11) Veröffentlichungsnummer:

0 077 997

A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(21) Anmeldenummer: 82109644.3

(51) Int. Cl.3: F 02 D 31/00

(22) Anmeldetag: 19.10.82

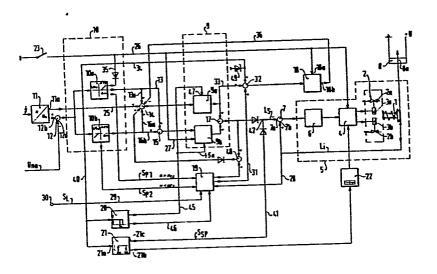
(30) Prioritāt: 26.10.81 DE 3142360

(4) Veröffentlichungstag der Anmeldung: 04.05.83 Patentblatt 83/18

84 Benannte Vertragsstaaten: DE FR GB IT 71) Anmelder: Bosch und Pierburg System oHG Leuschstr. 1 Postfach 807 D-4040 Neuss 13(DE)

72 Erfinder: Misch, Wolfgang Weierhofweg 16 D-5276 Wiehl(DE)

(72) Erfinder: Freytag, Adolf Oleanderstrasse 4 D-4040 Neuss 21(DE)


(2) Erfinder: Henning, Manfred Lange Hecke 12 D-4044 Kaarst(DE)

(74) Vertreter: Vetter, Hans, Dr.-Ing. Robert-Bosch-Platz 1 D-7016 Gerlingen-Schillerhöhe(DE)

(54) Verfahren und Vorrichtung zur Regelung der Drehzahl einer Brennkraftmaschine.

(57) Verfahren und Vorrichtung zur Regelung der Drehzahl einer Brennkraftmaschine mit Drosselklappe im Ansaugkanal für den Leerlauf, den leerlaufnahen Drehzahlbereich und gegebenenfalls im Schubbetrieb, mit einem asymmetrischen Regelverstärker, der mindestens einen Integralverstärker (9a) und einen Proportionalverstärker (9b) enthält, dem ein unterlagerter Lage-Regelkreis (5) für die Positionierung eines Stößels (1) nachgeschaltet ist, der an der Drosselklappe anliegt. Dem asymmetrischen Regelverstärker ist eine Totzonenschaltung (10) vorgeschaltet, die ein auf eine Leerlaufdrehzahl-Führungsgröße bezogene Leerlaufdrehzahl-Regelabweichung zugeführt erhält und Ausgangssignale dann dem nachgeschalteten asymmetrischen Verstärker zuführt, wenn der Totzonenbereich um die Leerlaufdrehzahl jeweils über- oder unterschritten ist. Für eine Nachführung des die Drosselklappenposition bestimmenden Stößels außerhalb des Leerlaufbetriebs wird die Drehzahlregelung abgeschaltet und lediglich auf den Integralanteil des asymmetrischen Verstärkers nach bestimmten Funktionen eingewirkt. Ferner sind Speicherschaltungen für die Lage des Stößels im Arbeitspunkt, für die Erfassung von Schubphasen beim Betrieb der Brennkraftmaschine sowie eine Starterkennungsschaltung vorgesehen (siehe Zeichnung).

./...

0077997

Dipl.-ing. **Peter Otte**Patentanwait

٢

7250 Leonberg Tiroier Straße 15 Telefon (07152) 45421 u.44442

BPS9

1588/ot/mü 24. Sept. 1981

Firma Bosch und Pierburg System oHG, 4040 Neuss

Verfahren und Vorrichtung zur Regelung der Drehzahl einer Brennkraftmaschine

Stand der Technik

Die Erfindung geht aus von einem Verfahren und einer Vorrichtung zur Regelung der Drehzahl einer Brennkraftmaschine nach der Gattung des Hauptanspruchs bzw. des ersten Vorrichtungsanspruchs. Eine solche Vorrichtung zur Leerlaufdrehzahlregelung ist beispielsweise bekannt aus der DE-OS 2 049 669; sie besteht darin, daß eine drehzahlempfindliche elektrische Schaltung ein elektromagnetisch betätigbares Stellglied beaufschlagt, mit welchem sich in der Leerlaufstellung der Drosselklappe die Ansaugluftmenge verändern läßt. Hierzu wirkt das elektromagnetisch betätigbare Stellglied querschnittssteuernd auf einen zur Drosselklappe parallelen Umgehungskanal ein.

Bei dieser bekannten Vorrichtung könnte die ausschließliche Steuerung der Ansaugluftmenge problematisch sein, da es

- 2 -

BPS9

auf diese Weise voraussichtlich nicht gelingt, umfassend sämtlichen Einflußgrößen Rechnung zu tragen; insbesondere ist es nicht möglich, aktiv die Position der Drosselklappe zu beeinflussen und so einen wirksamen Füllungseingriff vorzunehmen.

Bekannt ist ferner aus der DE-OS 25 46 076 eine Anordnung für eine eine Drosselklappe im Ansaugrohr enthaltende Brennkraftmaschine zur Leerlaufdrehzahlregelung, bei der ein Istwertgeber und ein Sollwertgeber für die Drehzahl vorgesehen sind, die Ausgangsspannungen den beiden Eingängen eines Differenzverstärkers zuführen. Ein die Regelabweichung kennzeichnendes Ausgangssignal wird einem als Hubmagnet ausgebildeten Ştellglied zugeführt, welches dauernd mit der Drosselklappe in Verbindung steht und diese entsprechend der Regelabweichung verstellt. Auch diese Schaltung ist nicht in der Lage, Randbedingungen in die Regelung einzuführen und unter allen Umständen dafür zu sorgen, daß die Leerlaufdrehzahl einer Brennkraftmaschine sicher innerhalb eines vorgegebenen Bereichs verharrt, auch wenn schnell wirksamwerdende Übergangsbedingungen aufgefangen werden müssen. Insbesondere sind die bekannten Schaltungen nicht geeignet, gleichzeitig zur Beeinflussung auch des Schubbetriebs, nämlich zur kraftstoffsparenden Schubabschneidung, eingesetzt zu werden.

Vorteile der Erfindung

Das erfindungsgemäße Leerlauf-Regelsystem mit den kennzeichnenden Merkmalen des Hauptanspruchs bzw. des ersten Vorrichtungsanspruchs hat dem gegenüber den Vorteil, daß beliebige äußere Randbedingungen eingeführt, störende Einflüsse aufgefangen und eine präzise Positionierung der Leerlaufdrehzahl insbesondere auch unter Vermeidung von Langzeiteinflüssen wie Temperatur und Luftdruck realisiert werden kann.

Durch einen Totzonenbereich, der einem nichtlinearen Regelverstärker für die Sollwertbildung eines Lagewerts für einen Stößel vorgeschaltet ist, läßt sich ein minimal integrierender Regeleingriff ohne Aufweitung der natürlichen Schwankungsbreite der Leerlaufdrehzahl bei gleichzeitiger Zentrierung des Arbeitspunktes gegenüber den erwähnten Langzeiteinflüssen sicherstellen. Der nichtlineare Regelverstärker ist asymmetrisch ausgebildet und verfügt über einen Proportional-, einen Integral- und einen Differentialanteil, die aufsummiert den Sollwert für einen nachgeschalteten unterlagerten Lage-Regelkreis für ein elektropneumatisches Stellglied bilden. Es sind Mittel vorgesehen, um im Teillastbereich das Stellglied verschleißmindernd zu arretieren, wobei in diesem Fall, also bei Verlassen des Leerlaufs oder eines leerlaufnahen Drehzahlbereichs von der Regelfunktion für den Leerlauf auf Steuerung bei Erkennen der Betriebsart vorzugsweise mittels eines Drosselklappenschalters umgeschaltet wird.

