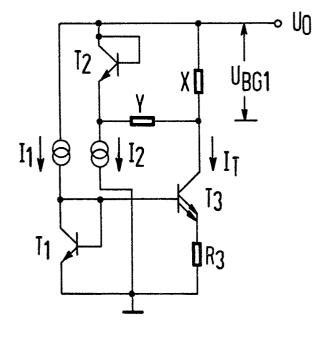
(11) Veröffentlichungsnummer:

**0 075 221** A2

12

### **EUROPÄISCHE PATENTANMELDUNG**


(21) Anmeldenummer: 82108371.4

(51) Int. Cl.3: G 05 F 3/20

22 Anmeldetag: 10.09.82

30 Priorität: 21.09.81 DE 3137504

- Anmelder: SIEMENS AKTIENGESELLSCHAFT, Berlin und München Wittelsbacherplatz 2, D-8000 München 2 (DE)
- Weröffentlichungstag der Anmeldung: 30.03.83 Patentblatt 83/13
- 84 Benannte Vertragsstaaten: AT DE FR GB IT
- Erfinder: Wilhelm, Wilhelm, Dr. Ing.,
  Geigenbergerstrasse 23, D-8000 München 71 (DE)
- Schaltungsanordnung zur Erzeugung einer temperaturunabhängigen Referenzspannung.
- $\stackrel{\textcircled{\baselike}{\baselike}}{\baselike}$  Bei einer Bandgap-Schaltungsanordnung ist der Widerstand einer Dioden-Widerstandsstrecke (T2, X, Y), an der eine temperaturunabhängige Referenzspannung (U80 = Bandgap-Spannung) abnehmbar ist, als Reihenschaltung mindestens zweier Widerstände (X, Y) ausgebildet, die einer Diode (T2) parallel liegt, wobei die temperaturunabhängige Referenzspannung (U801) an einem der Widerstände (X) abnehmbar ist.



EP 0 075 221 A2

SIEMENS AKTIENGESELLSCHAFT Berlin und München Unser Zeichen

VPA 81 P 1 1 3 9 E

5

## Schaltungsanordnung zur Erzeugung einer temperaturunabhängigen Referenzspannung

10

Die Vorliegende Erfindung betrifft eine Schaltungsanordnung zur Erzeugung einer temperaturunabhängigen Referenzspannung in Form einer Bandgap-Schaltung, in der an einer Dioden-Widerstandsstrecke die dem Bandabstand des Halbleitermaterials der in der Schaltung verwendeten Bauelemente entsprechende temperaturunabhängige Referenzspannung abnehmbar ist.

Bandgap-Schaltungen der vorstehend genannten Art sind be20 kannt und beispielsweise in dem Buch "Halbleiter-Schaltungstechnik" von U. Tietze und Ch. Schenk, 5. überarbeitete Auflage, Springer-Verlag, Berlin, Heidelberg,
New York, 1980, S. 387 ff. und in "IEEE Journal of SolidState Circuits," SC-7 (1972), S. 267-269 beschrieben.

25

Eine derartige bekannte Bandgap-Schaltung ist in Fig. 1
der Zeichnung dargestellt. Bei dieser Ausführungsform
einer Bandgap-Schaltung sind zwei Zweige vorhanden, von
denen einer durch einen als Diode geschalteten Transistor T<sub>1</sub> mit einer einen Strom einprägenden Stromquelle I<sub>1</sub>
und ein zweiter durch einen als Diode geschalteten Transistor T<sub>2</sub>, einen in Reihe dazu liegenden Widerstand R<sub>2</sub>,
einen dazu in Reihe liegenden Mehremitter-Transistor T<sub>3</sub>
sowie einen weiteren in Reihe liegenden Widerstand R<sub>3</sub>
35 gebildet wird. Die Basen des als Diode geschalteten Transistors T<sub>1</sub> und des Mehremitter-Transistors T<sub>3</sub> sind mit-

0075221

-2- VPA 81 P 1 1 3 9 E

einander verbunden.

5

15

Bei einer derartigen Bandgap-Schaltung ist an der Dioden-Widerstandsstrecke T<sub>2</sub>, R<sub>3</sub> eine temperaturunabhängige Referenzspannung U<sub>BG</sub> abnehmbar, welche dem Bandabstand des Halbleitermaterials der in der Schaltung verwendeten Bauelemente entspricht. Für Silicium ist diese Spannung etwa gleich 1,2 Volt.

