(12)

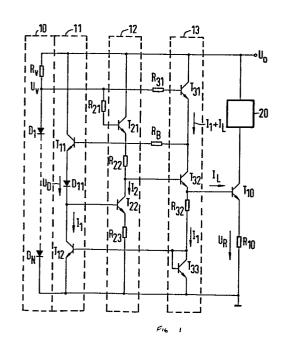
EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 82108370.6

(51) Int. Cl.³: G 05 F 3/20

(22) Anmeldetag: 10.09.82

(30) Priorität: 21.09.81 DE 3137451


(43) Veröffentlichungstag der Anmeldung: 06.04.83 Patentblatt 83/14

84 Benannte Vertragsstaaten: AT DE FR GB IT 71 Anmelder: SIEMENS AKTIENGESELLSCHAFT Berlin und München Wittelsbacherplatz 2 D-8000 München 2(DE)

(2) Erfinder: Wilhelm, Wilhelm, Dr. Ing. Geigenbergerstrasse 23 D-8000 München 71(DE)

Schaltungsanordnung zur Erzeugung einer von Schwankungen einer Versorgungsgleichspannung unabhängigen Ausgangsgleichspannung.

(57) Bei einer Schaltungsanordnung zur Ezeugung einer stabilen Ausgangsgleichspannung (U_R) mit einem Spannungsstabilisierungskreis (10), einem Referenzspannungskreis (11), einem invertierenden Verstärker (12), einem Ausgangstreiber (13) zur Stromversorgung einer Last (20) sind zur Erzeugung der von einer Versorgungsgleichspannung (U_O) sowie der Lst (20) unabhängigen Ausgleichspannung (U_R) eine Ankopplung des invertierenden Verstärkers (12) und des Ausgangstreibers (13) über Widerstände (R₂₁, R₃₁) an den Stabilisierungskreis (10), eine Ankopplung des Referenzspannungskreises (11) und gleiche Werte der auf den Spannungsstabilisierungskreis (10) führenden Widerstände (R₂₁, R₃₁) sowie von im invertierenden Verstärker (12) und im Ausgangstreiber (13) liegende Widerstände (R₂₂, R₂₃, R₃₁) vorgesehen.

)75 763 A

5

Schaltungsanordnung zur Erzeugung einer von Schwankungen einer Versorgungsgleichspannung unabhängigen Ausgangsgleichspannung

10

15

Die vorliegende Erfindung betrifft eine Schaltungsanordnung zur Erzeugung einer von Schwankungen einer Versorgungsgleichspannung unabhängigen Ausgangsgleichspannung, insbesondere zur Ansteuerung von Stromquellentransistoren zur Speisung von integrierten Schaltungen, mit einem an der Versorgungsgleichspannung liegenden Referenzspannungskreis in Form einer Reihenschaltung einer Konstantstromquelle und eines Potentialverschiebungszweiges, mit einem vom Referenzspannungskreis angesteuerten invertierten 20 Verstärker, in dessen Ausgangskreis eine seine Verstärkung festlegende Kombination aus Widerständen und mindestens einem Transistor liegt, mit einem vom invertierenden Verstärker angesteuerten, die Ausgangsgleichspannung liefernden Ausgangstreiber mit einer Emitterfolgerstufe und 25 einem in deren Ausgangskreis liegenden Transistor und mit. einer Ansteuerung des Potentialverschiebungskreises im Referenzspannungskreis vom Ausgangstreiber.

Eine Schaltungsanordnung der vorstehend genannten Art ist 30 aus der DE-OS 28 49 153 bekannt. Mit einer derartigen Schaltungsanordnung sind von einer Versorgungsgleichspannung unabhängige Ausgangsgleichspannungen erzeugbar, wobei Belastungsschwankungen praktisch keinen Einfluß auf ... die Ausgangsgleichspannung haben. Allerdings ist dabei 35 insbesondere der Versorgungsspannungs- und der Temperaturbereich, für den die Unabhängigkeit der Ausgangsgleichspannung von der Versorgungsgleichspannung gilt, in vielen Fällen nicht ausreichend. Darüberhinaus ist bei der vorbekanntenSchaltungsanordnung die Stromverstärkung von in der Schaltungsanordnung verwendeten Transistoren nicht kompensierbar.