Von besonderem Vorteil ist eine durch die Umschaltung auf Steuerung erzielte drehzahlabhängige Lage- und/oder Integratorsteuerung im Sinne einer Nachführung des Integralanteils des asymmetrischen Regelverstärkers nach einer bestimmten Funktion oder eine Lagesteuerung in Stufen nach Zeitfunktionen

C.A.

- 4 -

5PS9

mit Vergleich von Motordrehzahl und Totzone zur Erzielung möglichst stetiger Übergänge von Steuerung auf Regelung, einschließlich Realisierung von Schubfunktion.

Durch die vorteilhafte Anordnung eines Schubdrehzahlkomparators, der Schubphasen feststellt, läßt sich ein übergeordneter Steuereingriff für die Lage des Stößels realisieren, der auf die Drosselklappenposition einwirkt. Dabei ergibt sich eine lagegeregelte Schubstellung des Anstellers oder Stößels für die Drosselklappe vor dem mechanischen Endanschlag, wodurch bei Ausbildung des Stellgliedes in elektropneumatischer Form Erholzeiten minimiert werden können.

An vielen Stellen, insbesondere bei der Sollwertbildung oder im Bereich der drehzahlabhängigen Lage- oder Integratorsteuerung können temperaturabhängige Beeinflussungen vorgenommen werden.

Zeichnung

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird in der nachfolgenden Beschreibung näher erläutert. Hierbei versteht es sich, daß die im folgenden im einzelnen erwähnten Schaltungsblöcke im Rahmen vorliegender Erfindung lediglich bezüglich ihrer durch sie jeweils realisierten Funktion Bedeutung haben und daher nicht einschränkend aufzufassen sind.

- 5 -

Beschreibung der Ausführungsbeispiele

Das erfindungsgemäße System zur umfassenden Regelung einer Brennkraftmaschine im leerlaufnahen Drehzahlbereich oder im Leerlauf, wobei ergänzend noch Maßnahmen für den Betrieb dieser Brennkraftmaschine bei Schub vorgesehen sind, arbeitet in gerader Linie, also im einfachsten Aufbau so, daß ein ausgangsseitig angesteuertes Stellglied mit Stößel 1, wie in der Zeichnung gezeigt, so auf die Position der nicht mehr gezeigten Hauptdrosselklappe im Ansaugrohr einwirkt, daß sich die Regelung bzw. Steuerung durch das erfindungsgemäße System als Füllungseingriff bei der Brennkraftmaschine realisiert. Dabei ist wesentlich, daß der Stößel 1 des Stellgliedes etwa an einem durch ihn zu betätigenden Drosselklappenhebel (ebenfalls nicht dargestellt) lediglich anliegt, d.h. daß der Stößel 1 durch stärkeres Anstellen oder durch Zurücknahme seiner Position die Drosselklappe zwar im wesentlichen im Leerlaufbereich stärker öffnen oder schließen kann (in Schließrichtung maximal bis zu einem mechanischen Anschlag), andererseits aber durch willkürliche Betätigung der Drosselklappe, etwa infolge Gasgebens durch den Fahrer, die Drosselklappe jederzeit von ihrer Anlage am Stößel 1 gelöst und in andere Positionen überführt werden kann.

Das den Stößel 1 betätigende Stellglied ist in der Zeichnung mit 2 bezeichnet und bevorzugt als elektropneumatisches Stellglied ausgebildet; zu diesem Zweck ist ein belüftendes Ventil zum Anstellen (Öffnen der Drosselklappe durch den

- 6 -

Stößel 1) und ein evakuierendes Ventil zum Einfahren (stärkeres Schließen der Drosselklappe) vorgesehen. Die Ventile sind mit 2a und 2b in der Zeichnung bezeichnet; sie werden angesteuert über Relais 3a, 3b, die in geeigneter Weise von einer Ventilendstufe 4 mit entsprechenden elektrischen Signalen beaufschlagt werden. Vervollständigt wird die in der Zeichnung mit 5 bezeichnete Endstufe durch einen der Ventilendstufe vorgeschalteten Lageregler 6, dem entweder bei entsprechender Ausbildung Sollwert und Istwert der Drosselklappe im Leerlaufbereich oder bei Schub zugeführt werden oder dem eine Vergleichsstelle 7 vorgeschaltet ist, der bei 7a ein Sollwertsignal und bei 7b ein Istwertsignal über die Lage des Stößels und bei am Stößel anliegender Drosselklappe auch über die Drosselklappe zugeführt ist. Zur Gewinnung des Lage-Istwertsignals Li kann ein Potentiometer 8 oder ein sonstiges geeignetes Bauteil vorgesehen sein, dessen Abgriff 8a vom Stößel 1 des Stellgliedes 2 angetrieben ist und daher sofort ein elektrisches Ausgangssignal für den Istwert liefert.

Zur Gewinnung des Sollwerts sind dem den Soll-Ist-Vergleich für die Lage durchführenden Vergleicher 7 vorgeschaltet ein vorzugsweise nichtlinearer Regelverstärker 9 und diesem eine Totzonenschaltung 10 bezüglich des Leerlauf-Drehzahlbereichs. In gerade Linie verfügt daher die für die Gewinnung eines Lage-Sollsignals Ls - wenn man von ergänzenden peripheren Schaltungen zunächst einmal absieht - im einzelnen über einen eingangsseitigen Drehzahl/Spannungswandler 11, dessem Eingang ein geeignetes Drehzahlsignal der Brennkraftmaschine zugeführt wird, beispielsweise die an Klemme Kł1 anliegenden

- 7 -

Zündimpulse. Am Ausgang des Drehzahl/Spannungswandlers 11 ergibt sich dann eine der Drehzahl proportionale Ausgangsspannung Un. Über eine Vergleichsstelle 12 für die Drehzahl, der bei 12a eine Drehzahl-Führungsgröße, beispielsweise in Form einer Konstantspannung Uno und bei 12b die drehzahlproportionale Spannung zugeführt ist, erfolgt die Ansteuerung der nachgeschalteten Totzonenschaltung 10, die ihrerseits allgemein so ausgelegt ist, daß eine Ansteuerung des nachgeschalteten Regelverstärkers dann erfolgt, wenn symmetrisch zu einem Sollwert ein Totzonenbereich für die Drehzahl überschritten wird, der geringfügig größer als die natürliche Schwankungsbreite der Leerlaufdrehzahl ist.