- 10 Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Schaltung der vorstehend genannten Art derart weiterzubilden, daß auch temperaturunabhängige Referenzspannungen erzeugbar sind, deren Wert sich von der Bandgap-Spannung des verwendeten Halbleitermaterials unterscheidet.
- Diese Aufgabe wird bei einer Schaltungsanordnung der eingangs genannten Art erfindungsgemäß dadurch gelöst, daß der Widerstand der Dioden-Widerstandsstrecke als Reihenschaltung mindestens zweier Widerstände ausgebildet ist, die einer Diode parallel liegt, und daß die temperaturunabhängige Referenzspannung an einem der Widerstände abnehmbar ist.
- Die Erfindung wird im folgenden anhand von in den Figuren 25 2 und 3 der Zeichnung dargestellten Asuführungsbeispielen näher erläutert.

#### Es zeigt:

- Fig. 2 ein Schaltbild einer erfindungsgemäßen Ausführungs-30 form, wobei gleiche Elemente wie in der Schaltungsanordnung nach Fig. 1 mit gleichen Bezugszeichen versehen sind, und
- Fig. 3 ein Schaltbild einer Schaltungsanordnung zur Erzeugung einer von Schwankungen einer Versorgungsgleichspannung freien Ausgangsgleichspannung unter Verwendung einer Bandgap-Schaltung nach Fig. 2.

-3

5

Im Unterschied zu der bekannten Schaltungsanordnung nach Fig. 1 liegt bei der erfindungsgemäßen Ausführungsform gemäß Fig. 2 dem als Diode geschalteten Transistor T<sub>2</sub> die Reihenschaltung zweier Widerstände X und Y parallel. In diese Dioden-Widerstandsstrecke wird über eine Strom-

In diese Dioden-Widerstandsstrecke wird über eine Stromquelle  $\rm I_2$  ein Strom eingespeist. Eine temperaturunabhängige Referenzspannung  $\rm U_{BG1}$  ist am Widerstand X abnehmbar.

Im übrigen unterscheidet sich die erfindungsgemäße Schal10 tungsanordnung nach Fig. 2 nicht von der vorbekannten
Schaltungsanordnung nach Fi. 1.

Bezeichnet man den im Ausgangskreis (Kollektor-Emitter-Kreis) des Transistors  $T_3$  fließenden Strom mit  $I_T$ , wie dies in den Fig. 1 und 2 eingetragen ist, so ergibt sich für die Spannung  $U_{BG}$  nach Fig. 1:

$$U_{BG} = U_{BE} + Y \cdot I_{T}$$
 (1)

20 Darin bedeutet  $\mathbf{U}_{\mathrm{BE}}$  die Basis-Emitter-Spannung des als Diode geschalteten Transistors  $\mathbf{T}_2$ .

Für die Schaltung nach Fig. 2 ergibt sich für die Spannung  $\mathbf{U}_{\mathrm{BG1}}$  entsprechend:

 $U_{BG1} = U_{BE} \frac{X}{X + Y} + I_{T} \frac{XY}{X + Y}$   $= \frac{X}{X + Y} (U_{BE} + YI_{T})$   $= \frac{X}{X + Y} U_{BG}$ (2)

Es zeigt sich also, daß die temperaturstabile Referenzspannung  $U_{\rm BG1}$  in der Schaltungsanordnung nach Fig. 2 der Bandgap-Spannung  $U_{\rm BG}$  nach Fig. 1 proportional ist, wobei

-4- VPA 81 P 1 139 E

der Proportionalitätsfaktor durch die Widerstände der Reihenschaltung der beiden Widerstände X und Y festgelegt ist. Durch die Wahl der Widerstandswerte für die Widerstände X und Y lassen sich also temperaturunabhängige Referenzspannungen einstellen, deren Wert vom Wert der Bandgap-Spannung verschieden ist.

Eine Verwendung der vorstehend anhand von Fig. 2 beschriebenen Schaltungsanordnung in einer Schaltungsanordnung

2 zur Erzeugung einer von Schwankungen einer Versorgungsgleichspannung U<sub>O</sub> freien Ausgangsgleichspannung U<sub>R</sub> zeigt Fig. 3. Es ist zu bemerken, daß eine solche Schaltungsanordnung zur Erzeugung der Spannung U<sub>R</sub> in einer deutschen Patentanmeldung vom gleichen Anmeldetage der Anmelderin mit dem Titel "Schaltungsanordnung zur Erzeugung einer von Schwankungen einer Versorgungsgleichspannung unabhängigen Ausgangsgleichspannung" beschrieben ist.