5

10

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Schaltungsanordnung der in Rede stehenden Art anzugeben, bei der die erzeugte Ausgangsgleichspannung in einem weiten Bereich der Versorgungsspannung, der Temperatur und der Bauelemente-Parameter, insbesondere der Stromverstärkung von bipolaren Transistoren, konstant ist.

Diese Aufgabe wird bei einer Schaltungsanordnung der eingangs genannten Art erfindungsgemäß dadurch gelöst, daß ein an der Versorgungsspannung liegender, eine vorstabilisierte Spannung liefernde Spannungsstabilisierungskreis vorgesehen ist,

daß der Transistor im Ausgangskreis des invertierenden Verstärkers über einen Widerstand an einen die vorstabi-20 lisierte Spannung führenden Abgriff des Spannungsstabili-

sierungskreises angekoppelt ist,

daß der Transistor im Ausgangskreis der Emitterfolgerstufe des Ausgangskreises über einen Widerstand an den die vorstabilisierte Spannung führenden Abgriff des Spannungs-

25 stabilisierungskreises angekoppelt ist,

daß der Potentialverschiebungszweig des Referenzspannungskreises an den Ausgangskreis des Ausgangstreibers angekoppelt ist,

und daß die an den Abgriff des Spannungstabilisierungs-30 kreises führenden Koppelwiderstände so wie weitere im invertierenden Verstärker, und im Ausgangstreiber liegende Widerstände gleichen Widerstandswert besitzen.

Joe vorstehend definierte Schaltungsanordnung besitzt den Vorteil, daß der Ausgangsspannungsbereich durch eine Vor-

-3- VPA 81 P 1 1 3 8 `E`

stabilisierung wesentlich erweitert, die Stromaufnahme für große Ausgangsgleichspannungen reduziert, der Durchgriff der Versorgungsgleichspannung auf die Ausgangsgleichspannung wesentlich verringert und der Einfluß der Stromverstärkung von in der Schaltungsanordnung verwendeten Transistoren auf die Ausgangsgleichspannung vernachlässigbar klein ist.

Ausgestaltungen des Erfindungsgedankens sind in Unteran-10 sprüchen gekennzeichnet.

Die Erfindung wird im folgenden anhand eines in der einzigen Figur der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Die Figur zeigt dabei ein Schaltbild einer Ausführungsform der erfindungsgemäßen Schaltungsanordnung.

Gemäß dem Schaltbild nach der Figur der Zeichnung liegt an einer mit Schwankungen behafteten Versorgungsgleichspannung \mathbf{U}_0 ein Spannungsstabilisierungskreis 10 in Form einer Reihenschaltung eines Vorwiderstandes $\mathbf{R}_{\mathbf{v}}$ sowie einer Diodenkette \mathbf{D}_1 bis $\mathbf{D}_{\mathbf{N}}$. Ein derartiger Spannungsstabilisierungskreis ist an sich bekannt. An einem Abgriff zwischen dem Widerstand $\mathbf{R}_{\mathbf{v}}$ und der Diodenkette \mathbf{D}_1 bis $\mathbf{D}_{\mathbf{N}}$ ist eine vorstabilisierte Spannung $\mathbf{U}_{\mathbf{v}}$ abnehmbar.

20

25

Weiterhin liegt an der Versorgungsgleichspannung U_O ein Referenzspannungskreis 11 in Form eines Spannungsteilers, der aus einer Konstantstromquelle in Form eines Transis30 tors T₁₂ (gegebenenfalls mit Emitterwiderstand) und einem Potentialverschiebungszweig in Form der Reihenschaltung eines Transistors T₁₁ und einer Referenzdiode D₁₁ gebildet wird.

Von diesem Referenzspannungskreis 11 wird ein die Verstärkung -1 aufweisender invertierender Verstärker 12 mit einem Transistor T_{22} , einem Kollektorwiderstand R_{22} und einem Emitterwiderstand R_{23} angesteuert. In den Kollektorkreis des Transistors T_{22} ist ein weiterer Transistor T_{21} eingeschaltet.