Die Totzonenschaltung 10 umfaßt zwei separate Schaltungsblöcke 10a, 10b, deren Eingängen jeweils das mit der Führungsgröße verglichene Ausgangssignal des Drehzahl/Spannungswandlers 11 zugeführt sind. Der Schaltungsblock 10a der Totzonenschaltung ist so ausgebildet, daß, wie auch das Diagramm im Schaltungsblock angibt, bei Überschreiten eines oberen Totzonen-Drehzahlgrenzwertes n_{T2} ein Ausgangssignal Uto - beispielsweise ein positives Ausgangssignal - proportional oder in beliebiger sonstiger Abhängigkeit zur Drehzahlabweichung erzeugt und über Verbindungsleitungen 13a einem Summierpunkt 14 für den Integralanteil und 13b einem Summierpunkt 15 für den proportionalen Anteil zugeführt wird. Entsprechendes geschieht mit Bezug auf den unteren Block 10b der Totzonenschaltung; bei Unterschreiten einer unteren Drehzahlschwelle $n_{\mathrm{T}1}$ für den Leerlaufbereich erzeugt der Block 10b eine hier beispielsweise negative Ausgangsspannung Utu ent-

- 8 -

weder ebenfalls proportional zur Drehzahländerung oder in beliebiger sonstiger Abhängigkeit und führt dieses Ausgangssignal ebenfalls über Verbindungsleitungen 16a, 16b den Summierpunkten 14 und 15 zu.

Dabei ist dem Summierpunkt 15 für den Proportionalanteil ein Proportionalverstärker 9b des vorzugsweise nichtlinearen oder unsymmetrisch arbeitenden Regelverstärkers 9 nachgeschaltet; der Summierpunkt 14 für den Integralanteil arbeitet auf den Eingang eines Integralverstärkers 9a. Die Ausgänge des Integralverstärkers und des Proportionalverstärkers 9a, 9b sind an einem Summierpunkt 17 für das Signal Ls des Lagesollwerts zusammengeführt, dessen Ausgang mit dem Eingang 7a der weiter vorn schon erwähnten Vergleichsschaltung 7 für den Sollwert-Istwertvergleich verbunden ist.

Auf die sonstigen, den einzelnen Summierpunkten und Verstärkern noch zugeführten Signale soll zweckmäßigerweise weiter unten anhand der Funktionsbeschreibung des erfindungsgemäßen Systems genauer eingegangen werden; an weiteren Schaltungsblöcken sind noch vorhanden eine Steuerschaltung 18, die eine drehzahlabhängige Ansteuerung lediglich des Integralbereichs des Regelverstärkers 9 bewirkt, und zwar für den Fall, daß die Brennkraftmaschinendrehzahl sich über dem Grenzwert der oberen Totzonendrehzahl n_{T2} befindet und die Drosselklappe geöffnet ist.

Vorgesehen sind ferner noch eine Speicherschaltung 19 zur Speicherung des Istwert-Lage-signals Li - dieser gespeicherte Wert wird für die Signalauf-

- 9 -

bereitung gelegentlich benötigt -, eine Schaltung 20 zur Starterkennung, eine Schaltung 21 zur Schuberkennung und eine Schaltung 22, die eine sogenannte Schubentriegelung vornimmt und dafür sorgt, daß über eine zusätzliche Zeitfunktion beim Übergang Schub in Regelung für den Leerlaufbereich diese Re gelung wieder ermöglicht wird. Schließlich ist noch ein Drosselklappenschalter 23 vorgesehen, der immer dann geschlossen ist, wenn der Stößel 1 an dem von ihm angetriebenen Teil der Drosselklappe anliegt, beispielsweise also am weiter vorn schon erwähnten Drosselklappenhebel.

Die folgenden Ausführungen betreffen zunächst den grundsätzlichen Funktionsablauf der erfindungsgemäßen Regeleinrichtung, wobei im weiteren Verlauf verstärkt auf Rand- und Übergangsbedingungen, beispielsweise Verhalten bei Teillast und Schubbetrieb eingegangen wird.

Der Grundregelverlauf ist so ausgebildet, daß aufgrund der Gestaltung des Regelverstärkers 9 und seiner Komponenten zur Lage-Sollwertbildung der Stößelposition und insofern über die durch diesen betätigte Hauptdrosselklappe der Füllungszustand der Brennkraftmaschine beeinflußt wird.

Hierzu bildet der nichtlineare Regelverstärker

1. eine Rettungsfunktion, die außerhalb der Totzone dann wirk- sam wird, wenn die Istdrehzahl die Solldrehzahl unterschreitet ($n < n_{soll}$), sowie

- 10 -

2. eine Abfangfunktion, die außerhalb der Totzone dann wirksam wird, wenn die Istdrehzahl die Solldrehzahl überschreitet $(n > n_{soll})$, jeweils mit Einschränkung des Regelbereichs auf $n > n_{min}$.

Die Rettungsfunktion setzt also dann ein, wenn wegen zu geringer, außerhalb des Totzonenbereichs liegender effektiver Drehzahl der Brennkraftmaschine diese abzusterben droht; die Abfangfunktion wird wirksam, wenn die Drehzahl höher als die Grenzdrehzahl \mathbf{n}_{T2} liegt und auf die Leerlaufdrehzahl zurückgeführt werden muß.

Bevorzugt arbeitet der nichtlineare Regelverstärker 9 bezüglich der Rettungsfunktion mit Integral-, Proportional- und nochmals vorzugsweise auch mit einem Differential-Anteil, während die Abfangfunktion mit Proportional- und/oder Integralanteil dargestellt wird. Die Bildung des Proportionalanteils übernimmt der Proportionalverstärker 9b, zur Bildung des Integralanteils ist der Integrator oder Integralverstärker 9a vorgesehen; wie erwähnt, werden beiden Verstärkern 9a, 9b über die vorgeschalteten Summierpunkte 14 und 15 die für die Bildung von Rettungsfunktion bzw. Abfangfunktion erforderlichen Daten zugeführt. Um den Differentialanteil der Rettungsfunktion zu bilden, kann der Proportionalverstärker mit Vorhalt arbeiten; es ist aber auch möglich, die einzelnen, dem Proportionalverstärker zugeführten Signalen zu gewichten, beispielsweise indem man für die Steilheit der Kurve, die sich bei Unterschreiten der unteren Totpunktdrehzahl n_{r,} in Block 10b ergibt, einen größeren Wert nimmt, so daß der

- 11 -

Proportionalverstärker 9b anfänglich überproportional reagiert und die Rettungsfunktion sicher eingreift und die Drosselklappe um gehend stärker öffnet.

Eine vorteilhafte Ausgestaltung vorliegender Erfindung liegt darin, daß zwar ein zum Sollwert symmetrischer Totzonenbereich vorgesehen und durch die Schaltungsblöcke 10a, 10b realisiert ist, der geringfügig größer als die natürliche Schwankungsbreite der Leerlaufdrehzahl ist, daß jedoch ein Grundintegralanteil auch einen Wirkungsbereich innerhalb der Totzone ausübt dergestalt, daß Drehzahldriften infolge von Langzeiteinflüssen durch Temperatur und Luftdruck eliminiert und der Arbeitspunkt stets sicher in der Totzone zentriert werden kann. Zu diesem Zweck ist ein Ausgang 11a des Drehzahl/ Spannungswandlers 11, an welchem sich eine zur jeweiligen effektiven Istdrehzahl proportionaler Spannungswert ergibt, über eine Verbindungsleitung 25 auch direkt, also unter Umgehung der Totzonenschaltung 10, an den Summierpunkt 14 für den Integralanteil angeschlossen, so daß von der Integratorseite her auch eine Einwirkung innerhalb des Totzonenbereichs realisiert wird. Es braucht in diesem Zusammenhang nicht weiter erwähnt zu werden, daß der Integralanteil die Drosselklappenstellung im wesentlichen darstellt.