Gemäß dem Schaltbild nach der Fig. 3 der Zeichnung liegt an einer mit Schwankungen behafteten Versorgungsgleichspannung  $\rm U_{O}$  ein Spannungsstabilisierungskreis 10 in Form einer Reihenschaltung eines Vorwiderstandes  $\rm R_{v}$  sowie einer Diodenkette  $\rm D_{1}$  bis  $\rm D_{N}$ . An einem Abgriff zwischen dem Widerstand  $\rm R_{v}$  und der Diodenkette  $\rm D_{1}$  bis  $\rm D_{N}$  ist eine vorstabilisierte Spannung  $\rm U_{v}$  abnehmbar.

Weiterhin liegt an der Versorgungsgleichspannung U<sub>O</sub> ein Referenzspannungskreis 11 in Form eines Spannungsteilers, der aus einer Konstantstromquelle in Form eines Transis30 tors T<sub>12</sub> (gegebenenfalls mit Emitterwiderstand) und einem Potentialverschiebungszweig in Form eines Kreises aus einem Transistor T<sub>11</sub> und der Bandgap-Schaltungsanordnung entsprechend Fig. 2 gebildet wird.

35 Von diesem Referenzspannungskreis 11 wird ein die Ver-

# -5- VPA 81 P 1 1 3 9 E

stärkung -1 aufweisender invertierender Verstärker 12 mit einem Transistor  $T_{22}$ , einem Köllektorwiderstand  $R_{22}$  und einem Emitterwiderstand  $R_{23}$  angesteuert. In den Kollektorkreis des Transistors  $T_{22}$  ist ein weiterer Transistor  $T_{21}$  eingeschaltet.

Der invertierende Verstärker 12 steuert einen Ausgangstreiber 13 mit einem als Emitterfolger geschalteten Transistor T<sub>32</sub> an. Im Emitterzweig dieses Transistors liegt ein Arbeitswiderstand R<sub>32</sub> sowie ein als Diode geschalteter Transistor T<sub>33</sub>. Dieser Transistor T<sub>33</sub> bildet mit dem Transistor T<sub>12</sub> im Referenzspannungskreis 11 einen Stromspiegel, so daß über diese beiden Zweige ein gleicher mit I<sub>1</sub> bezeichneter Strom fließt. Im Kollektorzweig des Transistors T<sub>32</sub> liegt ein Transistor T<sub>31</sub>, dessen Ansteuerung im folgenden noch genauer beschrieben wird.

Vom Emitter des Transistors  $T_{32}$  des Ausgangstreibers 13 ist die Ausgangsspannung  $U_{\rm p}$  abnehmbar.

20

Um nun eine in einem weiten Bereich von der Versorgungsgleichspannung und der Bauelementeparameter unabhängige
Ausgangsgleichspannung U<sub>R</sub> zu erhalten, werden der Transistor T<sub>21</sub> im invertierenden Verstärker 12 über einen
25 Widerstand R<sub>21</sub> und der Transistor T<sub>31</sub> im Ausgangstreiber 13 über einen Widerstand R<sub>31</sub> vom Abgriff des Spannungsstabilisierungskreises angesteuert, an dem die vorstabilisierte Spannung U<sub>V</sub> steht. Die Kopplung über den
Widerstand R<sub>21</sub> verbessert dabei noch die Verstärkung im
30 Sinne einer genaueren Einstellung der Verstärkung -1 des
invertierenden Verstärkers.

Weiterhin wird der Transistor  $T_{11}$  im Referenzspannungs-kreis über einen Widerstand  $R_B$  vom Verbindungspunkt der Transistoren  $T_{31}$  und  $T_{32}$  im Ausgangstreiber 13 angesteuert.

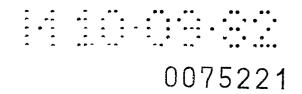
0075221 81 P 1189 E

TPA

Die Ausgangsspannung  $\mathbf{U}_{\mathbf{R}}$  ist, wie in der oben genannten deutschen Patentanmeldung der Anmelderin beschrieben, von der durch die Bandgap-Schaltungsanordnung erzeugten temperaturunabhängigen Referenzspannung URC1 abhängig.