Der invertierende Verstärker 12 steuert einen Ausgangstreiber 13 mit einem als Emitterfolger geschalteten Transistor T₃₂ an. Im Emitterzweig dieses Transistores liegt ein Arbeitswiderstand R₃₂ sowie ein als Diode geschalteter Transistor T₃₃. Dieser Transistor T₃₃ bildet mit dem Transistor T₁₂ im Referenzspannungskreis 11 einen Stromspiegel, sodaß über diese beiden Zweige ein gleicher mit I₁ bezeichneter Strom fließt. Im Kollektorzweig des Transistors T₃₂ liegt ein Transistor T₃₁, dessen Ansteuerung im folgenden noch genauer beschrieben wird.

Vom Emitter des Transistors T₃₂ des Ausgangstreibers 13 wird ein Transistor T₁₀ angesteuert, der zusammen mit einem Emitterwiderstand R₁₀ einen Stromquellentransistor zur Speisung einer schematisch dargestellten Last 20 dient. Diese Last 20 kann beispielsweise durch einen integrierten Schaltkreis gebildet werden.

25

Es ist darauf hinzuweisen, daß an den Ausgang des Treibers 13 am Emitter des Transistors T_{32} mehrere Stromquellentransistoren nach Art des Transistors T_{10} liegen können, die parallel über einen Strom I_L angesteuert werden. Am Widerstand R_{10} steht die von Schwankungen der Versorgungsspannung U_0 unabhängige Ausgangsgleichspannung U_R .

Um nun eine in einem weiten Bereich von der Versorgungsgleichspannung und der Bauelementeparameter unabhängige Ausgangsgleichspannung U_R zu erhalten, werden der Transistor T_{21} im invertierenden Verstärker 12 über einen

Widerstand R_{21} und der Transistor T_{31} im Ausgangstreiber 13 über einen Widerstand R31 vom Abgriff des Spannungsstabilisierungskreises angesteuert, an dem die vorstabilisierte Spannung U $_{
m v}$ steht. Die Kopplung über den Widerstand R₂₁ verbessert dabei noch die Verstärkung im Sinne einer genaueren Einstellung der Verstärkung -1 des invertierenden Verstärkers.

Weiterhin wird der Transistor T_{11} im Referenzspannungskreis 11 über einen Widerstand R_{R} vom Verbindungspunkt $_$ der Transistoren T_{31} und T_{32} im Ausgangstreiber 13 angesteuert.

Der über die Transistoren T_{31} und T_{32} im Ausgangstreiber 13 fließende Strom ist mit $I_1 + I_L$ bezeichnet. Weiterhin sei der über den Transistor T22 im invertierenden Verstärker fließende Strom mit I, bezeichnet. An der Referenz-Diode D_{11} möge die Spannung U_D abfallen.

20 Zur Bestimmung der Ausgangsgleichspannung $U_{\rm p}$ seien die folgenden beiden Kreise in der Schaltung näher betrachtet.

Der erste Kreis verläuft vom Abgriff des Spannungsstabi-25 lisierungskreises 10 mit der Spannung U_v über den Widerstand R21, den Transistor T21, den Widerstand R22, den Transistor T_{32} , den Transistor T_{10} und den Widerstand R_{10} .

Der zweite Kreis verläuft ausgehend vom Punkt mit der 30 Spannung U $_{v}$ über den Widerstand R_{31} , den Transistor T_{31} , den Widerstand R_B, den Transistor T₁₁, die Diode B₁₁, den Transistor T22 sowie den Widerstand R23.

Unter der Voraussetzung, daß erfindungsgemäß die Widerstände R21, R22, R23, R31 den gleichen Widerstandswert

besitzen, ergeben sich bei Vernachlässigung von Basisströmen zweiter Ordnung für die beiden vorgenannten Kreise folgenden Gleichungen:

$$U_{V} = R_{21}I_{2}/\beta + U_{BE(21)} + R_{22}I_{2} + R_{22}(I_{1}+I_{2})/\beta + U_{BE(32)}$$