Außerhalb des Leerlaufbetriebs, der sich durch einen geöffneten Drosselklappenschalter 23 erfassen läßt, wird die bisher geschilderte Drehzahlregelung bezüglich des Leerlaufs oder des leerlaufnahen Drehzahlbereichs abgeschaltet und eine

- 12 -

drehzahlabhängige Lage- und/oder Integratorsteuerung in Verbindung mit dem Drosselklappenschalter 23 zur Erkennung des Betriebszustandes durchgeführt; es versteht sich, daß der Drosselklappenschalter elektrisch, elektronisch oder elektromechanisch ausgebildet sein kann. Dabei wird die Drosselklappenstellung und/oder der die Drosselklappenstellung im wesentlichen darstellende Integralanteil nach einer bestimmten Funktion nachgeführt, wobei diese Funktion beispielsweise durch die Drosselklappenstellung/Drehzahlcharakteristik dargestellt werden kann.

Die Abschaltung der Drehzahlregelung erfolgt vom Drosselklappenschalter 23 aus über eine Verbindungsleitung 26, die
der Ventilendstufe 4 bei offener Drosselklappe ein Inhibit-Signal, also ein Sperrsignal zuführt. Dieses Sperrsignal gelangt
gleichzeitig über die an die Leitung 26 angeschlossene Verbindungsleitung 27 auf einen entsprechenden Sperreingang des
Proportionalverstärkers 9b des Regelverstärkers, so daß der
Proportionalanteil ausgeschaltet und lediglich noch der Integralanteil durch eine besondere Art der Steuerung erhalten bleibt.

Der Speicherschaltung 19 für die Lage im Arbeitspunkt wird über die Verbindungsleitung 28 der Lage-Istwert zugeführt; dabei erhält die Speicherschaltung 19 jedoch Sperrsignale Sp1 und Sp2 zugeführt von den Blöcken 10a, 10b jeweils bei Totzonen- überschreitung durch die Istdrehzahl, also bei n \nearrow n_{T2} und n \nwarrow n_{T1}. Ferner ergeht über die Leitung 29 an die Speicherschaltung 19 ein Lasterkennungs-Sperrsignal S_L, welches an

der Klemme 30 zuführbar ist und beispielsweise von einem Tachogenerator stammen kann, damit die Speicherschaltung 19 das Istwertsignal nicht dann übernimmt, wenn die Brennkraftmaschine unter Last steht. Der von der Speicherschaltung 19 gespeicherte Leerlaufdrehzahl-Arbeitspunkt gelangt über eine Verbindungsleitung 31 zu einer Vergleichsstelle 32, die der drehzahlempfindlichen Steuerschaltung 18 für die Ansteuerung des Integrators bzw. des Integralverstärkers 9a im Regelverstärker 9 vorgeschaltet ist. Der Vergleichsstelle 32 ist noch zugeführt vom Ausgang des Integralverstärkers 9a über die Verbindungsleitung 33 ein Sollwertsignal des Leerlaufdrehzahl-Arbeitspunkts für den gesteuerten Betrieb.

Ferner wird der Vergleichsstelle 32 beim drehzahlabhängigen Integratorsteuerungsbetrieb über die Verbindungsleitung 34 ein drehzahlproportionales Signal vom Ausgang 12b des Wandlers 11 zugeführt, so daß die Steuerschaltung 18 effektiv in Abhängigkeit zur Drehzahl arbeiten kann. Dabei wird dann das normalerweise am Eingang 18a der Steuerschaltung 18 anliegende Sperrsignal der Verbindungsleitung 26 weggenommen; mit anderen Worten, die Steuerschaltung 18 erhält ein Freigabesignal nur dann, wenn der Drosselklappenschalter 23 öffnet und gleichzeitig noch die über die Verbindungsleitung 35 realisierte Verknüpfung erfüllt ist, daß die effektive Drehzahl größer als die obere Totpunkt-Grenzdrehzahl ist (n > n_{T2}). Durch die bei offenem Drosselklappenschalter 23 wirksam geschaltete Steuerschaltung 18 ergibt sich an deren Ausgang 18b ein Steuersignal für den drehzahlgeführten Integralanteil

- 14 -

und/oder die drehzahlgeführte Lage und gelangt über die Verbindungsleitung 36 ebenfalls zum Summierpunkt 14 für den Integralanteil.

Es ergibt sich daher die Funktion, daß beim Verlassen der Totzone (Drosselklappe geöffnet) der Integratorinhalt im lastfreien Betriebszustand abgespeichert, die Soll-Ist-Drehzahlabweichung gemessen und, mit dem Gradienten der Drosselklappenstellung/Drehzahlcharakteristik bewertet, zu dem Integratorinhalt addiert und als Lageführungsgröße dem Regler zugeführt wird. Der Lageregler 6 erhält also auch bei gesperrter Ventilendstufe ein Steuersignal zugeführt, welches bei Zurücknahme der geöffneten Drosselklappe aus dem Teillastbereich in den Leerlauf für deren definierte Positionierung sorgt.

Im einfachsten Fall, nämlich ohne Schubpositionierung, worauf weiter unten sofort eingegangen wird, kann der Istwert des bei Verlassen der Totzone arretierten Stellglieds herangezogen werden. Diese Maß-nahme hat den Vorteil, daß veränderliche Parameter der Regelstrecke selbsttätig korrigiert werden. In Abweichung hierzu ist aber auch möglich, bei Rückkehr aus dem Teillastbereich, der durch den geöffneten Drosselklappenschalter 23 und die Bedingung n < n $_2$ (n $_2$ = obere Drehzahlschwelle) gekennzeichnet ist, in den Leerlaufbereich und somit zur Überleitung in die Regelung so zu verfahren, daß während einer einstellbaren Zeit der Stößel 1 des Stellgliedes 2 gesteuert

- 15 -

in Leerlaufdrehzahlposition gehalten wird. Diese einstellbare Zeit wird spätestens dann beendet, wenn die Motordrehzahl kleiner oder gleich der oberen Totzonen-Drehzahl wird (n ≤ n_{T2}). Ein bevorzugter Funktionsablauf bezüglich des Betriebs der Brennkraftmaschine im Teillast- und im Leerlaufbereich kann dabei so ablaufen, daß zunächst bei Übergang aus dem Leerlauf in den Teillastbereich bei Öffnen der Drosselklappe das Sperrsignal zur Ventilendstufe gelangt; hier wird jedoch nicht wahllos eingegriffen, sondern dieses Sperrsignal selbst oder durch das Sperrsignal aktivierte Komponenten sorgen dafür, daß in diesem Fall, also bei offenem Drosselklappenschalter der Stößel 1 auf der letzten Position vor Öffnen des Drosselklappenschalters verharrt.

