration between one batch of cans and the next.
[0015] As far as printing directly on to the metal surface, or on to a suitable coating
on the metal surface, of a can body is concerned, most known printing machines commonly
in use suffer from another very serious disadvantage in practice. This is that the
quality of the printing is very noticeably inferior to that obtainable by printing
on a flat substrate such as paper or flat metal sheet. Thus there is considerable
scope for introduction of a process which will enable cans to be printed to a higher
standard of technical quality than is at present commonly achieved.
[0016] Use of a dye transfer printing technique; as one alternative to the conventional
methods of printing on to the surface of a can body in order to improve the quality
of the resulting print, has been the subject of a proposed system. In the proposal
concerned, a succession of thin metal container bodies is passed in. end-to-end relationship
at high speed through a tubular structure, together with a continuous web of pre-printed
transfer paper which is presented to the can bodies by a forming clement whereby the
web is wrapped around the can bodies with its side edges extending longitudinally
of them. In this condition, can bodies and web are heated as they are passed along
the tubular structure, so causing transfer of the dyes, with which the web is printed,
into a suitable coating on the can bodies. On emergence from the tubular structure,
the web is allowed to unwrap and fall away.
[0017] The above proposal is suitable for high-speed printing of large numbers of can bodies
all of which are to bear identical indicia. It is not suitable where relatively small
batches of can bodies are to receive different indicia so as to satisfy "short-run"
requirements, unless either the machinery is to be stopped to change reels of the
web (thereby suffering the disadvantages already discussed), or the web is pre-printed
with a succession of different designs, which would itself pose a number of additional
problems.
[0018] There remains a requirement for a method of high- quality printing that can be applied
direct on to the surface of a metal can and which is capable of high-speed operation,
but which will also enable short runs of different decorative designs to be applied
at short notice to relatively small batches of cans, without the need to stop production
so as to effect change-over from one decorative design to another, and without requiring
the use of highly specialised equipment that may be expensive to purchase or to maintain.
[0019] According to the invention, in a first aspect, a method of decorating metal containers
includes, in respect of each of a succession of such containers, the steps of:- applying
a flexible carrier, printed with indicia in sublimable dyestuff, over a coating receptive
to such dyestuff on a surface of the container, by means of an adhesive such as to
be removable without damage to the coating; heating the container whilst the carrier
is adhered to it, at such a temperature and for such a time that the carrier shrinks
into intimate contact with the coating and a substantial proportion of the dyestuff
sublimes so as to transfer the indicia into the coating; allowing the container to
cool; and stripping the carrier and adhesive from the container. Preferably, a separate
carrier, in the form of a label, is applied to each successive container.
[0020] The use of a suitable adhesive to attach the carrier to each container provides a
simple way of ensuring the necessary intimate contact between thecarrier and the coating
on the container surface, without the need to provide external mechanical means (which
may be complicated or unreliable or both, especially in high-speed operation) for
this purpose. In this connection it will be realised that in, for example, an arrangement
such as that mentioned above in which a continuous carrier is wrapped around the can
body and held in that condition whilst passing through a heated tubular structure,
means must be provided for ensuring that the edges of the carrier do not move apart
due to shrinkage during the dye transfer process. The tubular structure can act as
a former for this purpose; but problems may then arise due to mechanical forces acting
externally on the carrier, whilst in addition the tubular structure will only be suitable
for a single size of can body, thus reducing still further the versatility of a system
already restricted in scope by its unsuitability, mentioned above, for "short-run"
operation.
[0021] It will, furthermore, be appreciated from the foregoing that an important consequence
of the use of an adhesive to apply the carrier to each container body is that the
required intimate contact between carrier and body is achieved by converting into
a useful feature what may otherwise be a disadvantage, viz. the fact that the carrier
shrinks due to loss of moisture as a result of being heated to effect the dye transfer
process. This results in considerably improved contact between carrier and container,
as compared with previously-proposed arrangements where contact relies on the external
application of pressure whilst heating and dye' transfer take place
[0022] If each container is decorated, in accordance with the preferred feature of this
invention, using an individual carrier for each container, it will be appreciated
that "short-run" operation becomes readily possible and that by suitable selection
of a batch of such "labels" (which can be pre-printed and stored in a much smaller
space than printed can bodies), the can manufacturer may produce relatively small
batches of printed can bodies at extremely short notice.. This in turn means that
the canner can make considerable economies in the storage of empty containers.