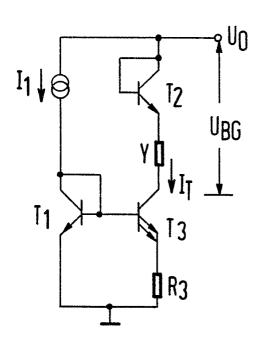
5

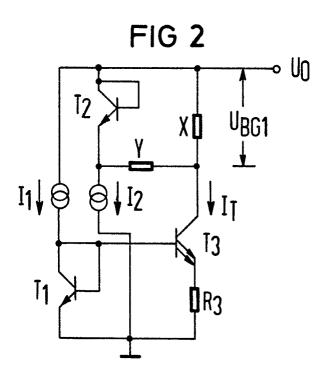
In der Schaltungsanordnung nach Fig. 3 wird die Stromquelle I, nach Fig. 2 durch Kreis aus den Transistoren  $T_{31}$ ,  $T_{32}$  und dem Widerstand  $R_{32}$  und die Stromquelle  $I_2$ nach Fig. 2 durch den Transistorzweig T<sub>12</sub> gebildet. Die Diode  $T_1$  gemäß Fig. 2 wird durch die Diode  $T_{33}$  gebildet. Da durch die Elemente  $T_{12}$  und  $T_{33}$  ein Stromspiegel gebildet wird, sind im vorliegenden Fall die Ströme I, und I, nach Fig. 2 gleich, d. h., in der Schaltungsanordnung nach Fig. 3 fließt in beiden Zweigen der gleiche Strom I1. In der Schaltungsanordnung nach Fig. 3 ist der in der Schaltungsanordnung nach Fig. 2 eine Diode bildende Transistor T2 etwas anders geschaltet. Sein Kollektor ist an die Versorgungsspannung  $\mathbf{U}_{\mathbf{O}}$  geführt, so daß seine Basis-Emitter-Strecke in der Bandgap-Schaltungsanordnung die Diode bildet. 20

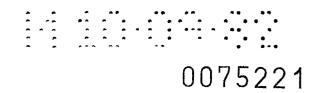

- 2 Figuren
- 1 Patentanspruch

#### Patentanspruch

5

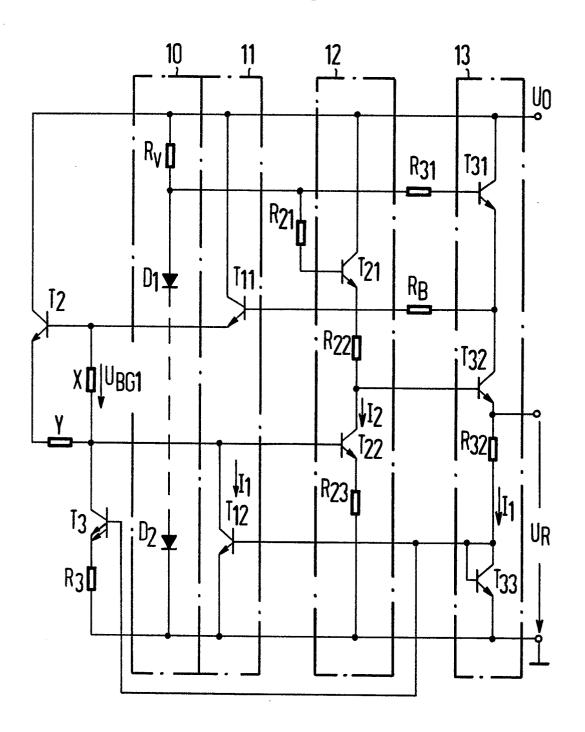

10


1. Schaltungsanordnung zur Erzeugung einer temperaturunabhängigen Referenzspannung in Form einer Bandgap-Schaltung, in der an einer Dioden-Widerstandsstrecke die dem Bandabstand des Halbleitermaterials der in der Schaltung verwendeten Bauelemente entsprechende temperaturunabhängige Referenzspannung abnehmbar ist, dad urch gekennzet ich net, daß der Widerstand der Dioden-Widerstandsstrecke (T2, X, Y) als Reihenschaltung mindestens zweier Widerstände (X, Y) ausgebildet ist, die einer Diode (T2) parallel liegt, und daß die temperaturunabhängige Referenzspannung (UBG1) an einem der Widerstände (X) abnehmbar ist.




1/2

FIG 1








2/2

FIG 3