Der geöffnete Drosselklappenschalter bewirkt hierbei das Wirksamwerden der drehzahlabhängigen Integratorsteuerung, mit anderen Worten, im normalen Fahrbetrieb wird der im Integralverstärker vorhandene Integrator, der insofern auch über einen als veränderlichen Speicher bezeichnenden Teilbereich verfügt, sozusagen vorgeladen. Erfolgt dann Übergang in den Leerlaufbereich, dann setzt hier die Abfangfunktion ein und es wird der Stößel 1 zunächst ausgefahren, um die Drosselklappenposition nach dem jeweiligen gewünschten Programm der Abfangfunktion aufzufangen und sicherzustellen, daß wegen des abrupten Schließens der Hauptdrosselklappe der Motor nicht ausgeht. Hier werden,

weiter unten gleich eingegangen werden soll. Es sei zum besseren Verständnis der Erfindung noch darauf hingewiesen, daß es eine Vielzahl von Möglichkeiten gibt, die Abfangfunktion und entsprechend die Rettungsfunktion der Hauptregelstrecke durch verschiedene Bewertung der dem Regelverstärker 9 zugeführten Signale bzw. durch eine entsprechende asymmetrische, also nichtlineare Auslegung desselben unterschiedlich zu gestalten. So kann die Abfangfunktion durch die "Vorladung" des Integrators zunächst ein Ausfahren des Stößels bewirken mit Übergang in die Leerlaufdrehzahlposition ausschließlich durch Beaufschlagung des Integralverstärkers 9a; also in diesem Fall unter Abschaltung des Proportionalverstärkers bzw. durch Unterbrechung des von diesem dem Summierpunkt für Lagesollwert 17 zugeführten Ausgangssignals.

Andererseits ist es eine innerhalb des erfindungsgemäßen Rahmens liegende Maßnahme, die weiter vorn schon erwähnte Rettungsfunktion besonders stark auf den Proportionalverstärker zu stützen und einen wesentlich stärkeren P-Anteil vorzusehen, so daß der Regler 9 insgesamt bei Drehzahlen unterhalb der Totzonen-Grenzdrehzahl n_{T1} kräftig eingreift, während bei Überschreitung der oberen Totzonen-Grenzdrehzahl n_{T2} normal mit anders bewerteten Proportional- und Integralanteilen des Reglers 9 gearbeitet wird. Es ist daher ein besonderes Merkmal vorliegender Erfindung, daß der Regler 9 unsymmetrisch arbeiten kann und so optimale Anpassungen an das jeweilige Betriebsverhalten der Brennkraftmaschine möglich sind.

Beim Normalbetrieb eines Kraftfahrzeugs ergeben sich sehr häufig längere oder kürzere Schubphasen, beispielsweise beim Berabfahren, beim abrupten Gaswegnehmen aus höheren Drehzahlen, was beispielsweise beim Anfahren von Kurven geschieht oder allgemein beim Übergang vom Teillastbereich in den Leerlauf, wenn man beispielsweise auf Ampeln oder sonstige Hindernisse zurollt. Es ist eine Schuberfassungsschaltung bzw. ein im folgenden lediglich als Schubkomparator bezeichneter Block 21 vorgesehen, dessen Eingangssignal, welches ein Über- oder Unterschreiten der Drehzahlschwelle angibt, vorteilhafterweise aus der Drehzahlaufbereitung für die Leerlaufdrehzahlregelung abgeleitet wird; bei dem dargestellten Ausführungsbeispiel gelangt dieses Signal vom Ausgang 11a des Wandlers 11 über die Verbindungsleitung 40 zum Eingang 21a des Schubkomparators. Der Schubkomparator erzeugt an seinen beiden Ausgängen 21b und 21c Ausgangssignale dann, wenn n, überschritten oder n, unterschritten wird (Schalthysterese).

Der Schub-

komparator 21 ist so ausgelegt, daß er an seinem Ausgang 21c ein Schubpositionierungs-Signal S erzeugt und über die Verbindungsleitung 41 einem Summierpunkt 42 am Eingang des Lagereglers 6 zuführt, und zwar mit der Bewertung "Priorität für Schubposition", mit anderen Worten, an dieser Stelle wird, wenn der Schubkomparator effektiv eine Schubphase erfaßt hat, lediglich noch dieses Signal dem Lageregler nach der Durchführung des Soll-Istwertvergleiches bei 7 zugeführt. Das Schubpositionierungs-Signal ist so ausgebildet, daß bei Überschreiten der Schubdrehzahlschwelle der Stößel 1 des Stell-

- 18 -

gliedes 2 in einer Schubstellung so positioniert wird, daß die Hauptdrosselklappe in einem mechanischen Schubanschlag verharren kann, beispielsweise in einemmechanischen 3° -Schubanschlag, und zwar so lange, bis die Schubdrehzahlschwelle n_1 wieder unterschritten wird. Dieses mit Priorität für die Schubposition dem Lageregler zugeführte Schubpositionierungs-Signal kann immer erzeugt werden und vorliegen, wenn zuvor die Drehzahl n_2 überschritten wurde und danach stets größer als n_1 war.

Bevorzugt sind

die Verhältnisse bezüglich Positionierung der Hauptdrosselklappe, des Drosselklappenschalters und der Positionierung des Anstellerstößels 1 so getroffen, daß stets im Fahrbetrieb bei Auftreten einer Schubphase, also wenn der Fahrer beispielsweise seinen Fuß vom Fahrpedal nimmt und daher die Hauptdrosselklappe mechanisch geschlossen wird, ein Spalt zwischen dem Stößel 1 und dem Drosselklappenhebel verbleibt, der beispielsweise bei etwa 0,5 mm liegen kann, so daß der Drosselklappenschalter 23 weiterhin geöffnet ist. Man darf nicht übersehen, daß bei einem solchen geöffneten Drosselklappenschalter die Ventilendstufe 4 über den Lageregler 6 aufgrund des Sperrsignals vom Drosselklappenschalter nicht angesteuert werden kann, so daß es erforderlich ist, beim Unterschreiten der Schubphase (n $< n_1$) die Ventilendstufen 4 aktiv zu schalten. Zu diesem Zweck ist die Schubentriegelungsschaltung 22 vorgesehen, die jeweils nach einer Schubphase vom Ausgang 21b des Schubkomparators 21 angesteuert ist und dafür sorgt, daß die Ventilendstufe 4 aktiviert oder wirksam geschaltet ist, so daß es über-

- 19 -

haupt zu der Betätigung des Stößels 1 aus Schubstellung über das elektropneumatische Stellglied kommen kann.

Die Schubentriegelungsschaltung 22 verfügt über eine Zeitfunktion, die bei Beendigung einer Schubphase für eine vorgegebene Zeitdauer (t_M) die Ventilendstufen so lange aktiv schaltet, bis der Anstellerweg bzw. Restspalt von hier 0,5 mm zwischen Stößel 1 und Drosselklappenhebel zurückgelegt ist und der Drosselklappenschalter 23 geschlossen werden kann. In diesem Fall verschwindet dann das von diesem auf die Ventilendstufe 4 ausgeübte Sperrsignal und die Regelung kann wieder einsetzen, die durch diese zusätzliche Zeitfunktion der Schubentriegelung 22 allein ermöglicht wird.

Schubkomparator 21 mit Schubentriegelung 22 ermöglichen so eine lagegeregelte Schubstellung des Stößels, wobei die Positionierung auch über einen integrierten Endschalter in Serie zu dem evakuierenden Ventil gewährleistet sein kann; bei Beendigung der Schubphase (Unterschreiten der Schubdrehzahlschwelle n₁) wird das Schubpositionierungssignal sofort vom Additionspunkt 42 weggenommen; die Priorität für dieses Signal erlischt und es kann dann die weiter vorn schon erwähnte Abfangfunktion eingreifen dahingehend, daß der Stößel 1 nunmehr aus dieser Schubposition (beispielsweis 1 mm Lage) in Richtung Arbeitspunkt ausgefahren wird (hierbei wird dann der Restspalt 0,5 mm überwunden) der Drosselklappenschalter 23 schaltet die Regelung wieder ein bzw. übernimmt nun die Wirksamschaltung der Ventilendstufe 4 nach Ablauf der Zeitfunktion der Schubtung der Ventilendstufe 4 nach Ablauf der Zeitfunktion der Schubtung

0077997

1588/ot/mü 24. Sept. 1981

- 20 -

entriegelungsschaltung 22 und die Abfangfunktion führt die Drehzahl wieder auf den Sollwert zurück.