[0023] A further advantage lies in the fact that the method of the invention, by using an
individual carrier for each container, enables containers to be printed in a series
of designs if required; for example one container may carry a picture showing one
scene and the next container a picture showing another scene. This may readily be
achieved, for example, by printing a multiplicity of carriers with one picture, a
further set with the other picture, and then collating them into the required order
before they are fed to the machine in which they are applied to the containers.
[0024] Yet another, and very important, advantage of the invention is that, not only is
the quality of the decoration on the container able to be improved as compared with
that currently found on most containers which have been printed by direct application
using conventional container-printing equipment, but the number of colours that may
be economically used is also increased. This is because the carriers are printed using
conventional techniques for printing on paper, the final decoration on the container
being limited only by the fact that all dyes are transparent, that there are no white
dyes and that certain colours (for example metallic gold) cannot readily be transferred
by the dye diffusion transfer techniques. The lack of white dyes may however be overcome
by providing on the container a white base coat in conventional manner, before the
container is decorated by the method of the invention.
[0025] Although the use of an individual carrier for each container is preferred because
of the "flexibility" of the system thereby achieved, it is nevertheless possible,
within the scope of the invention, to use a continuous carrier drawn from a coil and
pre-printed with the indicia for a large number of containers. In this case the containers
may be offered to the carrierin"line-ahead" formation in known manner, the carrier
having the adhesive applied to its edges before being introduced to the containers.
[0026] Where individual carriers are used, however, the adhesive and carriers are preferably
applied by an automatic container-labelling machine capable of operating at high speeds.
Such a machine may be basically of a conventional kind, generally similar to labelling
machines more usually employed by a canner for applying labels to filled cans as an
alternative to printing the decoration directly on to the can. However, in the performance
of the present invention the container bodies are empty and are typically of'extremely
thin-walled construction and therefore rather flexible. Accordingly the apparatus
for applying carriers to the container bodies is preferably adapted to apply the minimum
force to each body necessary to hold and convey it and to apply the label to it. To
this end, each container body may for example be received on a rotating support, for
rotating the body about its own axis, with a corresponding rotating member engaging
the top end of the body lightly so as to steady it during application of the carrier.
The latter may be presented to the body byvacuum carrier-holding means in such a way
that a portion of the carrier comes into contact with adhesive previously applied
to the body and is thus drawn away from the carrier-holding means and into rotation
with the container body, being very gently wiped into circumferential contact with
the body by soft wiping means. The latter may for example comprise one or more endless
moving belts presenting towards the container body a surface of soft sponge rubber
or foamed plastics material. The adhesive may be applied in the form of a spray, or
a jet or jets, propelled by compressed air, or under pressure generated by a head
in the supply of the adhesive itself. For this purpose an adhesive applicator may
be provided which has a nozzle or a series of nozzles for directing a spray or jets
of adhesive at the container body immediately prior to the application of the carrier
to the latter. Alternatively, the traditional 'wipe-style). of adhesive application
may be employed.
[0027] The adhesive must of course be of a kind through which the dyes can migrate with
no difficulty, and must also be such as to be readily removable when the carrier is
stripped from the container body. To this end, the adhesive is preferably of a water-soluble
pick-up type, for example a Dextrine Gum (Trade Mark) adhesive. The hot-melt type
of pick-up adhesive conventionally used for applying labels to containers is not preferred,
since it is not so easily removed as is a water-soluble adhesive, particularly since
the bond between label and container, effected by a hot-melt adhesive, tends to be
strengthened by the application of heat. A hot-melt adhesive may also tend to damage
the coating on the container body.