$$+ U_{BE(10)} + U_{R}$$

$$= RI_{2}/\beta + U_{BE(21)} + RI_{2} + R(I_{1}+I_{2})/\beta + U_{BE(32)}$$

$$+ U_{BE(10)} + U_{R}$$

$$(1)$$

$$U_{V} = R_{31}(I_{1}+I_{2}) / B + U_{BE(31)} + R_{B}I_{1}/B + U_{BE(11)} + U_{D}+U_{BE(22)}$$

$$+ R_{23}(I_{2}+I_{2}/B)$$

$$= R(I_{1}+I_{2}) / B + U_{BE(31)} + R_{B}I_{1}/B + U_{BE(11)} + U_{D}$$

$$+ U_{BE(22)} + R(I_{2}+I_{2}/B)$$

$$(2)$$

- 25 Darin bedeuten die Indices BE mit einer entsprechenden Ziffer jeweils die Basis-Emitterspannung der entsprechenden Transistoren und ß deren Stromverstärkung.
- Berücksichtigt man, daß an vom gleichen Strom durchflos-30 senen Basis-Emitter-Strecken die gleiche Spannung abfällt, so ergibt sich aus den Gleichungen (1) und (2)

$$U_{R} = U_{D} + R_{B}I_{1}/B \tag{3}$$

35 Aus der vorstehenden Gleichung (3) ist ersichtlich, daß die Ausgangsgleichspannung $U_{\rm R}$ unabhängig von der Spannung

VPA 81 P 1 1 3 8 . E

 $\rm U_v$ und von dem in den Lastkreis fließenden Stmm $\rm I_L$ und damit also von der Versorgungsgleichspannung $\rm U_O$ und der Last 20 unabhängig ist.

Mit Hilfe des Widerstandes R_B kann der Stromverlust zwischen dem Emitter- und dem Kollektorstrom des Transistors T_{10} ausgeglichen werden, wenn $R_B = R_{32}$ ist. Ist R_B =n R_{32} , so können die -Faktoren von weiteren n-1 Transistoren entsprechend dem Transistor T_{10} im aktiven Teil der Schaltung ausgeglichen werden.

Die an den Widerständen des aktiven Teils der Schaltung abfallenden Spannungen sind der Spannung \mathbf{U}_{D} proportional. Mit dem gleichen Proportionalitätsfaktor wird auch der Temperaturgang der Diode \mathbf{D}_{11} bzw. der Spannung \mathbf{U}_{D} übertragen. Dies ist in vielen Fällen erwünscht, da damit Spannungen an Widerständen und Dioden gleiches Temperaturverhalten zeigen und somit Differenzsignale in den

In manchen Fällen ist jedoch ein Diodentemperaturgang unerwünscht.

Schaltungen frei von Temperatureinflüssen sind.

In solchen Fällen kann die Diode D₁₁ durch eine eine temperaturstabile Referenzspannung liefernde Schaltung ersetzt werden, wie sie beispielsweise aus "IEEE Journal of Silid-State Circuits, SC-7 (1972), S.267-269 im Prinzip bekannt ist.

1 Figur

15

20

6 Patentansprüche

Patentansprüche

5

1. Schaltungsanordnung zur Erzeugung einer von Schwankungen einer Versorgungsgleichspannung unabhängigen Ausgangsgleichspannung, insbesondere zur Ansteuerung von

Ausgangsgleichspannung, insbesondere zur Ansteuerung von Stromquellentransistoren zur Speisung von integrierten Schaltungen, mit einem an der Versorgungsgleichspannung liegenden Referenzspannungskreis in Form einer Reihen-

schaltung, einer Konstantstromquelle und eines Potential10 verschiebungszweiges, mit einem vom Referenzspannungskreis angesteuerten invertierenden Verstärker, in dessen
Ausgangskreis eine seine Verstärkung festlegende Kombina-

tion aus Widerständen und mindestens einem Transistor liegt, mit einem vom invertierenden Verstärker angesteu-