Alternativ kann die Abfangfunktion zur harmonischen Überleitung der Motordrehzahl in die Leerlaufdrehzahl nach Schubphasen auch so ausgestaltet sein, daß bei Wiederunterschreitung der Schubdrehzahl der Stellglied-Stößel 1 zunächst auf eine verglichen mit dem Leerlaufdrehzahl-Arbeitspunkt überhöhte Lage gesteuert wird. Hierzu kann der Schubkomparator so ausgestaltet sein, daß das Schubpositionierungs-Signal bei Unterschreitung der Schubdrehzahl eine Überhöhung erfährt, die sich über den Lageregler 6 und die Ventilendstufe 4 auf den Stößel 1 auswirkt und nach einer Zeitfunktion zurückgenommen wird. Dieser Positionierung auf die überhöhte Lage schließt sich dann im Ablauf der genannten Zeitfunktion zunächst eine Positionierung auf den Leerlaufdrehzahl-Arbeitspunkt an und schließlich nach Ablauf einer weiteren Zeitfunktion Überleitung in die Regelung. Die letztgenannte Zeitfunktion wird jedenfalls dann vorzeitig beendet, wenn die Istdrehzahl in die obere Grenze $n_{_{\mathbf{T}\mathbf{Q}}}$ der Totzone einläuft.

Ein weiterer Schwellwertschalter, der in der Darstellung der Zeichnung als Starterkennungsschaltung 20 bezeichnet ist, dient der Startpositionierung des im Integralverstärker vorhandenen Integrators und erzwingt bei Drehzahlen in der Nähe der Startdrehzahl eine bestimmte Ausgangslage des Integrators. Die Starterkennungsschaltung 20 erhält ebenfalls ein Drehzahlsignal aus der Drehzahlaufbereitung für die Leerlaufdrehzahl-

regelung über die Leitung 40 zugeführt und erzeugt auf Ausgangsleitungen 45, 45a und 46 Ausgangssignale während einer Zeit, während welcher die Brennkraftmaschinendrehzahl unterhalb einer vorgegebenen Startdrehzahlschwelle liegt ($n \le n_0$). In der Startphase gelangt über die Leitung 45 von der Starterkennungsschaltung 20 auf einen Eingang 47 des Integralverstärkers 9a ein Signal, welches einen Integratoranschlag als Startpositionierung bewirkt. Gleichzeitig wird von der Starterkennungsschaltung der Lagespeicher 19 auf einen angepaßten Anfangswert (Initialisierung bei Startvorgang) gesetzt, bevor die erste aktuelle Leerlauf-Arbeitspunktspeicherung erfolgen kann. Es empfiehlt sich, in der Startphase die Regelung zunächst einzuschränken, beispielsweise durch Aktivierung eines Integratoranschlags bei gleichzeitiger Sperrung des Proportionalverstärkers 9b über Leitung 45, 45a, da der Regler über die Rettungsfunktionen die Hauptdrosselklappe sonst weit öffnen würde. Für den Startvorgang ist ferner wesentlich, daß die Beeinflussung des Integrators vorzugsweise unter Berücksichtigung der Motortemperatur erfolgen soll, so daß aus dieser Maßnahme heraus dann ein harmonischer Übergang in die Leerlaufdrehzahlregelung möglich ist. Es ist daher in für sich gesehen bekannter Weise ein Sensor für die Motortemperatur vorgesehen, beispielsweise ein sich in geeignetem wärmeleitendem Kontakt mit Motorbereichen, etwa dem Kühlwasser, befindender NTC-Widerstand, der über die Starterkennungsschaltung 20 oder direkt dem Integralverstärker 9a - unter Freigabe durch die Starterkennungsschaltung 20, ein ergänzendes Motortemperatursignal zuführt, was in der Zeichnung nicht dargestellt ist, und so bewirkt, daß sich ein einwandfreier Übergang in die Leerlaufdrehzahlregelung ergibt. Die

- 22 -

Einwirkung der Motortemperatur kann auch über eine Zeitfunktion bei Regelung noch aufrechterhalten sein und erst allmählich zurückgenommen werden. Eine weitere vorteilhafte Möglichkeit zur temperaturabhängigen Beeinflussung ergibt sich dadurch, daß die drehzahlabhängige Lage- und/oder Integratorsteuerung nach bestimmten Funktionen von der Brennkraftmaschinentemperatur abhängig gemacht wird.

Die in der Zuleitung 34 des Drehzahlsignals zur Vergleichsstelle 32 der Integrator-Steuerschaltung noch vorhandene Zenerdiode 49 dient zur Begrenzung des hier zugeführten Signals auf den Drehzahlbereich n $\leq n_2$, also auf den Teillastbereich vor Erreichen der eine Schubphase kennzeichnenden oberen Grenzdrehzahl n_2 .

Ein weiterer Steuereingriff mit Bezug auf den Integralverstärker 9a des Regelverstärkers geht aus von einer Vergleichsstelle 48, die das gespeicherte Lagensignal im Arbeitspunkt vom Ausgang der Speicherschaltung 19 vergleicht mit dem Lage-Sollwertsignal hinter dem Summierpunkt 17 des Regelverstärkers 9; hierdurch ergibt sich ein Vergleich für einen unteren Drehzahlanschlag; das Ausgangssignal ist ebenfalls dem Summierpunkt 14 für den Integralanteil zugeführt, so daß sichergestellt ist, daß dieser untere Drehzahlanschlag am Integrator nicht unterschritten wird.

Es versteht sich, daß das an Klemme 30 anliegende und die Speicherschaltung 19 zur Speicherung des Lage-Istwerts des

- 23 -

Stößels nur im lastfreien Zustand freigebende Signal auch von einem Getriebe- oder Kupplungsschalter herrühren kann, ergänzend zur Ableitung eines solchen Signals von einem Tachogenerator. Wesentlich ist lediglich, daß eine fehlerhafte Einspeicherung des Leerlauf-Arbeitspunktes verhindert wird.

Weitere vorteilhafte Ausgestaltungen vorliegender Erfindung ergeben sich durch die Möglichkeit, temperaturabhängig Sollwerte zu beeinflussen, beispielsweise die Führungsgröße Uno bezüglich des Leerlauf-Mittensollwerts, die der Vergleichsstelle 12 zugeführt wird. Bei kalter Brennkraftmaschine kann hier eine Anhebung des Leerlaufbereichs in Richtung auf höhere Drehzahlen erwünscht sein.