[0028] As an alternative to a water-soluble adhesive, a tacky contact-type adhesive, of
the kind that does not form a bond with the substrate, may be used, provided it is
not such as to damage the coating on the container, and provided also it can readily
be rolled off the container by gentle friction, even after having been heated.
[0029] Whether the carrier is in the form of individual carriers or a continuous carrier,
the preferred method of applying the heat required to effect dye transfer is by hot
air, rather than by the use of induction heating or heated platens as have been proposed
in the past. To this end, the containers, at least in the case where individual carriers
are employed, with the carrier or carriers adhered to them, are preferably passed
in succession through a hot-air oven which, again, may typically be of an essentially
conventional kind, such as a mat conveyor oven similar to those used for stoving internal
can lacquers. This enables advantage to be taken of heating in a-mass-conveyor mode,
which, in turn, permits more efficient use of factory space and ensures even heating
of each carrier. Typical heating conditions comprise a temperature in the range 180°C
to 220°C, applied for 30 seconds; however, it will be appreciated that both temperature
and time may be varied to suit the requirements of any particular production line.
[0030] After being heated to effect dye transfer, the carriers are stripped from the containers,
preferably by application of a water spray, with or without the assistance of friction.
For this purpose a simple washing device is provided whereby the containers are suspended
from the neck or otherwise suitably supported whilst being carried through a spray
or series of sprays of water which dissolves the adhesive, and which may also wash
the container clean and ready for filling with a product. Frictional assistance to
the stripping operation, if provided, may for example be effected by passing the containers
in contact with flexible belts, for example of rubber or textile fabric, whilst they
are being subjected to the action of the water spray. If the adhesive is not of a
water-soluble kind, removal of the carriers may be carried out entirely by friction,
viz. by flexible belts of rubber or the like rubbing the carrier from the container
and "rolling" the adhesive off the coating on the latter.
[0031] The coating on each container comprises a suitably receptive surface in the form
of at least one layer of a non-linear, cross-linked polyester or a non-linear, cross-linked
thermosetting acrylic resin having a substantial number of reactive groups per molecule.
Examples of suitable coating materials are those of the epoxy polyester, polyester,
polyester epoxy, alkyd, alkyd-melamine, acrylic, acrylated, and acrylated acrylic
types. The coating, or at least one layer thereof, may be pigmented in any suitable
colour, for example white (in order to provide a white base coat as mentioned earlier
herein). Where a pigmented layer is provided, there is preferably a second, translucent,
layer of coating material over the pigmented layer.
[0032] The sublimable dyestuffs for printing on to the carriers, and the coating materials
for the containers, are so chosen that their reactive groups are mutually reactive
in such a way as to effect chemical bonding between the dyestuff and the coating.
Subject to this requirement, the sublimable dyestuffs preferably comprise at least
one anthraquinone or quinoline dyestuff modified by addition or substitution of at
least one substituted reactive group per molecule.
[0033] A method according to the invention, and embodiments of apparatus for performing
such method, will now be described, by way of example only, with reference to the
drawings hereof, in which:-
Figure 1 is a layout or flow diagram illustrating principal steps in the method when
applied to the decoration of a succession of metal cans;
Figure 2 shows a diagrammatic, greatly-enlarged section through a portion of a side
wall of a metal can having a coating thereon and a carrier applied over the coating,
Figure 2(a) showing such a section immediately prior to transfer of dyes from the
carrier to the coating by sublimation, and Figure 2(b) showing the same section immediately
after such transfer has taken place;
Figure 3 is a simplified, cross-section taken on the line III-III in Figure 4, to
illustrate one method of removing the carrier from a metal can after the latter has
received decoration;
Figure 4 is a simplified plan view of carrier-stripping apparatus for performing the
stripping operation as shown in Figure 3; and
Figure 5 is a partial elevation in the direction of the arrow V in Figure 4.