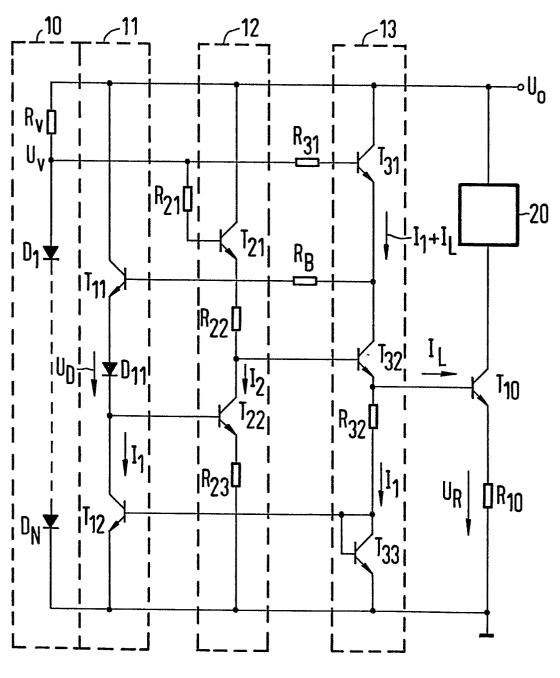
erten, die Ausgangsgleichspannung liefernden Ausgangstreiber mit einer Emitterfolgerstufe und einem in deren Ausgangskreis liegenden Transistor und mit einer Ansteuerung des Potentialverschiebungskreises im Referenzspannungskreis vom Ausgangstreiber, dadurch

20 g e k e n n z e i c h n e t, daß ein an der Versorgungsgleichspannung (U_0) liegender Spannungsstabilisierungskreis (10) vorgesehen ist,

daß der Transistor (T_{21}) im Ausgangskreis des invertierenden Verstärkers (12) über einen Widerstand (R_{21}) an

25 einen die vorstabilisierte Spannung ($\mathbf{U}_{\mathbf{v}}$) führenden Abgriff des Spannungsstabilisierungskreises (10) angekoppelt ist,

daß der Transistor (T₃₁) im Ausgangskreis der Emitterfolgerstufe (T₃₂) des Ausgangstreibers (13) über einen Wi-


30 derstand (R_{31}) an den die vorstabilisierte Spannung (U_v) führenden Abgriff des Spannungsstabilisierungskreises (10) angekoppelt ist,

daß der Potentialverschiebungszweig (T_{11}, D_{11}) des Referenzspannungskreises (11) an den Ausgangskreis des Aus-

gangstreibers (13) angekoppelt ist, und daß die an den Abgriff des Spannungsstabilisierungskreises (10) führenden Koppelwiderstände (R21, R31) sowie weitere im invertierenden Verstärker (12) /im Ausgangstreiber (13) liegende Widerstände (R₂₂, R₂₃, R₃₁) gleichen Widerstandswert besitzen.

5

- 2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß der Potentialverschiebungszweig (T_{11} , D_{11}) des Referenzspannungskreises (11) über einen Widerstand ($R_{\rm R}$) an den Ausgangskreis des Ausgangstreibers (13) angekoppelt ist.
- 3. Schaltungsanordnung nach Anspruch 1 und 2, 15 durch gekennzeichnet, daß der Wert des Koppelwiderstandes (R_B) zwischen Potentialverschiebungszweig (T_{11} , D_{11}) des Referenzspannungskreises (11) und dem Ausgangskreis des Ausgangstreibers (13) gleich dem Wert eines Arbeitswiderstandes (R32) der Emitterfol-20 gerstufe (T_{32}) des Ausgangstreibers $(\bar{1}3)$ ist.
- 4. Schaltungsanordnung nach Anspruch 1 und 2, durch gekennzeichnet, daß der Wert des Koppelwiderstandes (RB) zwischen Potentialverschie-25 bungszweig (T_{11}, D_{11}) des Referenzspannungskreises (11) und an dem Ausgangskreis des Ausgangstreibers (13) gleich dem n- fachen Wert des Arbeitswiderstandes (R_{32}) der Emitterfolgerstufe (T_{32}) des Ausgangstreibers (13) ist.
- 30 · 5. Schaltungsanordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß ein Transistor (T12) der Konstantstromquelle des Referenzspannungskreises (11) sowie ein im Ausgangskreis des Ausgangstreibers (12) liegender Transistor (T_{33}) einen Strom-35 spiegel bilden.

F16 1.