0077997

Dipi.-Ing. **Peter Otte**Patentanwait

7250 Leonberg Tiroler Straße 15 Telefon (07152) 45421 u.44442

BPS9

1588/ot/mü 24. Sept. 1981 PAT5 Böer

Firma Bosch und Pierburg System oHG, 4040 Neuss

Patentansprüche

- 1. Verfahren zur Regelung der Drehzahl einer Brennkraftmaschine mit Drosselklappe im Ansaugkanal im Leerlauf, im leerlaufnahen Drehzahlbereich und gegebenenfalls im Schubbetrieb, unter Auswertung eines drehzahlproportionalen Istwertsignals, eines Drehzahl-Sollwertsignals zur Bildung der Regelabweichung und entsprechender Ansteuerung eines auf die Drosselklappe einwirkenden Stellgliedes, dadurch gekennzeichnet, daß unter Vorgabe eines Drehzahl-Totzonenbereichs das nach Vergleich mit einer Leerlauf-Drehzahlführungsgröße gewonnene Drehzahl-Abweichungssignal einer bezüglich der nach unten oder oben möglichen Abweichung unsymmetrischen Regelverstärkung mit mindestens Integral- und Proportionalanteil unterworfen wird, . daß Integral- und Proportionalanteil addiert und einem Lage-Regelkreis für die die Drosselklappenstellung im Leerlauf bestimmende Stellgliedposition zugeführt werden.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die unsymmetrische Regelverstärkung der Drehzahl-Regel-

abweichung eine Rettungsfunktion bei Unterschreitung eines unteren Totzonen-Grenzdrehzahlwerts bildet mit stärker bewertetem P-Anteil, vorzugsweise mit zusätzlichem Differentialanteil.

- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die unsymmetrische Verstärkung der Drehzahl-Regelabweichung bei Überschreiten einer oberen Totzonen-Grenzdrehzahl eine Abfangfunktion bildet unter Einschränkung des Regelbereichs auf den I-Anteil und allmählicher Rückführung auf die Leerlauf-Drehzahlposition.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zur Zentrierung des Leerlaufdrehzahl-Arbeitspunkts gegenüber Langzeiteinflüssen dem Integralanteil der asymmetrischen Verstärkung unter Umgehung des Totzonenbereichs ein dem Istwert der Drehzahl proportionales Signal zugeführt wird, derart, daß sich ein Grund-Integralanteil mit Wirkungsbereich innerhalb der Totzone ergibt.
- 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zum Leerlauf unterschiedliche Betriebsarten der Brennkraftmaschine erfaßt und auf eine Vorsteuerung der vom Stellglied bestimmten Stößelposition umgeschaltet wird, unter Abschaltung der Regelung.

- 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß zur Erzielung stetiger Übergänge von Steuerung auf Regelung einschließlich Schubfunktion mit einer drehzahlabhängigen Lagesteuerung bezüglich des Stößels und/oder einer Integratorsteuerung nach bestimmter Funktion oder Lagesteuerung in Stufen nach Zeitfunktionen unter Vergleich von Motordrehzahl und Totzone auf den Integralanteil der asymmetrischen Verstärkung für das Drehzahl-Abweichungssignal eingewirkt wird, derart, daß sich eine gesteuerte Vorpositionierung des Stößels zur Rückführung der Drosselklappe in den geregelten Leerlaufbereich ergibt.
- 7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß während Schubphasen der bei vom Leerlauf abweichenden Betriebsarten gesperrte Lageregelkreis für den die Drosselklappenstellung beeinflussenden Stößel entriegelt und ein prioritätsbehaftetes Schubpositionierungssignal erzeugt wird zur lagegeregelten Schubstellung des Stößels.
- 8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der durch asymmetrische Verstärkung aus der Drehzahlabweichung gewonnene Sollwert und/oder die Leerlaufdrehzahl-Führungsgröße und/oder die drehzahlabhängige Erzeugung von Steuerinformationen für den Integralanteil der Verstärkung zusätzlich temperaturabhängig beeinflußt werden.

- 9. Vorrichtung zur Drehzahlregelung einer Brennkraftmaschine mit Drosselklappe im Ansaugkanal für Leerlauf, für den leerlaufnahen Drehzahlbereich und gegebenenfalls für den Schubbetrieb, mit einem die Regelabweichung zwischen einem drehzahlproportionalen Istwertsignal und einem Drehzahl-Sollwertsignal erfassendem und ein mit der Drosselklappe in Wirkverbindung stehendes Stellglied ansteuerndem Regelverstärker, dadurch gekennzeichnet, daß der Regelverstärker in zwei hintereinander geschaltete Teilbereiche aufgeteilt ist, einen ersten, die nach Vergleich mit einer Leerlaufdrehzahl-Führungsgröße gewonnene Drehzahl-Regelabweichung über einen Integralverstärker (9a) und einen Proportionalverstärker (9b) zur Gewinnung eines Lagesollwerts verarbeitenden Teilbereichs (11, 10, 9), dem als zweiter Teilbereich ein unterlagerter Lage-Regelkreis (5) für die über ein Stellglied (2) durchzuführende Positionierung eines Stößels (1) nachgeschaltet ist.
- 10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß der erste, die Leerlaufdrehzahlabweichung verarbeitende Teilbereich eine symmetrisch zum Leerlauf-Sollwert ausgelegte Totzonenschaltung (10) aufweist, deren Totzone geringfügig größer als die natürliche Schwankungsbreite der Leerlaufdrehzahl ist.
- 11. Vorrichtung nach Anspruch 10, dadurch gekennzeichnet, daß die Totzonenschaltung (10) zwei Schaltungsblöcke zur Bildung eines oberen Drehzahl-Grenzwerts (n_{T2}) und zur

Bildung eines unteren Drehzahl-Grenzwerts $(n_{\widetilde{T1}})$ für den Totzonenbereich enthält, innerhalb welchem keine Ausgangssignale erzeugt werden.

- 12. Vorrichtung nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß die Totzonen-Schaltungsblöcke (10a, 10b) bei Überschreitung ihrer Totzonen-Grenzdrehzahlen (n_{T2} , n_{T1}) zur zugeführten Drehzahl-Regelabweichung proportionale oder von dieser eine beliebige Funktionsabhängigkeit aufweisende Ausgangssignale erzeugen.
- 13. Vorrichtung nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß der Totzonenschaltung (10) ein Drehzahl/Spannungswandler (11) vorgeschaltet ist, mit einer Vergleichsstelle (12) zwischen Wandler (11) und Totzonenschaltung (10), der eine Leerlaufdrehzahl-Führungsgröße zugeführt ist.
- 14. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß der der Totzonenschaltung (10) nachgeschaltete Regelverstärker separate Teilverstärker in Form eines Integralverstärkers (9a), eines Proportionalverstärkers (9b) sowie gegebenenfalls eines Differentialverstärkers zur Bildung von Proportional-, Integral- und Differentialanteilen umfaßt und daß den einzelnen Teilverstärkern jeweils Summierpunkte (14, 15) für die ihrem Eingang zuzuführenden Signalanteile vorgeschaltet sind.