[0034] Referring firstly to Figure 1, this illustrates in diagrammatic form one possible
form or layout for a printing line for the high-speed printing of metal can bodies
by a dye diffusion transfer method according to the invention. The line consists essentially
of three sections, viz. a can-body preparation section 2, a carrier preparation section
4, and a can body printing section 6. Either or both of the first two of these sections,
2 and 4, lead to the body printing section 6 either directly via suitable conveyors,
as will be seen, or via a respective buffer store 8 or 10.
[0035] In the body preparation section 4 of the line, can bodies 12 in a virgin stage, i.e.
clean, uncoated bodies of bare metal, are carried by a first conveyor,.indicated at
14, successively through conventional apparatus indicated at 16, 18, 20 and 22. In
the stage 16, an organic base coat layer 24 is applied over the outside of the sidewall
26 (Figure 2(a)) of each successive can body 12. The base coat is cured in the stage
18, after which a layer of an organic varnish, 28 in Figure 2(a), is applied in the
stage 20 so as to cover the base coat 24, the varnish being cured in the final stage
22. The can bodies 12, thus coated, are removed to the buffer store 10.to await printing
as and when required. The base coat 24 in this example contains a white pigment, but
is in all other respects of the same composition as the varnish layer 28, the latter
being translucent. The composition may be any of those already listed as suitable
earlier in this Description.
[0036] In the carrier preparation section 2, suitable paper which may be coated with a binder
is printed with sublimable dyestuffs, but, by generally conventional means, in a carrier
printer 30, to produce a continuous carrier of paper printed with a multiplicity of
images each of which comprises the indicia to be subsequently"printed on a can body
12. The dyestuffs are so chosen that when heated so as to vaporise by sublimation,
the varnish and base coat applied to the can bodies will be receptive to the dye vapour
so as to enable dye diffusion transfer to be effected. After printing, the carrier
is cut by a cutter 32 into individual carriers, each bearing one of the said images,
and the carriers are stacked and transferred to the buffer . store 8 to await use,
as and when required in the manner hereinafter to be described.
[0037] The principal components of.the body printing section 6 comprise a main can body
conveyor, diagrammatically indicated at 36, which carries the coated can bodies 12
through the various stages of the process carried out in this section. These are performed,
in succession, by a carrier applicator 38, a heating oven 40, a carrier stripper 42,
and a can body washer 44. The carrier applicator 38 receives the individual carriers
(indicated at 46) from the buffer store 8, and has an adhesive applicator 48 which
applies to each successive container body a small quantity of an adhesive which is
such as to stick the carrier to a coated can body 12 and to be removable therefrom
without damaging the coating 24, 28 (Figure 2(a)) of the can body.
[0038] Each can-body 12 in this example consists of a one-piece tinplate or aluminium vessel
made by drawing from a flat-blank with subsequent ironing of the side wall 26 in conventional
manner, so that the latter is very thin and very flexible. To complete the virgin
can body, a neck and flange (50, Figure 3) are formed about its open end. The carrier
applicator 38 comprises a conventional labelling machine such as is normally used
for applying paper labels to filled cans, but is adapted to apply to each can body
12 considerably less force than is usual in such conventional machines, whereby to
avoid undue flexing or possible damage to the can bodies. To this end, the carrier
applicator 38 includes drive belts having a soft, spongy surface, of sponge rubber
or foamed plastics material, for engaging the can bodies. In addition, the adhesive
applicator 48 is in the form of a tube having a series of jet nozzles spaced along
its length, the tube being arranged parallel to the axis -of a can body held in the
carrier applicator (and being connected to a supply of liquid adhesive and to a source
of air pressure, so as to direct a series of parallel jets of adhesive under pressure
on to the outer surface of the coated can body sidewall immediately prior to the application
of the individual carrier 46 thereto.
[0039] The body printing oven 40 is in this example of a conventional mat-conveyor type
in which the can bodies are heated by hot air whilst being passed rapidly through
the oven.
[0040] In operation, can bodies 12 retrieved from the buffer store 10 are loaded on to the
main conveyor 36 which conveys them one after another to the carrier applicator 38,
in which adhesive is applied to the body as already described and one of the carriers
46 is then wrapped around the body so as to be adhered to it by the adhesive. It is
then conveyed to the oven 40 in which it is heated for 30 seconds at a temperature
of 180°C (for example).
[0041] Figure 2(a) shows a portion of the can body sidewall 26 with carrier applied to it,
immediately prior to its entry into the oven 40. It will be noted that the dyestuffs
are on the surface of the paper substrate 47 of the carrier, held in the binder layer
49 thereof. As the whole is heated, the paper substrate 47 shrinks due to loss of
moisture, and being held by the adhesive to the can body, the carrier 46 thus becomes
stretched into very intimate contact with the varnish layer 28, without the need for
any additional mechanical pressure to be applied.. At the same time, sublimation of
the dyestuffs takes place so that the greater part of the dye is vaporised and diffuses
into. the varnish and base coat layers 28, 24 as generally illustrated by Figure 2(b).
Residual dyestuff remaining on the carrier is not needed for printing the can body.
[0042] Upon leaving the oven 40, the can bodies are allowed to cool so that the dyestuffs,
and the indicia thereby transferred into the coating on the can body, become fast
in the coating. The carriers are then stripped off by the stripper 42 and the can
bodies are subsequently washed in the washer 44.
[0043] The adhesive in this example is of a water-soluble kind as has generally already
been discussed. One suitable adhesive which is commercially available is of the so-called
Dextrine Gum (Trade Mark) type, supplied by Williams Adhesives Ltd of Slough, Berkshire
under the maker's reference number SW1934.
[0044] Referring now to Figures 3 to 5, these Figures show one embodiment of the carrier
stripper 42,,in which the carrier 46 and the adhesive are stripped from the can body
12 by means of a water spray 52 delivered from a pair of parallel spray heads 53 located
either side of a can body conveyor 56. The conveyor 56 is of the suspension type,
in the form of a pair of endless bands 58 which engage within the end necks 50 of
the can bodies 12 and support the latter by their end flanges..' The bands 58 are
driven (by means not shown) in synchronism with the conveyor 36, whose section upstream
of the carrier stripper 42 for delivering can bodies to the latter, is indicated at
60. The bands 58 are arranged to pick each can body 12 in turn smoothly off the conveyor
section 60 and to deliver it smoothly to a downstream section 62 of the conveyor 36.
In operation, the water sprays dissolve the adhesive so that the carriers fall off,
to be caught in a trough 64 and washed from there down a wide drain 66, preferably
into a collecting zone from which the wet paper can be removed in batches to a compacting
device for squeezing out excess water and baling the resulting wet paper waste for
subsequent pulping and re-use.
[0045] The stripping device 42 illustrated by Figures 4 to 5 is only one of many possible
embodiments. In another version the can bodies may be urged along between a pair of
moving elements which engage the carrier 46 frictionally so as to strip the latter-from
the can body, or to assist in such stripping whilst the can body is being drenched
with the water sprays 52. Such moving elements will typically be of a rubbery material
such as syntheticrubber, and may be arranged to move at different speeds in the forward
direction, or one in the forward direction and one, at a slower speed, in the reverse
direction.
[0046] A printing line such as that described above may typically be operated at a rate
of about 800-1200 cans per minute. The provision of the can body washer 44 is optional
if the carrier stripper 42 employs water sprays as described and is.made such that
the can bodies are satisfactorily clean upon reaching the conveyor section 62.
[0047] -Similarly, the body preparation section 4 and carrier preparation section 2 need
not be part of the same production line as the body printing section 6. If they are,
however, either or both of the buffer stores 8, 10 may be absent, the appropriate
section 2 or 4 being connected through a common conveyor system with the section 6
as indicated in Figure 1 in broken lines.
[0048] If it is desired to vary the decoration between one can body and another, so as for
example to produce can bodies all having a basic design but in which some feature
of that design has a number of variations, the carrier 34, or a number of such carriers,
may be printed with the different designs and an automatic collator 68, Figure 1,
incorporated in the line for sorting into the required order the individual carriers
46 prior to their delivery to the carrier applicator 38.