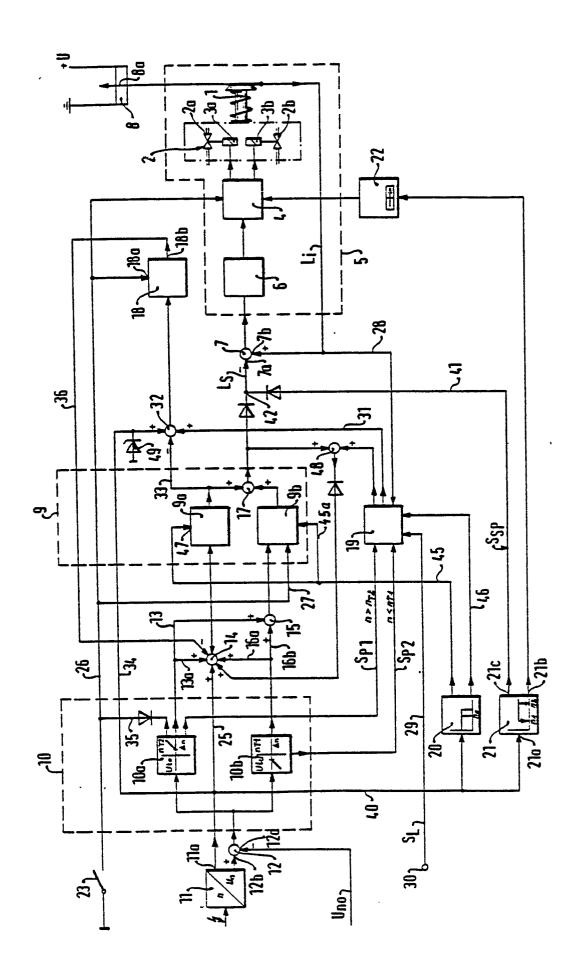
EPS9

- 15. Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, daß der die Teilverstärker enthaltende Regelverstärker (9) insgesamt asymmetrisch oder nichtlinear ausgebildet ist zur Bildung von ihrer Wirkung nach unterschiedlichen Rettungsfunktionen bei Unterschreitung der unteren Totzonen-Grenzdrehzahl (n_{T1}) mit Integral-, Proportional- und Differential-anteil sowie Abfangfunktionen bei Überschreitung der oberen Totzonen-Grenzdrehzahl (n_{T2}) mit Proportional- und/oder Integralanteil.
- 16. Vorrichtung nach Anspruch 14 oder 15, dadurch gekennzeichnet, daß die den Teilverstärkern zugeführten Signale zur Bildung unterschiedlicher Rettungs- oder Abfangfunktionen unterschiedlich bewertet sind.
- 17. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß die an einem Summierpunkt (17) für den Lagesollwert zusammengeführten Ausgänge der Teilverstärker (9a, 9b) des Regelverstärkers (9) einer Vergleichsstelle (7) des Lageregelkreises (5) für die Positionierung des Stößels (1) zugeführt sind.
- 18. Vorrichtung nach Anspruch 17, dadurch gekennzeichnet, daß der Lage-Regelkreis einen Lageregler (6), eine diesem nachgeschaltete Vertilendstufe (4) sowie ein diesem nachgeschaltetes elektropneumatisches Stellglied (2) umfaßt.
- 19. Vorrichtung nach Anspruch 18, dadurch gekennzeichnet, daß das elektropneumatische Stellglied (2) für die Positions-

steuerung eines an der Drosselklappe bzw. an mit dieser mechanisch verbundenen Teilen lediglich anliegenden Stößels (1) ein evakuierendes und ein belüftetes Ventil jeweils zum Einfahren und Anstellen des Stößels (1) aufweist, die über separate Endschalter ansteuerbar sind.

- 20. Vorrichtung nach einem oder mehreren der Ansprüche 9 bis 19, dadurch gekennzeichnet, daß zur Erfassung von zum Leerlauf unterschiedlichen Betriebsarten ein Drosselklappenschalter (23) vorgesehen ist.
- 21. Vorrichtung nach einem oder mehreren der Ansprüche 9 bis
 19, dadurch gekennzeichnet, daß zur Erfassung von zum
 Leerlauf abweichenden Betriebszuständen eine SchubphasenErkennungsschaltung (Schubkomparator 21) vorgesehen ist.
- 22. Vorrichtung nach Anspruch 20, dadurch gekennzeichnet, daß eine bei geöffnetem Drosselklappenschalter (23) ein Sperrsignal führende Verbindung (36) zur Ventilendstufe (4) vorgesehen ist, derart, daß in einem durch die geöffnete Drosselklappe bestimmten Teillastbereich das elektropneumatische Stellglied (2) verschleißmindernd arretiert ist.
- 23. Vorrichtung nach einem oder mehreren der Ansprüche 9 bis 22, dadurch gekennzeichnet, daß dem Integralverstärker (9a) eine bei geöffneter Drosselklappe und überschrittenem oberen Totzonen-Grenzwert (n_{T2}) wirksam geschaltete drehzahlabhängige Integratorsteuerung (18) zugeordnet ist,

EPS9


deren Ausgang mit dem Summierpunkt (14) für den Integralanteil verbunden ist und derem Eingang eine Vergleichsstelle (32) vorgeschaltet ist, die ein drehzahlproportionales Ausgangssignal vom eingangsseitigen Drehzahl/Spannungswandler (11) zugeführt erhält.

- 24. Vorrichtung nach einem oder mehreren der Ansprüche 9 bis 23, dadurch gekennzeichnet, daß eine Speicherschaltung (19) für die Speicherung der Lage (Position) des Stößels (1) im Arbeitspunkt bei Leerlauf vorgesehen ist, deren Ausgangssignal zusammen mit dem Ausgangssignal des Integralverstärkers (9a) der der Integratorsteuerung (18) vorgeschalteten Vergleichsstelle (32) zugeführt ist.
- 25. Vorrichtung nach Anspruch 24, dadurch gekennzeichnet, daß bei geöffnetem Drosselklappenschalter (23) außerhalb des Leerlaufbetriebs dem Proportionalverstärker (9b) ein Sperrsignal zugeführt ist, derart, daß lediglich der die Drosselklappenstellung im wesentlichen darstellende Integralanteil durch Beaufschlagung des Integralverstärkers (9a) entsprechend nachführbar ist.
- 26. Vorrichtung nach einem oder mehreren der Ansprüche 9 bis 25, dadurch gekennzeichnet, daß die Schubkomparatorschaltung (21) bei Vorliegen von in den Schubphasenbereich fallenden Drehzahlbedingungen (n₁ < n < n₂) ein prioritätsbehaftetes Schubpositionierungssignal (Ssp) erzeugt und dem Eingang des Lageregelkreises (5) vor der Vergleichsschaltung (7) für den Sollwert-Istwert zuführt, derart, daß sich eine lagegeregelte

EPS9

Schubstellung des die Drosselklappe anstellenden Stößels (1) vor einem mechanischen Endanschlag ergibt.

- 27. Vorrichtung nach Anspruch 26, dadurch gekennzeichnet, daß der Schubkomparatorschaltung (21) eine Schubentriegelungsschaltung (22) nachgeschaltet ist, die ergänzend eine Zeitfunktion erzeugt und die Ventilendstufe (4) des Lage-Regelkreises (5) derart ansteuert, daß nach Beendigung der Schubphase (Unterschreitung einer unteren Drehzahlschwelle n₁) die Ventilendstufen wirksam gesteuert sind zur Überführung in den Regelbereich.
- 28. Vorrichtung nach einem oder mehreren der Ansprüche 9 bis 27, dadurch gekennzeichnet, daß eine Starterkennungsschaltung (20) vorgesehen ist, die vom eingangsseitigen Drehzahl/Spannungswandler (11) angesteuert ist und zur Initialisierung beim Startvorgang ein erstes Ausgangssignal für die Speicherschaltung (19) des Lagearbeitspunktes sowie ein zweites Ausgangssignal zur Bewirkung eines Integratoranschlags als Startpositionierung erzeugt.

